| //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the VirtRegMap class. | 
 | // | 
 | // It also contains implementations of the the Spiller interface, which, given a | 
 | // virtual register map and a machine function, eliminates all virtual | 
 | // references by replacing them with physical register references - adding spill | 
 | // code as necessary. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "spiller" | 
 | #include "VirtRegMap.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/SSARegMap.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumSpills, "Number of register spills"); | 
 | STATISTIC(NumReMats, "Number of re-materialization"); | 
 | STATISTIC(NumDRM   , "Number of re-materializable defs elided"); | 
 | STATISTIC(NumStores, "Number of stores added"); | 
 | STATISTIC(NumLoads , "Number of loads added"); | 
 | STATISTIC(NumReused, "Number of values reused"); | 
 | STATISTIC(NumDSE   , "Number of dead stores elided"); | 
 | STATISTIC(NumDCE   , "Number of copies elided"); | 
 |  | 
 | namespace { | 
 |   enum SpillerName { simple, local }; | 
 |  | 
 |   static cl::opt<SpillerName> | 
 |   SpillerOpt("spiller", | 
 |              cl::desc("Spiller to use: (default: local)"), | 
 |              cl::Prefix, | 
 |              cl::values(clEnumVal(simple, "  simple spiller"), | 
 |                         clEnumVal(local,  "  local spiller"), | 
 |                         clEnumValEnd), | 
 |              cl::init(local)); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  VirtRegMap implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | VirtRegMap::VirtRegMap(MachineFunction &mf) | 
 |   : TII(*mf.getTarget().getInstrInfo()), MF(mf),  | 
 |     Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT), | 
 |     Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0), | 
 |     ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) { | 
 |   grow(); | 
 | } | 
 |  | 
 | void VirtRegMap::grow() { | 
 |   unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg(); | 
 |   Virt2PhysMap.grow(LastVirtReg); | 
 |   Virt2StackSlotMap.grow(LastVirtReg); | 
 |   Virt2ReMatIdMap.grow(LastVirtReg); | 
 |   Virt2SplitMap.grow(LastVirtReg); | 
 |   Virt2SpillPtsMap.grow(LastVirtReg); | 
 |   ReMatMap.grow(LastVirtReg); | 
 | } | 
 |  | 
 | int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { | 
 |   assert(MRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign stack slot to already spilled register"); | 
 |   const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg); | 
 |   int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(), | 
 |                                                         RC->getAlignment()); | 
 |   Virt2StackSlotMap[virtReg] = frameIndex; | 
 |   ++NumSpills; | 
 |   return frameIndex; | 
 | } | 
 |  | 
 | void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) { | 
 |   assert(MRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign stack slot to already spilled register"); | 
 |   assert((frameIndex >= 0 || | 
 |           (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) && | 
 |          "illegal fixed frame index"); | 
 |   Virt2StackSlotMap[virtReg] = frameIndex; | 
 | } | 
 |  | 
 | int VirtRegMap::assignVirtReMatId(unsigned virtReg) { | 
 |   assert(MRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign re-mat id to already spilled register"); | 
 |   Virt2ReMatIdMap[virtReg] = ReMatId; | 
 |   return ReMatId++; | 
 | } | 
 |  | 
 | void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) { | 
 |   assert(MRegisterInfo::isVirtualRegister(virtReg)); | 
 |   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && | 
 |          "attempt to assign re-mat id to already spilled register"); | 
 |   Virt2ReMatIdMap[virtReg] = id; | 
 | } | 
 |  | 
 | void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, | 
 |                             unsigned OpNo, MachineInstr *NewMI) { | 
 |   // Move previous memory references folded to new instruction. | 
 |   MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI); | 
 |   for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI), | 
 |          E = MI2VirtMap.end(); I != E && I->first == OldMI; ) { | 
 |     MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second)); | 
 |     MI2VirtMap.erase(I++); | 
 |   } | 
 |  | 
 |   ModRef MRInfo; | 
 |   const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor(); | 
 |   if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 || | 
 |       TID->findTiedToSrcOperand(OpNo) != -1) { | 
 |     // Folded a two-address operand. | 
 |     MRInfo = isModRef; | 
 |   } else if (OldMI->getOperand(OpNo).isDef()) { | 
 |     MRInfo = isMod; | 
 |   } else { | 
 |     MRInfo = isRef; | 
 |   } | 
 |  | 
 |   // add new memory reference | 
 |   MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo))); | 
 | } | 
 |  | 
 | void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) { | 
 |   MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI); | 
 |   MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo))); | 
 | } | 
 |  | 
 | void VirtRegMap::print(std::ostream &OS) const { | 
 |   const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo(); | 
 |  | 
 |   OS << "********** REGISTER MAP **********\n"; | 
 |   for (unsigned i = MRegisterInfo::FirstVirtualRegister, | 
 |          e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) { | 
 |     if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG) | 
 |       OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n"; | 
 |  | 
 |   } | 
 |  | 
 |   for (unsigned i = MRegisterInfo::FirstVirtualRegister, | 
 |          e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) | 
 |     if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT) | 
 |       OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n"; | 
 |   OS << '\n'; | 
 | } | 
 |  | 
 | void VirtRegMap::dump() const { | 
 |   print(DOUT); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Simple Spiller Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Spiller::~Spiller() {} | 
 |  | 
 | namespace { | 
 |   struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller { | 
 |     bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM); | 
 |   }; | 
 | } | 
 |  | 
 | bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { | 
 |   DOUT << "********** REWRITE MACHINE CODE **********\n"; | 
 |   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; | 
 |   const TargetMachine &TM = MF.getTarget(); | 
 |   const MRegisterInfo &MRI = *TM.getRegisterInfo(); | 
 |  | 
 |   // LoadedRegs - Keep track of which vregs are loaded, so that we only load | 
 |   // each vreg once (in the case where a spilled vreg is used by multiple | 
 |   // operands).  This is always smaller than the number of operands to the | 
 |   // current machine instr, so it should be small. | 
 |   std::vector<unsigned> LoadedRegs; | 
 |  | 
 |   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); | 
 |        MBBI != E; ++MBBI) { | 
 |     DOUT << MBBI->getBasicBlock()->getName() << ":\n"; | 
 |     MachineBasicBlock &MBB = *MBBI; | 
 |     for (MachineBasicBlock::iterator MII = MBB.begin(), | 
 |            E = MBB.end(); MII != E; ++MII) { | 
 |       MachineInstr &MI = *MII; | 
 |       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = MI.getOperand(i); | 
 |         if (MO.isRegister() && MO.getReg()) | 
 |           if (MRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |             unsigned VirtReg = MO.getReg(); | 
 |             unsigned PhysReg = VRM.getPhys(VirtReg); | 
 |             if (!VRM.isAssignedReg(VirtReg)) { | 
 |               int StackSlot = VRM.getStackSlot(VirtReg); | 
 |               const TargetRegisterClass* RC = | 
 |                 MF.getSSARegMap()->getRegClass(VirtReg); | 
 |  | 
 |               if (MO.isUse() && | 
 |                   std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) | 
 |                   == LoadedRegs.end()) { | 
 |                 MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); | 
 |                 LoadedRegs.push_back(VirtReg); | 
 |                 ++NumLoads; | 
 |                 DOUT << '\t' << *prior(MII); | 
 |               } | 
 |  | 
 |               if (MO.isDef()) { | 
 |                 MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); | 
