| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a DAG instruction selector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelEmitter.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Helpers for working with extended types. |
| |
| /// FilterVTs - Filter a list of VT's according to a predicate. |
| /// |
| template<typename T> |
| static std::vector<MVT::ValueType> |
| FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { |
| std::vector<MVT::ValueType> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| if (Filter(InVTs[i])) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| template<typename T> |
| static std::vector<unsigned char> |
| FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { |
| std::vector<unsigned char> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| if (Filter((MVT::ValueType)InVTs[i])) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| static std::vector<unsigned char> |
| ConvertVTs(const std::vector<MVT::ValueType> &InVTs) { |
| std::vector<unsigned char> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, |
| const std::vector<unsigned char> &RHS) { |
| if (LHS.size() > RHS.size()) return false; |
| for (unsigned i = 0, e = LHS.size(); i != e; ++i) |
| if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) |
| return false; |
| return true; |
| } |
| |
| /// isExtIntegerVT - Return true if the specified extended value type vector |
| /// contains isInt or an integer value type. |
| static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { |
| assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); |
| } |
| |
| /// isExtFloatingPointVT - Return true if the specified extended value type |
| /// vector contains isFP or a FP value type. |
| static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { |
| assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| return EVTs[0] == MVT::isFP || |
| !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| } else if (R->isSubClassOf("SDTCisPtrTy")) { |
| ConstraintType = SDTCisPtrTy; |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| ConstraintType = SDTCisOpSmallerThanOp; |
| x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| R->getValueAsInt("BigOperandNum"); |
| } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { |
| ConstraintType = SDTCisIntVectorOfSameSize; |
| x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOpNum"); |
| } else { |
| std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, which has NumResults results. |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, |
| TreePatternNode *N, |
| unsigned NumResults) const { |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| |
| if (OpNo >= (NumResults + N->getNumChildren())) { |
| std::cerr << "Invalid operand number " << OpNo << " "; |
| N->dump(); |
| std::cerr << '\n'; |
| exit(1); |
| } |
| |
| if (OpNo < NumResults) |
| return N; // FIXME: need value # |
| else |
| return N->getChild(OpNo-NumResults); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| |
| // Check that the number of operands is sane. Negative operands -> varargs. |
| if (NodeInfo.getNumOperands() >= 0) { |
| if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) |
| TP.error(N->getOperator()->getName() + " node requires exactly " + |
| itostr(NodeInfo.getNumOperands()) + " operands!"); |
| } |
| |
| const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); |
| |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); |
| |
| switch (ConstraintType) { |
| default: assert(0 && "Unknown constraint type!"); |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); |
| case SDTCisPtrTy: { |
| // Operand must be same as target pointer type. |
| return NodeToApply->UpdateNodeType(MVT::iPTR, TP); |
| } |
| case SDTCisInt: { |
| // If there is only one integer type supported, this must be it. |
| std::vector<MVT::ValueType> IntVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); |
| |
| // If we found exactly one supported integer type, apply it. |
| if (IntVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(IntVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| } |
| case SDTCisFP: { |
| // If there is only one FP type supported, this must be it. |
| std::vector<MVT::ValueType> FPVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); |
| |
| // If we found exactly one supported FP type, apply it. |
| if (FPVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(FPVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| } |
| case SDTCisSameAs: { |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); |
| return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | |
| OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| MVT::ValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| if (!MVT::isInteger(VT)) |
| TP.error(N->getOperator()->getName() + " VT operand must be integer!"); |
| |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); |
| |
| // It must be integer. |
| bool MadeChange = false; |
| MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); |
| |
| // This code only handles nodes that have one type set. Assert here so |
| // that we can change this if we ever need to deal with multiple value |
| // types at this point. |
| assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); |
| if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) |
| OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. |
| return false; |
| } |
| case SDTCisOpSmallerThanOp: { |
| TreePatternNode *BigOperand = |
| getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); |
| |
| // Both operands must be integer or FP, but we don't care which. |
| bool MadeChange = false; |
| |
| // This code does not currently handle nodes which have multiple types, |
| // where some types are integer, and some are fp. Assert that this is not |
| // the case. |
| assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && |
| isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && |
| !(isExtIntegerInVTs(BigOperand->getExtTypes()) && |
| isExtFloatingPointInVTs(BigOperand->getExtTypes())) && |
| "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); |
| if (isExtIntegerInVTs(NodeToApply->getExtTypes())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); |
| else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); |
| if (isExtIntegerInVTs(BigOperand->getExtTypes())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| |
| std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); |
| |
| if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { |
| VTs = FilterVTs(VTs, MVT::isInteger); |
| } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { |
| VTs = FilterVTs(VTs, MVT::isFloatingPoint); |
| } else { |
| VTs.clear(); |
| } |
| |
| switch (VTs.size()) { |
| default: // Too many VT's to pick from. |
| case 0: break; // No info yet. |
| case 1: |
| // Only one VT of this flavor. Cannot ever satisify the constraints. |
| return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw |
| case 2: |
| // If we have exactly two possible types, the little operand must be the |
| // small one, the big operand should be the big one. Common with |
| // float/double for example. |
| assert(VTs[0] < VTs[1] && "Should be sorted!"); |
| MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); |
| MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); |
| break; |
| } |
| return MadeChange; |
| } |
| case SDTCisIntVectorOfSameSize: { |
| TreePatternNode *OtherOperand = |
| getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, |
| N, NumResults); |
| if (OtherOperand->hasTypeSet()) { |
| if (!MVT::isVector(OtherOperand->getTypeNum(0))) |
| TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); |
| MVT::ValueType IVT = OtherOperand->getTypeNum(0); |
| IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); |
| return NodeToApply->UpdateNodeType(IVT, TP); |
| } |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the properties. |
| Properties = 0; |
| std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| for (unsigned i = 0, e = PropList.size(); i != e; ++i) { |
| if (PropList[i]->getName() == "SDNPCommutative") { |
| Properties |= 1 << SDNPCommutative; |
| } else if (PropList[i]->getName() == "SDNPAssociative") { |
| Properties |= 1 << SDNPAssociative; |
| } else if (PropList[i]->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (PropList[i]->getName() == "SDNPOutFlag") { |
| Properties |= 1 << SDNPOutFlag; |
| } else if (PropList[i]->getName() == "SDNPInFlag") { |
| Properties |= 1 << SDNPInFlag; |
| } else if (PropList[i]->getName() == "SDNPOptInFlag") { |
| Properties |= 1 << SDNPOptInFlag; |
| } else { |
| std::cerr << "Unknown SD Node property '" << PropList[i]->getName() |
| << "' on node '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| |
| // Parse the type constraints. |
| std::vector<Record*> ConstraintList = |
| TypeProfile->getValueAsListOfDefs("Constraints"); |
| TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then throw an |
| /// exception. This returns true if any information was updated. |
| /// |
| bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, |
| TreePattern &TP) { |
| assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); |
| |
| if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) |
| return false; |
| if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| |
| if (getExtTypeNum(0) == MVT::iPTR) { |
| if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) |
| return false; |
| if (isExtIntegerInVTs(ExtVTs)) { |
| std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger); |
| if (FVTs.size()) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| } |
| } |
| |
| if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { |
| assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| if (getExtTypes() == FVTs) |
| return false; |
| setTypes(FVTs); |
| return true; |
| } |
| if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { |
| //assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| if (getExtTypes() == FVTs) |
| return false; |
| if (FVTs.size()) { |
| setTypes(FVTs); |
| return true; |
| } |
| } |
| if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { |
| assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = |
| FilterEVTs(getExtTypes(), MVT::isFloatingPoint); |
| if (getExtTypes() == FVTs) |
| return false; |
| setTypes(FVTs); |
| return true; |
| } |
| |
| // If we know this is an int or fp type, and we are told it is a specific one, |
| // take the advice. |
| // |
| // Similarly, we should probably set the type here to the intersection of |
| // {isInt|isFP} and ExtVTs |
| if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || |
| (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| |