 |                 ++NumStores; | 
 |               } | 
 |             } | 
 |             MF.setPhysRegUsed(PhysReg); | 
 |             MI.getOperand(i).setReg(PhysReg); | 
 |           } else { | 
 |             MF.setPhysRegUsed(MO.getReg()); | 
 |           } | 
 |       } | 
 |  | 
 |       DOUT << '\t' << MI; | 
 |       LoadedRegs.clear(); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Local Spiller Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |   class AvailableSpills; | 
 |  | 
 |   /// LocalSpiller - This spiller does a simple pass over the machine basic | 
 |   /// block to attempt to keep spills in registers as much as possible for | 
 |   /// blocks that have low register pressure (the vreg may be spilled due to | 
 |   /// register pressure in other blocks). | 
 |   class VISIBILITY_HIDDEN LocalSpiller : public Spiller { | 
 |     SSARegMap *RegMap; | 
 |     const MRegisterInfo *MRI; | 
 |     const TargetInstrInfo *TII; | 
 |   public: | 
 |     bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { | 
 |       RegMap = MF.getSSARegMap(); | 
 |       MRI = MF.getTarget().getRegisterInfo(); | 
 |       TII = MF.getTarget().getInstrInfo(); | 
 |       DOUT << "\n**** Local spiller rewriting function '" | 
 |            << MF.getFunction()->getName() << "':\n"; | 
 |       DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!) ****\n"; | 
 |       DEBUG(MF.dump()); | 
 |  | 
 |       for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); | 
 |            MBB != E; ++MBB) | 
 |         RewriteMBB(*MBB, VRM); | 
 |  | 
 |       DOUT << "**** Post Machine Instrs ****\n"; | 
 |       DEBUG(MF.dump()); | 
 |  | 
 |       return true; | 
 |     } | 
 |   private: | 
 |     bool PrepForUnfoldOpti(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator &MII, | 
 |                            std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                            AvailableSpills &Spills, BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps, | 
 |                            VirtRegMap &VRM); | 
 |     void SpillRegToStackSlot(MachineBasicBlock &MBB, | 
 |                              MachineBasicBlock::iterator &MII, | 
 |                              int Idx, unsigned PhysReg, int StackSlot, | 
 |                              const TargetRegisterClass *RC, | 
 |                              MachineInstr *&LastStore, | 
 |                              AvailableSpills &Spills, | 
 |                              SmallSet<MachineInstr*, 4> &ReMatDefs, | 
 |                              BitVector &RegKills, | 
 |                              std::vector<MachineOperand*> &KillOps, | 
 |                              VirtRegMap &VRM); | 
 |     void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM); | 
 |   }; | 
 | } | 
 |  | 
 | /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from | 
 | /// top down, keep track of which spills slots or remat are available in each | 
 | /// register. | 
 | /// | 
 | /// Note that not all physregs are created equal here.  In particular, some | 
 | /// physregs are reloads that we are allowed to clobber or ignore at any time. | 
 | /// Other physregs are values that the register allocated program is using that | 
 | /// we cannot CHANGE, but we can read if we like.  We keep track of this on a  | 
 | /// per-stack-slot / remat id basis as the low bit in the value of the | 
 | /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks | 
 | /// this bit and addAvailable sets it if. | 
 | namespace { | 
 | class VISIBILITY_HIDDEN AvailableSpills { | 
 |   const MRegisterInfo *MRI; | 
 |   const TargetInstrInfo *TII; | 
 |  | 
 |   // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled | 
 |   // or remat'ed virtual register values that are still available, due to being | 
 |   // loaded or stored to, but not invalidated yet. | 
 |   std::map<int, unsigned> SpillSlotsOrReMatsAvailable; | 
 |      | 
 |   // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, | 
 |   // indicating which stack slot values are currently held by a physreg.  This | 
 |   // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a | 
 |   // physreg is modified. | 
 |   std::multimap<unsigned, int> PhysRegsAvailable; | 
 |    | 
 |   void disallowClobberPhysRegOnly(unsigned PhysReg); | 
 |  | 
 |   void ClobberPhysRegOnly(unsigned PhysReg); | 
 | public: | 
 |   AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii) | 
 |     : MRI(mri), TII(tii) { | 
 |   } | 
 |    | 
 |   const MRegisterInfo *getRegInfo() const { return MRI; } | 
 |  | 
 |   /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is | 
 |   /// available in a  physical register, return that PhysReg, otherwise | 
 |   /// return 0. | 
 |   unsigned getSpillSlotOrReMatPhysReg(int Slot) const { | 
 |     std::map<int, unsigned>::const_iterator I = | 
 |       SpillSlotsOrReMatsAvailable.find(Slot); | 
 |     if (I != SpillSlotsOrReMatsAvailable.end()) { | 
 |       return I->second >> 1;  // Remove the CanClobber bit. | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /// addAvailable - Mark that the specified stack slot / remat is available in | 
 |   /// the specified physreg.  If CanClobber is true, the physreg can be modified | 
 |   /// at any time without changing the semantics of the program. | 
 |   void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg, | 
 |                     bool CanClobber = true) { | 
 |     // If this stack slot is thought to be available in some other physreg,  | 
 |     // remove its record. | 
 |     ModifyStackSlotOrReMat(SlotOrReMat); | 
 |      | 
 |     PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); | 
 |     SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber; | 
 |    | 
 |     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
 |       DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1; | 
 |     else | 
 |       DOUT << "Remembering SS#" << SlotOrReMat; | 
 |     DOUT << " in physreg " << MRI->getName(Reg) << "\n"; | 
 |   } | 
 |  | 
 |   /// canClobberPhysReg - Return true if the spiller is allowed to change the  | 
 |   /// value of the specified stackslot register if it desires.  The specified | 
 |   /// stack slot must be available in a physreg for this query to make sense. | 
 |   bool canClobberPhysReg(int SlotOrReMat) const { | 
 |     assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && | 
 |            "Value not available!"); | 
 |     return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; | 
 |   } | 
 |    | 
 |   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
 |   /// stackslot register. The register is still available but is no longer | 
 |   /// allowed to be modifed. | 
 |   void disallowClobberPhysReg(unsigned PhysReg); | 
 |    | 
 |   /// ClobberPhysReg - This is called when the specified physreg changes | 
 |   /// value.  We use this to invalidate any info about stuff that lives in | 
 |   /// it and any of its aliases. | 
 |   void ClobberPhysReg(unsigned PhysReg); | 
 |  | 
 |   /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
 |   /// slot changes.  This removes information about which register the previous | 
 |   /// value for this slot lives in (as the previous value is dead now). | 
 |   void ModifyStackSlotOrReMat(int SlotOrReMat); | 
 | }; | 
 | } | 
 |  | 
 | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified | 
 | /// stackslot register. The register is still available but is no longer | 
 | /// allowed to be modifed. | 
 | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { | 
 |   std::multimap<unsigned, int>::iterator I = | 
 |     PhysRegsAvailable.lower_bound(PhysReg); | 
 |   while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
 |     int SlotOrReMat = I->second; | 
 |     I++; | 
 |     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
 |            "Bidirectional map mismatch!"); | 
 |     SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; | 
 |     DOUT << "PhysReg " << MRI->getName(PhysReg) | 
 |          << " copied, it is available for use but can no longer be modified\n"; | 
 |   } | 
 | } | 
 |  | 
 | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
 | /// stackslot register and its aliases. The register and its aliases may | 
 | /// still available but is no longer allowed to be modifed. | 
 | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { | 
 |   for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS) | 
 |     disallowClobberPhysRegOnly(*AS); | 
 |   disallowClobberPhysRegOnly(PhysReg); | 
 | } | 
 |  | 
 | /// ClobberPhysRegOnly - This is called when the specified physreg changes | 
 | /// value.  We use this to invalidate any info about stuff we thing lives in it. | 
 | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { | 
 |   std::multimap<unsigned, int>::iterator I = | 
 |     PhysRegsAvailable.lower_bound(PhysReg); | 
 |   while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
 |     int SlotOrReMat = I->second; | 
 |     PhysRegsAvailable.erase(I++); | 
 |     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
 |            "Bidirectional map mismatch!"); | 
 |     SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); | 
 |     DOUT << "PhysReg " << MRI->getName(PhysReg) | 
 |          << " clobbered, invalidating "; | 
 |     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
 |       DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; | 
 |     else | 
 |       DOUT << "SS#" << SlotOrReMat << "\n"; | 
 |   } | 
 | } | 
 |  | 
 | /// ClobberPhysReg - This is called when the specified physreg changes | 
 | /// value.  We use this to invalidate any info about stuff we thing lives in | 
 | /// it and any of its aliases. | 
 | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { | 
 |   for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS) | 
 |     ClobberPhysRegOnly(*AS); | 
 |   ClobberPhysRegOnly(PhysReg); | 
 | } | 
 |  | 
 | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
 | /// slot changes.  This removes information about which register the previous | 
 | /// value for this slot lives in (as the previous value is dead now). | 
 | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { | 
 |   std::map<int, unsigned>::iterator It = | 
 |     SpillSlotsOrReMatsAvailable.find(SlotOrReMat); | 
 |   if (It == SpillSlotsOrReMatsAvailable.end()) return; | 
 |   unsigned Reg = It->second >> 1; | 
 |   SpillSlotsOrReMatsAvailable.erase(It); | 
 |    | 
 |   // This register may hold the value of multiple stack slots, only remove this | 
 |   // stack slot from the set of values the register contains. | 
 |   std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); | 
 |   for (; ; ++I) { | 
 |     assert(I != PhysRegsAvailable.end() && I->first == Reg && | 
 |            "Map inverse broken!"); | 
 |     if (I->second == SlotOrReMat) break; | 
 |   } | 
 |   PhysRegsAvailable.erase(I); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// InvalidateKills - MI is going to be deleted. If any of its operands are | 
 | /// marked kill, then invalidate the information. | 
 | static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, | 
 |                             std::vector<MachineOperand*> &KillOps, | 
 |                             SmallVector<unsigned, 2> *KillRegs = NULL) { | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isRegister() || !MO.isUse() || !MO.isKill()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (KillRegs) | 
 |       KillRegs->push_back(Reg); | 
 |     if (KillOps[Reg] == &MO) { | 
 |       RegKills.reset(Reg); | 
 |       KillOps[Reg] = NULL; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// InvalidateRegDef - If the def operand of the specified def MI is now dead | 
 | /// (since it's spill instruction is removed), mark it isDead. Also checks if | 
 | /// the def MI has other definition operands that are not dead. Returns it by | 
 | /// reference. | 
 | static bool InvalidateRegDef(MachineBasicBlock::iterator I, | 
 |                              MachineInstr &NewDef, unsigned Reg, | 
 |                              bool &HasLiveDef) { | 
 |   // Due to remat, it's possible this reg isn't being reused. That is, | 
 |   // the def of this reg (by prev MI) is now dead. | 
 |   MachineInstr *DefMI = I; | 
 |   MachineOperand *DefOp = NULL; | 
 |   for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = DefMI->getOperand(i); | 
 |     if (MO.isRegister() && MO.isDef()) { | 
 |       if (MO.getReg() == Reg) | 
 |         DefOp = &MO; | 
 |       else if (!MO.isDead()) | 
 |         HasLiveDef = true; | 
 |     } | 
 |   } | 
 |   if (!DefOp) | 
 |     return false; | 
 |  | 
 |   bool FoundUse = false, Done = false; | 
 |   MachineBasicBlock::iterator E = NewDef; | 
 |   ++I; ++E; | 
 |   for (; !Done && I != E; ++I) { | 
 |     MachineInstr *NMI = I; | 
 |     for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { | 
 |       MachineOperand &MO = NMI->getOperand(j); | 
 |       if (!MO.isRegister() || MO.getReg() != Reg) | 
 |         continue; | 
 |       if (MO.isUse()) | 
 |         FoundUse = true; | 
 |       Done = true; // Stop after scanning all the operands of this MI. | 
 |     } | 
 |   } | 
 |   if (!FoundUse) { | 
 |     // Def is dead! | 
 |     DefOp->setIsDead(); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// UpdateKills - Track and update kill info. If a MI reads a register that is | 
 | /// marked kill, then it must be due to register reuse. Transfer the kill info | 
 | /// over. | 
 | static void UpdateKills(MachineInstr &MI, BitVector &RegKills, | 
 |                         std::vector<MachineOperand*> &KillOps) { | 
 |   const TargetInstrDescriptor *TID = MI.getInstrDescriptor(); | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isRegister() || !MO.isUse()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) | 
 |       continue; | 
 |      | 
 |     if (RegKills[Reg]) { | 
 |       // That can't be right. Register is killed but not re-defined and it's | 
 |       // being reused. Let's fix that. | 
 |       KillOps[Reg]->unsetIsKill(); | 
 |       if (i < TID->numOperands && | 
 |           TID->getOperandConstraint(i, TOI::TIED_TO) == -1) | 
 |         // Unless it's a two-address operand, this is the new kill. | 
 |         MO.setIsKill(); | 
 |     } | 
 |  | 
 |     if (MO.isKill()) { | 
 |       RegKills.set(Reg); | 
 |       KillOps[Reg] = &MO; | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     const MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isRegister() || !MO.isDef()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     RegKills.reset(Reg); | 
 |     KillOps[Reg] = NULL; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ReusedOp - For each reused operand, we keep track of a bit of information, in | 
 | // case we need to rollback upon processing a new operand.  See comments below. | 
 | namespace { | 
 |   struct ReusedOp { | 
 |     // The MachineInstr operand that reused an available value. | 
 |     unsigned Operand; | 
 |  | 
 |     // StackSlotOrReMat - The spill slot or remat id of the value being reused. | 
 |     unsigned StackSlotOrReMat; | 
 |  | 
 |     // PhysRegReused - The physical register the value was available in. | 
 |     unsigned PhysRegReused; | 
 |  | 
 |     // AssignedPhysReg - The physreg that was assigned for use by the reload. | 
 |     unsigned AssignedPhysReg; | 
 |      | 
 |     // VirtReg - The virtual register itself. | 
 |     unsigned VirtReg; | 
 |  | 
 |     ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, | 
 |              unsigned vreg) | 
 |       : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), | 
 |         AssignedPhysReg(apr), VirtReg(vreg) {} | 
 |   }; | 
 |    | 
 |   /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that | 
 |   /// is reused instead of reloaded. | 
 |   class VISIBILITY_HIDDEN ReuseInfo { | 
 |     MachineInstr &MI; | 
 |     std::vector<ReusedOp> Reuses; | 
 |     BitVector PhysRegsClobbered; | 
 |   public: | 
 |     ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) { | 
 |       PhysRegsClobbered.resize(mri->getNumRegs()); | 
 |     } | 
 |      | 
 |     bool hasReuses() const { | 
 |       return !Reuses.empty(); | 
 |     } | 
 |      | 
 |     /// addReuse - If we choose to reuse a virtual register that is already | 
 |     /// available instead of reloading it, remember that we did so. | 
 |     void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, | 
 |                   unsigned PhysRegReused, unsigned AssignedPhysReg, | 
 |                   unsigned VirtReg) { | 
 |       // If the reload is to the assigned register anyway, no undo will be | 