| if (isLeaf()) { |
| dump(); |
| std::cerr << " "; |
| TP.error("Type inference contradiction found in node!"); |
| } else { |
| TP.error("Type inference contradiction found in node " + |
| getOperator()->getName() + "!"); |
| } |
| return true; // unreachable |
| } |
| |
| |
| void TreePatternNode::print(std::ostream &OS) const { |
| if (isLeaf()) { |
| OS << *getLeafValue(); |
| } else { |
| OS << "(" << getOperator()->getName(); |
| } |
| |
| // FIXME: At some point we should handle printing all the value types for |
| // nodes that are multiply typed. |
| switch (getExtTypeNum(0)) { |
| case MVT::Other: OS << ":Other"; break; |
| case MVT::isInt: OS << ":isInt"; break; |
| case MVT::isFP : OS << ":isFP"; break; |
| case MVT::isUnknown: ; /*OS << ":?";*/ break; |
| case MVT::iPTR: OS << ":iPTR"; break; |
| default: { |
| std::string VTName = llvm::getName(getTypeNum(0)); |
| // Strip off MVT:: prefix if present. |
| if (VTName.substr(0,5) == "MVT::") |
| VTName = VTName.substr(5); |
| OS << ":" << VTName; |
| break; |
| } |
| } |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| if (!PredicateFn.empty()) |
| OS << "<<P:" << PredicateFn << ">>"; |
| if (TransformFn) |
| OS << "<<X:" << TransformFn->getName() << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(std::cerr); |
| } |
| |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| /// the specified node. For this comparison, all of the state of the node |
| /// is considered, except for the assigned name. Nodes with differing names |
| /// that are otherwise identical are considered isomorphic. |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { |
| if (N == this) return true; |
| if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || |
| getPredicateFn() != N->getPredicateFn() || |
| getTransformFn() != N->getTransformFn()) |
| return false; |
| |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) |
| if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) |
| return DI->getDef() == NDI->getDef(); |
| return getLeafValue() == N->getLeafValue(); |
| } |
| |
| if (N->getOperator() != getOperator() || |
| N->getNumChildren() != getNumChildren()) return false; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->isIsomorphicTo(N->getChild(i))) |
| return false; |
| return true; |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren); |
| } |
| New->setName(getName()); |
| New->setTypes(getExtTypes()); |
| New->setPredicateFn(getPredicateFn()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| if (dynamic_cast<DefInit*>(Val) && |
| static_cast<DefInit*>(Val)->getDef()->getName() == "node") { |
| // We found a use of a formal argument, replace it with its value. |
| Child = ArgMap[Child->getName()]; |
| assert(Child && "Couldn't find formal argument!"); |
| setChild(i, Child); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (isLeaf()) return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| setChild(i, getChild(i)->InlinePatternFragments(TP)); |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| FragTree->UpdateNodeType(getExtTypes(), TP); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| return FragTree; |
| } |
| |
| /// getImplicitType - Check to see if the specified record has an implicit |
| /// type which should be applied to it. This infer the type of register |
| /// references from the register file information, for example. |
| /// |
| static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, |
| TreePattern &TP) { |
| // Some common return values |
| std::vector<unsigned char> Unknown(1, MVT::isUnknown); |
| std::vector<unsigned char> Other(1, MVT::Other); |
| |
| // Check to see if this is a register or a register class... |
| if (R->isSubClassOf("RegisterClass")) { |
| if (NotRegisters) |
| return Unknown; |
| const CodeGenRegisterClass &RC = |
| TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); |
| return ConvertVTs(RC.getValueTypes()); |
| } else if (R->isSubClassOf("PatFrag")) { |
| // Pattern fragment types will be resolved when they are inlined. |
| return Unknown; |
| } else if (R->isSubClassOf("Register")) { |
| if (NotRegisters) |
| return Unknown; |
| const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); |
| return T.getRegisterVTs(R); |
| } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { |
| // Using a VTSDNode or CondCodeSDNode. |
| return Other; |
| } else if (R->isSubClassOf("ComplexPattern")) { |
| if (NotRegisters) |
| return Unknown; |
| std::vector<unsigned char> |
| ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); |
| return ComplexPat; |
| } else if (R->getName() == "node" || R->getName() == "srcvalue") { |
| // Placeholder. |
| return Unknown; |
| } |
| |
| TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| return Other; |
| } |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevent to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| DAGISelEmitter &ISE = TP.getDAGISelEmitter(); |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { |
| // If it's a regclass or something else known, include the type. |
| return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); |
| } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { |
| // Int inits are always integers. :) |
| bool MadeChange = UpdateNodeType(MVT::isInt, TP); |
| |
| if (hasTypeSet()) { |