 |       // required. | 
 |       if (PhysRegReused == AssignedPhysReg) return; | 
 |        | 
 |       // Otherwise, remember this. | 
 |       Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,  | 
 |                                 AssignedPhysReg, VirtReg)); | 
 |     } | 
 |  | 
 |     void markClobbered(unsigned PhysReg) { | 
 |       PhysRegsClobbered.set(PhysReg); | 
 |     } | 
 |  | 
 |     bool isClobbered(unsigned PhysReg) const { | 
 |       return PhysRegsClobbered.test(PhysReg); | 
 |     } | 
 |      | 
 |     /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
 |     /// is some other operand that is using the specified register, either pick | 
 |     /// a new register to use, or evict the previous reload and use this reg.  | 
 |     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, | 
 |                              AvailableSpills &Spills, | 
 |                              std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                              SmallSet<unsigned, 8> &Rejected, | 
 |                              BitVector &RegKills, | 
 |                              std::vector<MachineOperand*> &KillOps, | 
 |                              VirtRegMap &VRM) { | 
 |       if (Reuses.empty()) return PhysReg;  // This is most often empty. | 
 |  | 
 |       for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { | 
 |         ReusedOp &Op = Reuses[ro]; | 
 |         // If we find some other reuse that was supposed to use this register | 
 |         // exactly for its reload, we can change this reload to use ITS reload | 
 |         // register. That is, unless its reload register has already been | 
 |         // considered and subsequently rejected because it has also been reused | 
 |         // by another operand. | 
 |         if (Op.PhysRegReused == PhysReg && | 
 |             Rejected.count(Op.AssignedPhysReg) == 0) { | 
 |           // Yup, use the reload register that we didn't use before. | 
 |           unsigned NewReg = Op.AssignedPhysReg; | 
 |           Rejected.insert(PhysReg); | 
 |           return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, | 
 |                                  RegKills, KillOps, VRM); | 
 |         } else { | 
 |           // Otherwise, we might also have a problem if a previously reused | 
 |           // value aliases the new register.  If so, codegen the previous reload | 
 |           // and use this one.           | 
 |           unsigned PRRU = Op.PhysRegReused; | 
 |           const MRegisterInfo *MRI = Spills.getRegInfo(); | 
 |           if (MRI->areAliases(PRRU, PhysReg)) { | 
 |             // Okay, we found out that an alias of a reused register | 
 |             // was used.  This isn't good because it means we have | 
 |             // to undo a previous reuse. | 
 |             MachineBasicBlock *MBB = MI->getParent(); | 
 |             const TargetRegisterClass *AliasRC = | 
 |               MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg); | 
 |  | 
 |             // Copy Op out of the vector and remove it, we're going to insert an | 
 |             // explicit load for it. | 
 |             ReusedOp NewOp = Op; | 
 |             Reuses.erase(Reuses.begin()+ro); | 
 |  | 
 |             // Ok, we're going to try to reload the assigned physreg into the | 
 |             // slot that we were supposed to in the first place.  However, that | 
 |             // register could hold a reuse.  Check to see if it conflicts or | 
 |             // would prefer us to use a different register. | 
 |             unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, | 
 |                                                   MI, Spills, MaybeDeadStores, | 
 |                                               Rejected, RegKills, KillOps, VRM); | 
 |              | 
 |             if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { | 
 |               MRI->reMaterialize(*MBB, MI, NewPhysReg, | 
 |                                  VRM.getReMaterializedMI(NewOp.VirtReg)); | 
 |               ++NumReMats; | 
 |             } else { | 
 |               MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg, | 
 |                                         NewOp.StackSlotOrReMat, AliasRC); | 
 |               // Any stores to this stack slot are not dead anymore. | 
 |               MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;             | 
 |               ++NumLoads; | 
 |             } | 
 |             Spills.ClobberPhysReg(NewPhysReg); | 
 |             Spills.ClobberPhysReg(NewOp.PhysRegReused); | 
 |              | 
 |             MI->getOperand(NewOp.Operand).setReg(NewPhysReg); | 
 |              | 
 |             Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg); | 
 |             MachineBasicBlock::iterator MII = MI; | 
 |             --MII; | 
 |             UpdateKills(*MII, RegKills, KillOps); | 
 |             DOUT << '\t' << *MII; | 
 |              | 
 |             DOUT << "Reuse undone!\n"; | 
 |             --NumReused; | 
 |              | 
 |             // Finally, PhysReg is now available, go ahead and use it. | 
 |             return PhysReg; | 
 |           } | 
 |         } | 
 |       } | 
 |       return PhysReg; | 
 |     } | 
 |  | 
 |     /// GetRegForReload - Helper for the above GetRegForReload(). Add a | 
 |     /// 'Rejected' set to remember which registers have been considered and | 
 |     /// rejected for the reload. This avoids infinite looping in case like | 
 |     /// this: | 
 |     /// t1 := op t2, t3 | 
 |     /// t2 <- assigned r0 for use by the reload but ended up reuse r1 | 
 |     /// t3 <- assigned r1 for use by the reload but ended up reuse r0 | 
 |     /// t1 <- desires r1 | 
 |     ///       sees r1 is taken by t2, tries t2's reload register r0 | 
 |     ///       sees r0 is taken by t3, tries t3's reload register r1 | 
 |     ///       sees r1 is taken by t2, tries t2's reload register r0 ... | 
 |     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, | 
 |                              AvailableSpills &Spills, | 
 |                              std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                              BitVector &RegKills, | 
 |                              std::vector<MachineOperand*> &KillOps, | 
 |                              VirtRegMap &VRM) { | 
 |       SmallSet<unsigned, 8> Rejected; | 
 |       return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected, | 
 |                              RegKills, KillOps, VRM); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// PrepForUnfoldOpti - Turn a store folding instruction into a load folding | 
 | /// instruction. e.g. | 
 | ///     xorl  %edi, %eax | 
 | ///     movl  %eax, -32(%ebp) | 
 | ///     movl  -36(%ebp), %eax | 
 | ///	orl   %eax, -32(%ebp) | 
 | /// ==> | 
 | ///     xorl  %edi, %eax | 
 | ///     orl   -36(%ebp), %eax | 
 | ///     mov   %eax, -32(%ebp) | 
 | /// This enables unfolding optimization for a subsequent instruction which will | 
 | /// also eliminate the newly introduced store instruction. | 
 | bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB, | 
 |                                      MachineBasicBlock::iterator &MII, | 
 |                                     std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                                      AvailableSpills &Spills, | 
 |                                      BitVector &RegKills, | 
 |                                      std::vector<MachineOperand*> &KillOps, | 
 |                                      VirtRegMap &VRM) { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   MachineInstr &MI = *MII; | 
 |   unsigned UnfoldedOpc = 0; | 
 |   unsigned UnfoldPR = 0; | 
 |   unsigned UnfoldVR = 0; | 
 |   int FoldedSS = VirtRegMap::NO_STACK_SLOT; | 
 |   VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
 |   for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { | 
 |     // Only transform a MI that folds a single register. | 
 |     if (UnfoldedOpc) | 
 |       return false; | 
 |     UnfoldVR = I->second.first; | 
 |     VirtRegMap::ModRef MR = I->second.second; | 
 |     if (VRM.isAssignedReg(UnfoldVR)) | 
 |       continue; | 
 |     // If this reference is not a use, any previous store is now dead. | 