| // At some point, it may make sense for this tree pattern to have |
| // multiple types. Assert here that it does not, so we revisit this |
| // code when appropriate. |
| assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); |
| MVT::ValueType VT = getTypeNum(0); |
| for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) |
| assert(getTypeNum(i) == VT && "TreePattern has too many types!"); |
| |
| VT = getTypeNum(0); |
| if (VT != MVT::iPTR) { |
| unsigned Size = MVT::getSizeInBits(VT); |
| // Make sure that the value is representable for this type. |
| if (Size < 32) { |
| int Val = (II->getValue() << (32-Size)) >> (32-Size); |
| if (Val != II->getValue()) |
| TP.error("Sign-extended integer value '" + itostr(II->getValue())+ |
| "' is out of range for type '" + |
| getEnumName(getTypeNum(0)) + "'!"); |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| return false; |
| } |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); |
| bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); |
| MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| // Types of operands must match. |
| MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); |
| MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| return MadeChange; |
| } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || |
| getOperator() == ISE.get_intrinsic_w_chain_sdnode() || |
| getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { |
| unsigned IID = |
| dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); |
| const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); |
| bool MadeChange = false; |
| |
| // Apply the result type to the node. |
| MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); |
| |
| if (getNumChildren() != Int.ArgVTs.size()) |
| TP.error("Intrinsic '" + Int.Name + "' expects " + |
| utostr(Int.ArgVTs.size()-1) + " operands, not " + |
| utostr(getNumChildren()-1) + " operands!"); |
| |
| // Apply type info to the intrinsic ID. |
| MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); |
| |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| MVT::ValueType OpVT = Int.ArgVTs[i]; |
| MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("SDNode")) { |
| const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| // Branch, etc. do not produce results and top-level forms in instr pattern |
| // must have void types. |
| if (NI.getNumResults() == 0) |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| |
| // If this is a vector_shuffle operation, apply types to the build_vector |
| // operation. The types of the integers don't matter, but this ensures they |
| // won't get checked. |
| if (getOperator()->getName() == "vector_shuffle" && |
| getChild(2)->getOperator()->getName() == "build_vector") { |
| TreePatternNode *BV = getChild(2); |
| const std::vector<MVT::ValueType> &LegalVTs |
| = ISE.getTargetInfo().getLegalValueTypes(); |
| MVT::ValueType LegalIntVT = MVT::Other; |
| for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) |
| if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { |
| LegalIntVT = LegalVTs[i]; |
| break; |
| } |
| assert(LegalIntVT != MVT::Other && "No legal integer VT?"); |
| |
| for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) |
| MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); |
| } |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = ISE.getInstruction(getOperator()); |
| bool MadeChange = false; |
| unsigned NumResults = Inst.getNumResults(); |
| |
| assert(NumResults <= 1 && |
| "Only supports zero or one result instrs!"); |
| |
| CodeGenInstruction &InstInfo = |
| ISE.getTargetInfo().getInstruction(getOperator()->getName()); |
| // Apply the result type to the node |
| if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack... |
| MadeChange = UpdateNodeType(MVT::isVoid, TP); |
| } else { |
| Record *ResultNode = Inst.getResult(0); |
| assert(ResultNode->isSubClassOf("RegisterClass") && |
| "Operands should be register classes!"); |
| |
| const CodeGenRegisterClass &RC = |
| ISE.getTargetInfo().getRegisterClass(ResultNode); |
| MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); |
| } |
| |
| if (getNumChildren() != Inst.getNumOperands()) |
| TP.error("Instruction '" + getOperator()->getName() + " expects " + |
| utostr(Inst.getNumOperands()) + " operands, not " + |
| utostr(getNumChildren()) + " operands!"); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| Record *OperandNode = Inst.getOperand(i); |
| MVT::ValueType VT; |
| if (OperandNode->isSubClassOf("RegisterClass")) { |
| const CodeGenRegisterClass &RC = |
| ISE.getTargetInfo().getRegisterClass(OperandNode); |
| //VT = RC.getValueTypeNum(0); |
| MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()), |
| TP); |
| } else if (OperandNode->isSubClassOf("Operand")) { |
| VT = getValueType(OperandNode->getValueAsDef("Type")); |
| MadeChange |= getChild(i)->UpdateNodeType(VT, TP); |
| } else { |
| assert(0 && "Unknown operand type!"); |
| abort(); |
| } |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| return MadeChange; |
| } else { |
| assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| |
| // Node transforms always take one operand. |
| if (getNumChildren() != 1) |
| TP.error("Node transform '" + getOperator()->getName() + |
| "' requires one operand!"); |
| |
| // If either the output or input of the xform does not have exact |