 |     // Otherwise, the store to this stack slot is not dead anymore. | 
 |     FoldedSS = VRM.getStackSlot(UnfoldVR); | 
 |     MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; | 
 |     if (DeadStore && (MR & VirtRegMap::isModRef)) { | 
 |       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); | 
 |       if (!PhysReg || | 
 |           DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1) | 
 |         continue; | 
 |       UnfoldPR = PhysReg; | 
 |       UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(), | 
 |                                                     false, true); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!UnfoldedOpc) | 
 |     return false; | 
 |  | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse()) | 
 |       continue; | 
 |     unsigned VirtReg = MO.getReg(); | 
 |     if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) | 
 |       continue; | 
 |     if (VRM.isAssignedReg(VirtReg)) { | 
 |       unsigned PhysReg = VRM.getPhys(VirtReg); | 
 |       if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |         return false; | 
 |     } else if (VRM.isReMaterialized(VirtReg)) | 
 |       continue; | 
 |     int SS = VRM.getStackSlot(VirtReg); | 
 |     unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |     if (PhysReg) { | 
 |       if (MRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |         return false; | 
 |       continue; | 
 |     } | 
 |     PhysReg = VRM.getPhys(VirtReg); | 
 |     if (!MRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |       continue; | 
 |  | 
 |     // Ok, we'll need to reload the value into a register which makes | 
 |     // it impossible to perform the store unfolding optimization later. | 
 |     // Let's see if it is possible to fold the load if the store is | 
 |     // unfolded. This allows us to perform the store unfolding | 
 |     // optimization. | 
 |     SmallVector<MachineInstr*, 4> NewMIs; | 
 |     if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { | 
 |       assert(NewMIs.size() == 1); | 
 |       MachineInstr *NewMI = NewMIs.back(); | 
 |       NewMIs.clear(); | 
 |       int Idx = NewMI->findRegisterUseOperandIdx(VirtReg); | 
 |       assert(Idx != -1); | 
 |       MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Idx, SS); | 
 |       if (FoldedMI) { | 
 |         if (!VRM.hasPhys(UnfoldVR)) | 
 |           VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); | 
 |         VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
 |         MII = MBB.insert(MII, FoldedMI); | 
 |         VRM.RemoveFromFoldedVirtMap(&MI); | 
 |         MBB.erase(&MI); | 
 |         return true; | 
 |       } | 
 |       delete NewMI; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// findSuperReg - Find the SubReg's super-register of given register class | 
 | /// where its SubIdx sub-register is SubReg. | 
 | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, | 
 |                              unsigned SubIdx, const MRegisterInfo *MRI) { | 
 |   for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
 |        I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     if (MRI->getSubReg(Reg, SubIdx) == SubReg) | 
 |       return Reg; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if | 
 | /// the last store to the same slot is now dead. If so, remove the last store. | 
 | void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB, | 
 |                                   MachineBasicBlock::iterator &MII, | 
 |                                   int Idx, unsigned PhysReg, int StackSlot, | 
 |                                   const TargetRegisterClass *RC, | 
 |                                   MachineInstr *&LastStore, | 
 |                                   AvailableSpills &Spills, | 
 |                                   SmallSet<MachineInstr*, 4> &ReMatDefs, | 
 |                                   BitVector &RegKills, | 
 |                                   std::vector<MachineOperand*> &KillOps, | 
 |                                   VirtRegMap &VRM) { | 
 |   MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); | 
 |   DOUT << "Store:\t" << *next(MII); | 
 |  | 
 |   // If there is a dead store to this stack slot, nuke it now. | 
 |   if (LastStore) { | 
 |     DOUT << "Removed dead store:\t" << *LastStore; | 
 |     ++NumDSE; | 
 |     SmallVector<unsigned, 2> KillRegs; | 
 |     InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); | 
 |     MachineBasicBlock::iterator PrevMII = LastStore; | 
 |     bool CheckDef = PrevMII != MBB.begin(); | 
 |     if (CheckDef) | 
 |       --PrevMII; | 
 |     MBB.erase(LastStore); | 
 |     VRM.RemoveFromFoldedVirtMap(LastStore); | 
 |     if (CheckDef) { | 
 |       // Look at defs of killed registers on the store. Mark the defs | 
 |       // as dead since the store has been deleted and they aren't | 
 |       // being reused. | 
 |       for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { | 
 |         bool HasOtherDef = false; | 
 |         if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { | 
 |           MachineInstr *DeadDef = PrevMII; | 
 |           if (ReMatDefs.count(DeadDef) && !HasOtherDef) { | 
 |             // FIXME: This assumes a remat def does not have side | 
 |             // effects. | 
 |             MBB.erase(DeadDef); | 
 |             VRM.RemoveFromFoldedVirtMap(DeadDef); | 
 |             ++NumDRM; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   LastStore = next(MII); | 
 |  | 
 |   // If the stack slot value was previously available in some other | 
 |   // register, change it now.  Otherwise, make the register available, | 
 |   // in PhysReg. | 
 |   Spills.ModifyStackSlotOrReMat(StackSlot); | 
 |   Spills.ClobberPhysReg(PhysReg); | 
 |   Spills.addAvailable(StackSlot, LastStore, PhysReg); | 
 |   ++NumStores; | 
 | } | 
 |  | 
 | /// rewriteMBB - Keep track of which spills are available even after the | 
 | /// register allocator is done with them.  If possible, avid reloading vregs. | 
 | void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { | 
 |   DOUT << MBB.getBasicBlock()->getName() << ":\n"; | 
 |  | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |  | 
 |   // Spills - Keep track of which spilled values are available in physregs so | 
 |   // that we can choose to reuse the physregs instead of emitting reloads. | 
 |   AvailableSpills Spills(MRI, TII); | 
 |    | 
 |   // MaybeDeadStores - When we need to write a value back into a stack slot, | 
 |   // keep track of the inserted store.  If the stack slot value is never read | 
 |   // (because the value was used from some available register, for example), and | 
 |   // subsequently stored to, the original store is dead.  This map keeps track | 
 |   // of inserted stores that are not used.  If we see a subsequent store to the | 
 |   // same stack slot, the original store is deleted. | 
 |   std::vector<MachineInstr*> MaybeDeadStores; | 
 |   MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); | 
 |  | 
 |   // ReMatDefs - These are rematerializable def MIs which are not deleted. | 
 |   SmallSet<MachineInstr*, 4> ReMatDefs; | 
 |  | 
 |   // ReloadedSplits - Splits must be reloaded once per MBB. This keeps track | 
 |   // which have been reloaded. | 
 |   SmallSet<unsigned, 8> ReloadedSplits; | 
 |  | 
 |   // Keep track of kill information. | 
 |   BitVector RegKills(MRI->getNumRegs()); | 
 |   std::vector<MachineOperand*>  KillOps; | 
 |   KillOps.resize(MRI->getNumRegs(), NULL); | 
 |  | 
 |   for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); | 
 |        MII != E; ) { | 
 |     MachineBasicBlock::iterator NextMII = MII; ++NextMII; | 
 |  | 
 |     VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
 |     bool Erased = false; | 
 |     bool BackTracked = false; | 
 |     if (PrepForUnfoldOpti(MBB, MII, | 
 |                           MaybeDeadStores, Spills, RegKills, KillOps, VRM)) | 
 |       NextMII = next(MII); | 
 |  | 
 |     MachineInstr &MI = *MII; | 
 |     const TargetInstrDescriptor *TID = MI.getInstrDescriptor(); | 
 |  | 
 |     // Insert spills here if asked to. | 
 |     std::vector<unsigned> SpillRegs = VRM.getSpillPtSpills(&MI); | 
 |     for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { | 
 |       unsigned VirtReg = SpillRegs[i]; | 
 |       const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg); | 
 |       unsigned Phys = VRM.getPhys(VirtReg); | 
 |       int StackSlot = VRM.getStackSlot(VirtReg); | 
 |       MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; | 
 |       SpillRegToStackSlot(MBB, MII, i, Phys, StackSlot, RC, | 
 |                           LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); | 
 |     } | 
 |  | 
 |     /// ReusedOperands - Keep track of operand reuse in case we need to undo | 
 |     /// reuse. | 
 |     ReuseInfo ReusedOperands(MI, MRI); | 
 |     // Process all of the spilled uses and all non spilled reg references. | 
 |     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = MI.getOperand(i); | 
 |       if (!MO.isRegister() || MO.getReg() == 0) | 
 |         continue;   // Ignore non-register operands. | 
 |        | 
 |       unsigned VirtReg = MO.getReg(); | 
 |       if (MRegisterInfo::isPhysicalRegister(VirtReg)) { | 
 |         // Ignore physregs for spilling, but remember that it is used by this | 
 |         // function. | 
 |         MF.setPhysRegUsed(VirtReg); | 
 |         continue; | 
 |       } | 
 |        | 
 |       assert(MRegisterInfo::isVirtualRegister(VirtReg) && | 
 |              "Not a virtual or a physical register?"); | 
 |        | 
 |       unsigned SubIdx = MO.getSubReg(); | 
 |       if (VRM.isAssignedReg(VirtReg)) { | 
 |         // This virtual register was assigned a physreg! | 
 |         unsigned Phys = VRM.getPhys(VirtReg); | 
 |         MF.setPhysRegUsed(Phys); | 
 |         if (MO.isDef()) | 
 |           ReusedOperands.markClobbered(Phys); | 
 |  | 
 |         // If it's a split live interval, insert a reload for the first use | 
 |         // unless it's previously defined in the MBB. | 
 |         unsigned SplitReg = VRM.getPreSplitReg(VirtReg); | 
 |         if (SplitReg) { | 
 |           if (ReloadedSplits.insert(VirtReg)) { | 
 |             bool HasUse = MO.isUse(); | 
 |             // If it's a def, we don't need to reload the value unless it's | 
 |             // a two-address code. | 
 |             if (!HasUse) { | 
 |               for (unsigned j = i+1; j != e; ++j) { | 
 |                 MachineOperand &MOJ = MI.getOperand(j); | 
 |                 if (MOJ.isRegister() && MOJ.getReg() == VirtReg) { | 
 |                   HasUse = true; | 
 |                   break; | 
 |                 } | 
 |               } | 
 |             } | 
 |  | 
 |             if (HasUse) { | 
 |               if (VRM.isReMaterialized(VirtReg)) { | 
 |                 MRI->reMaterialize(MBB, &MI, Phys, | 
 |                                    VRM.getReMaterializedMI(VirtReg)); | 
 |                 ++NumReMats; | 
 |               } else { | 
 |                 const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg); | 
 |                 MRI->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg), RC); | 
 |                 ++NumLoads; | 
 |               } | 
 |               // This invalidates Phys. | 
 |               Spills.ClobberPhysReg(Phys); | 
 |               UpdateKills(*prior(MII), RegKills, KillOps); | 
 |               DOUT << '\t' << *prior(MII); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys; | 
 |         MI.getOperand(i).setReg(RReg); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // This virtual register is now known to be a spilled value. | 
 |       if (!MO.isUse()) | 
 |         continue;  // Handle defs in the loop below (handle use&def here though) | 
 |  | 
 |       bool DoReMat = VRM.isReMaterialized(VirtReg); | 
 |       int SSorRMId = DoReMat | 
 |         ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); | 
 |       int ReuseSlot = SSorRMId; | 
 |  | 
 |       // Check to see if this stack slot is available. | 
 |       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
 |       if (!PhysReg && DoReMat) { | 
 |         // This use is rematerializable. But perhaps the value is available in | 
 |         // a register if the definition is not deleted. If so, check if we can | 
 |         // reuse the value. | 
 |         ReuseSlot = VRM.getStackSlot(VirtReg); | 
 |         if (ReuseSlot != VirtRegMap::NO_STACK_SLOT) | 
 |           PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot); | 
 |       } | 
 |  | 
 |       // If this is a sub-register use, make sure the reuse register is in the | 
 |       // right register class. For example, for x86 not all of the 32-bit | 
 |       // registers have accessible sub-registers. | 
 |       // Similarly so for EXTRACT_SUBREG. Consider this: | 
 |       // EDI = op | 
 |       // MOV32_mr fi#1, EDI | 
 |       // ... | 
 |       //       = EXTRACT_SUBREG fi#1 | 
 |       // fi#1 is available in EDI, but it cannot be reused because it's not in | 
 |       // the right register file. | 
 |       if (PhysReg && | 
 |           (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { | 
 |         const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg); | 
 |         if (!RC->contains(PhysReg)) | 
 |           PhysReg = 0; | 
 |       } | 
 |  | 
 |       if (PhysReg) { | 
 |         // This spilled operand might be part of a two-address operand.  If this | 
 |         // is the case, then changing it will necessarily require changing the  | 
 |         // def part of the instruction as well.  However, in some cases, we | 
 |         // aren't allowed to modify the reused register.  If none of these cases | 
 |         // apply, reuse it. | 
 |         bool CanReuse = true; | 
 |         int ti = TID->getOperandConstraint(i, TOI::TIED_TO); | 
 |         if (ti != -1 && | 
 |             MI.getOperand(ti).isRegister() &&  | 
 |             MI.getOperand(ti).getReg() == VirtReg) { | 
 |           // Okay, we have a two address operand.  We can reuse this physreg as | 
 |           // long as we are allowed to clobber the value and there isn't an | 
 |           // earlier def that has already clobbered the physreg. | 
 |           CanReuse = Spills.canClobberPhysReg(ReuseSlot) && | 
 |             !ReusedOperands.isClobbered(PhysReg); | 
 |         } | 
 |          | 
 |         if (CanReuse) { | 
 |           // If this stack slot value is already available, reuse it! | 
 |           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
 |             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; | 
 |           else | 
 |             DOUT << "Reusing SS#" << ReuseSlot; | 
 |           DOUT << " from physreg " | 
 |                << MRI->getName(PhysReg) << " for vreg" | 
 |                << VirtReg <<" instead of reloading into physreg " | 
 |                << MRI->getName(VRM.getPhys(VirtReg)) << "\n"; | 
 |           unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |           MI.getOperand(i).setReg(RReg); | 
 |  | 
 |           // The only technical detail we have is that we don't know that | 
 |           // PhysReg won't be clobbered by a reloaded stack slot that occurs | 
 |           // later in the instruction.  In particular, consider 'op V1, V2'. | 
 |           // If V1 is available in physreg R0, we would choose to reuse it | 
 |           // here, instead of reloading it into the register the allocator | 
 |           // indicated (say R1).  However, V2 might have to be reloaded | 
 |           // later, and it might indicate that it needs to live in R0.  When | 
 |           // this occurs, we need to have information available that | 
 |           // indicates it is safe to use R1 for the reload instead of R0. | 
 |           // | 
 |           // To further complicate matters, we might conflict with an alias, | 
 |           // or R0 and R1 might not be compatible with each other.  In this | 
 |           // case, we actually insert a reload for V1 in R1, ensuring that | 
 |           // we can get at R0 or its alias. | 
 |           ReusedOperands.addReuse(i, ReuseSlot, PhysReg, | 
 |                                   VRM.getPhys(VirtReg), VirtReg); | 
 |           if (ti != -1) | 
 |             // Only mark it clobbered if this is a use&def operand. | 
 |             ReusedOperands.markClobbered(PhysReg); | 
 |           ++NumReused; | 
 |  | 
 |           if (MI.getOperand(i).isKill() && | 
 |               ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { | 
 |             // This was the last use and the spilled value is still available | 
 |             // for reuse. That means the spill was unnecessary! | 
 |             MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot]; | 
 |             if (DeadStore) { | 
 |               DOUT << "Removed dead store:\t" << *DeadStore; | 
 |               InvalidateKills(*DeadStore, RegKills, KillOps); | 
 |               VRM.RemoveFromFoldedVirtMap(DeadStore); | 
 |               MBB.erase(DeadStore); | 
 |               MaybeDeadStores[ReuseSlot] = NULL; | 
 |               ++NumDSE; | 
 |             } | 
 |           } | 
 |           continue; | 
 |         }  // CanReuse | 
 |          | 
 |         // Otherwise we have a situation where we have a two-address instruction | 
 |         // whose mod/ref operand needs to be reloaded.  This reload is already | 
 |         // available in some register "PhysReg", but if we used PhysReg as the | 
 |         // operand to our 2-addr instruction, the instruction would modify | 
 |         // PhysReg.  This isn't cool if something later uses PhysReg and expects | 
 |         // to get its initial value. | 
 |         // | 
 |         // To avoid this problem, and to avoid doing a load right after a store, | 
 |         // we emit a copy from PhysReg into the designated register for this | 
 |         // operand. | 
 |         unsigned DesignatedReg = VRM.getPhys(VirtReg); | 
 |         assert(DesignatedReg && "Must map virtreg to physreg!"); | 
 |  | 
 |         // Note that, if we reused a register for a previous operand, the | 
 |         // register we want to reload into might not actually be | 
 |         // available.  If this occurs, use the register indicated by the | 
 |         // reuser. | 
 |         if (ReusedOperands.hasReuses()) | 
 |           DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |          | 
 |         // If the mapped designated register is actually the physreg we have | 
 |         // incoming, we don't need to inserted a dead copy. | 
 |         if (DesignatedReg == PhysReg) { | 
 |           // If this stack slot value is already available, reuse it! | 
 |           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
 |             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; | 
 |           else | 
 |             DOUT << "Reusing SS#" << ReuseSlot; | 
 |           DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg" | 
 |                << VirtReg | 
 |                << " instead of reloading into same physreg.\n"; | 
 |           unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |           MI.getOperand(i).setReg(RReg); | 
 |           ReusedOperands.markClobbered(RReg); | 
 |           ++NumReused; | 
 |           continue; | 
 |         } | 
 |          | 
 |         const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg); | 
 |         MF.setPhysRegUsed(DesignatedReg); | 
 |         ReusedOperands.markClobbered(DesignatedReg); | 
 |         MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); | 
 |  | 
 |         MachineInstr *CopyMI = prior(MII); | 
 |         UpdateKills(*CopyMI, RegKills, KillOps); | 
 |  | 
 |         // This invalidates DesignatedReg. | 
 |         Spills.ClobberPhysReg(DesignatedReg); | 
 |          | 
 |         Spills.addAvailable(ReuseSlot, &MI, DesignatedReg); | 
 |         unsigned RReg = | 
 |           SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; | 
 |         MI.getOperand(i).setReg(RReg); | 
 |         DOUT << '\t' << *prior(MII); | 
 |         ++NumReused; | 
 |         continue; | 
 |       } // if (PhysReg) | 
 |        | 
 |       // Otherwise, reload it and remember that we have it. | 
 |       PhysReg = VRM.getPhys(VirtReg); | 
 |       assert(PhysReg && "Must map virtreg to physreg!"); | 
 |  | 
 |       // Note that, if we reused a register for a previous operand, the | 
 |       // register we want to reload into might not actually be | 
 |       // available.  If this occurs, use the register indicated by the | 
 |       // reuser. | 
 |       if (ReusedOperands.hasReuses()) | 
 |         PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |        | 
 |       MF.setPhysRegUsed(PhysReg); | 
 |       ReusedOperands.markClobbered(PhysReg); | 
 |       if (DoReMat) { | 
 |         MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg)); | 
 |         ++NumReMats; | 
 |       } else { | 
 |         const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg); | 
 |         MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); | 
 |         ++NumLoads; | 
 |       } | 
 |       // This invalidates PhysReg. | 
 |       Spills.ClobberPhysReg(PhysReg); | 
 |  | 
 |       // Any stores to this stack slot are not dead anymore. | 
 |       if (!DoReMat) | 
 |         MaybeDeadStores[SSorRMId] = NULL; | 
 |       Spills.addAvailable(SSorRMId, &MI, PhysReg); | 
 |       // Assumes this is the last use. IsKill will be unset if reg is reused | 
 |       // unless it's a two-address operand. | 
 |       if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1) | 
 |         MI.getOperand(i).setIsKill(); | 
 |       unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |       MI.getOperand(i).setReg(RReg); | 
 |       UpdateKills(*prior(MII), RegKills, KillOps); | 
 |       DOUT << '\t' << *prior(MII); | 
 |     } | 
 |  | 
 |     DOUT << '\t' << MI; | 
 |  | 
 |  | 
 |     // If we have folded references to memory operands, make sure we clear all | 
 |     // physical registers that may contain the value of the spilled virtual | 
 |     // register | 
 |     SmallSet<int, 2> FoldedSS; | 
 |     for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { | 
 |       unsigned VirtReg = I->second.first; | 
 |       VirtRegMap::ModRef MR = I->second.second; | 
 |       DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR; | 
 |  | 
 |       // If this is a split live interval, remember we have seen this so | 
 |       // we do not need to reload it for later uses. | 
 |       unsigned SplitReg = VRM.getPreSplitReg(VirtReg); | 
 |       if (SplitReg) | 
 |         ReloadedSplits.insert(VirtReg); | 
 |  | 
 |       int SS = VRM.getStackSlot(VirtReg); | 
 |       if (SS == VirtRegMap::NO_STACK_SLOT) | 
 |         continue; | 
 |       FoldedSS.insert(SS); | 
 |       DOUT << " - StackSlot: " << SS << "\n"; | 
 |        | 
 |       // If this folded instruction is just a use, check to see if it's a | 
 |       // straight load from the virt reg slot. | 
 |       if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { | 
 |         int FrameIdx; | 
 |         unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); | 
 |         if (DestReg && FrameIdx == SS) { | 
 |           // If this spill slot is available, turn it into a copy (or nothing) | 
 |           // instead of leaving it as a load! | 
 |           if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { | 
 |             DOUT << "Promoted Load To Copy: " << MI; | 
 |             if (DestReg != InReg) { | 
 |               const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg); | 
 |               MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); | 
 |               // Revisit the copy so we make sure to notice the effects of the | 
 |               // operation on the destreg (either needing to RA it if it's  | 
 |               // virtual or needing to clobber any values if it's physical). | 
 |               NextMII = &MI; | 
 |               --NextMII;  // backtrack to the copy. | 
 |               BackTracked = true; | 
 |             } else | 
 |               DOUT << "Removing now-noop copy: " << MI; | 
 |  | 
 |             VRM.RemoveFromFoldedVirtMap(&MI); | 
 |             MBB.erase(&MI); | 
 |             Erased = true; | 
 |             goto ProcessNextInst; | 
 |           } | 
 |         } else { | 
 |           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |           SmallVector<MachineInstr*, 4> NewMIs; | 
 |           if (PhysReg && | 
 |               MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { | 
 |             MBB.insert(MII, NewMIs[0]); | 
 |             VRM.RemoveFromFoldedVirtMap(&MI); | 
 |             MBB.erase(&MI); | 
 |             Erased = true; | 
 |             --NextMII;  // backtrack to the unfolded instruction. | 
 |             BackTracked = true; | 
 |             goto ProcessNextInst; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // If this reference is not a use, any previous store is now dead. | 
 |       // Otherwise, the store to this stack slot is not dead anymore. | 
 |       MachineInstr* DeadStore = MaybeDeadStores[SS]; | 
 |       if (DeadStore) { | 
 |         bool isDead = !(MR & VirtRegMap::isRef); | 
 |         MachineInstr *NewStore = NULL; | 
 |         if (MR & VirtRegMap::isModRef) { | 
 |           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |           SmallVector<MachineInstr*, 4> NewMIs; | 
 |           if (PhysReg && | 
 |               DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 && | 
 |               MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) { | 
 |             MBB.insert(MII, NewMIs[0]); | 
 |             NewStore = NewMIs[1]; | 
 |             MBB.insert(MII, NewStore); | 
 |             VRM.RemoveFromFoldedVirtMap(&MI); | 
 |             MBB.erase(&MI); | 
 |             Erased = true; | 
 |             --NextMII; | 
 |             --NextMII;  // backtrack to the unfolded instruction. | 
 |             BackTracked = true; | 
 |             isDead = true; | 
 |           } | 
 |         } | 
 |  | 
 |         if (isDead) {  // Previous store is dead. | 
 |           // If we get here, the store is dead, nuke it now. | 
 |           DOUT << "Removed dead store:\t" << *DeadStore; | 
 |           InvalidateKills(*DeadStore, RegKills, KillOps); | 
 |           VRM.RemoveFromFoldedVirtMap(DeadStore); | 
 |           MBB.erase(DeadStore); | 
 |           if (!NewStore) | 
 |             ++NumDSE; | 
 |         } | 
 |  | 
 |         MaybeDeadStores[SS] = NULL; | 
 |         if (NewStore) { | 
 |           // Treat this store as a spill merged into a copy. That makes the | 
 |           // stack slot value available. | 
 |           VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); | 
 |           goto ProcessNextInst; | 
 |         } | 
 |       } | 
 |  | 
 |       // If the spill slot value is available, and this is a new definition of | 
 |       // the value, the value is not available anymore. | 
 |       if (MR & VirtRegMap::isMod) { | 
 |         // Notice that the value in this stack slot has been modified. | 
 |         Spills.ModifyStackSlotOrReMat(SS); | 
 |          | 
 |         // If this is *just* a mod of the value, check to see if this is just a | 
 |         // store to the spill slot (i.e. the spill got merged into the copy). If | 
 |         // so, realize that the vreg is available now, and add the store to the | 
 |         // MaybeDeadStore info. | 
 |         int StackSlot; | 
 |         if (!(MR & VirtRegMap::isRef)) { | 
 |           if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { | 
 |             assert(MRegisterInfo::isPhysicalRegister(SrcReg) && | 
 |                    "Src hasn't been allocated yet?"); | 
 |             // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark | 
 |             // this as a potentially dead store in case there is a subsequent | 
 |             // store into the stack slot without a read from it. | 
 |             MaybeDeadStores[StackSlot] = &MI; | 
 |  | 
 |             // If the stack slot value was previously available in some other | 
 |             // register, change it now.  Otherwise, make the register available, | 
 |             // in PhysReg. | 
 |             Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Process all of the spilled defs. | 
 |     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = MI.getOperand(i); | 
 |       if (!(MO.isRegister() && MO.getReg() && MO.isDef())) | 
 |         continue; | 
 |  | 
 |       unsigned VirtReg = MO.getReg(); | 
 |       if (!MRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |         // Check to see if this is a noop copy.  If so, eliminate the | 
 |         // instruction before considering the dest reg to be changed. | 
 |         unsigned Src, Dst; | 
 |         if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { | 
 |           ++NumDCE; | 
 |           DOUT << "Removing now-noop copy: " << MI; | 
 |           MBB.erase(&MI); | 
 |           Erased = true; | 
 |           VRM.RemoveFromFoldedVirtMap(&MI); | 
 |           Spills.disallowClobberPhysReg(VirtReg); | 
 |           goto ProcessNextInst; | 
 |         } | 
 |            | 
 |         // If it's not a no-op copy, it clobbers the value in the destreg. | 
 |         Spills.ClobberPhysReg(VirtReg); | 
 |         ReusedOperands.markClobbered(VirtReg); | 
 |   | 
 |         // Check to see if this instruction is a load from a stack slot into | 
 |         // a register.  If so, this provides the stack slot value in the reg. | 
 |         int FrameIdx; | 
 |         if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { | 
 |           assert(DestReg == VirtReg && "Unknown load situation!"); | 
 |  | 
 |           // If it is a folded reference, then it's not safe to clobber. | 
 |           bool Folded = FoldedSS.count(FrameIdx); | 
 |           // Otherwise, if it wasn't available, remember that it is now! | 
 |           Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded); | 
 |           goto ProcessNextInst; | 
 |         } | 
 |              | 
 |         continue; | 
 |       } | 
 |  | 
 |       unsigned SubIdx = MO.getSubReg(); | 
 |       bool DoReMat = VRM.isReMaterialized(VirtReg); | 
 |       if (DoReMat) | 
 |         ReMatDefs.insert(&MI); | 
 |  | 
 |       // The only vregs left are stack slot definitions. | 
 |       int StackSlot = VRM.getStackSlot(VirtReg); | 
 |       const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg); | 
 |  | 
 |       // If this def is part of a two-address operand, make sure to execute | 
 |       // the store from the correct physical register. | 
 |       unsigned PhysReg; | 
 |       int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i); | 
 |       if (TiedOp != -1) { | 
 |         PhysReg = MI.getOperand(TiedOp).getReg(); | 
 |         if (SubIdx) { | 
 |           unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI); | 
 |           assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg && | 
 |                  "Can't find corresponding super-register!"); | 
 |           PhysReg = SuperReg; | 
 |         } | 
 |       } else { | 
 |         PhysReg = VRM.getPhys(VirtReg); | 
 |         if (ReusedOperands.isClobbered(PhysReg)) { | 
 |           // Another def has taken the assigned physreg. It must have been a | 
 |           // use&def which got it due to reuse. Undo the reuse! | 
 |           PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |         } | 
 |       } | 
 |  | 
 |       MF.setPhysRegUsed(PhysReg); | 
 |       unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |       ReusedOperands.markClobbered(RReg); | 
 |       MI.getOperand(i).setReg(RReg); | 
 |  | 
 |       if (!MO.isDead()) { | 
 |         MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; | 
 |         SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, LastStore, | 
 |                             Spills, ReMatDefs, RegKills, KillOps, VRM); | 
 |  | 
 |         // Check to see if this is a noop copy.  If so, eliminate the | 
 |         // instruction before considering the dest reg to be changed. | 
 |         { | 
 |           unsigned Src, Dst; | 
 |           if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { | 
 |             ++NumDCE; | 
 |             DOUT << "Removing now-noop copy: " << MI; | 
 |             MBB.erase(&MI); | 
 |             Erased = true; | 
 |             VRM.RemoveFromFoldedVirtMap(&MI); | 
 |             UpdateKills(*LastStore, RegKills, KillOps); | 
 |             goto ProcessNextInst; | 
 |           } | 
 |         } | 
 |       }     | 
 |     } | 
 |   ProcessNextInst: | 
 |     if (!Erased && !BackTracked) | 
 |       for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II) | 
 |         UpdateKills(*II, RegKills, KillOps); | 
 |     MII = NextMII; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | llvm::Spiller* llvm::createSpiller() { | 
 |   switch (SpillerOpt) { | 
 |   default: assert(0 && "Unreachable!"); | 
 |   case local: | 
 |     return new LocalSpiller(); | 
 |   case simple: | 
 |     return new SimpleSpiller(); | 
 |   } | 
 | } |