| // type info. We assume they must be the same. Otherwise, it is perfectly |
| // legal to transform from one type to a completely different type. |
| if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { |
| bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); |
| return MadeChange; |
| } |
| return false; |
| } |
| } |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. This is |
| /// used as a santity check for .td files (to prevent people from writing stuff |
| /// that can never possibly work), and to prevent the pattern permuter from |
| /// generating stuff that is useless. |
| bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ |
| if (isLeaf()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->canPatternMatch(Reason, ISE)) |
| return false; |
| |
| // If this is an intrinsic, handle cases that would make it not match. For |
| // example, if an operand is required to be an immediate. |
| if (getOperator()->isSubClassOf("Intrinsic")) { |
| // TODO: |
| return true; |
| } |
| |
| // If this node is a commutative operator, check that the LHS isn't an |
| // immediate. |
| const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { |
| // Scan all of the operands of the node and make sure that only the last one |
| // is a constant node. |
| for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) |
| if (!getChild(i)->isLeaf() && |
| getChild(i)->getOperator()->getName() == "imm") { |
| Reason = "Immediate value must be on the RHS of commutative operators!"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) |
| Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| Trees.push_back(ParseTreePattern(Pat)); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| Trees.push_back(Pat); |
| } |
| |
| |
| |
| void TreePattern::error(const std::string &Msg) const { |
| dump(); |
| throw "In " + TheRecord->getName() + ": " + Msg; |
| } |
| |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { |
| DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); |
| if (!OpDef) error("Pattern has unexpected operator type!"); |
| Record *Operator = OpDef->getDef(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only takes one operand!"); |
| |
| Init *Arg = Dag->getArg(0); |
| TreePatternNode *New; |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DI->getDef(); |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(0, new DagInit(DI, |
| std::vector<std::pair<Init*, std::string> >())); |
| return ParseTreePattern(Dag); |
| } |
| New = new TreePatternNode(DI); |
| } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| New = ParseTreePattern(DI); |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| New = new TreePatternNode(II); |
| if (!Dag->getArgName(0).empty()) |
| error("Constant int argument should not have a name!"); |
| } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(new IntRecTy()); |
| if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| error("Bits value must be constants!"); |
| |
| New = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| if (!Dag->getArgName(0).empty()) |
| error("Constant int argument should not have a name!"); |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| return 0; |
| } |
| |
| // Apply the type cast. |
| New->UpdateNodeType(getValueType(Operator), *this); |
| New->setName(Dag->getArgName(0)); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && |
| !Operator->isSubClassOf("Instruction") && |
| !Operator->isSubClassOf("SDNodeXForm") && |
| !Operator->isSubClassOf("Intrinsic") && |
| Operator->getName() != "set") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| // Check to see if this is something that is illegal in an input pattern. |
| if (isInputPattern && (Operator->isSubClassOf("Instruction") || |
| Operator->isSubClassOf("SDNodeXForm"))) |
| error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| |
| std::vector<TreePatternNode*> Children; |
| |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| Init *Arg = Dag->getArg(i); |
| if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| Children.push_back(ParseTreePattern(DI)); |
| if (Children.back()->getName().empty()) |
| Children.back()->setName(Dag->getArgName(i)); |
| } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DefI->getDef(); |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode if its own. |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(i, new DagInit(DefI, |
| std::vector<std::pair<Init*, std::string> >())); |
| --i; // Revisit this node... |
| } else { |
| TreePatternNode *Node = new TreePatternNode(DefI); |
| Node->setName(Dag->getArgName(i)); |
| Children.push_back(Node); |
| |
| // Input argument? |
| if (R->getName() == "node") { |
| if (Dag->getArgName(i).empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(Dag->getArgName(i)); |
| } |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| TreePatternNode *Node = new TreePatternNode(II); |
| if (!Dag->getArgName(i).empty()) |
| error("Constant int argument should not have a name!"); |
| Children.push_back(Node); |
| } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(new IntRecTy()); |
| if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| error("Bits value must be constants!"); |
| |
| TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| if (!Dag->getArgName(i).empty()) |
| error("Constant int argument should not have a name!"); |
| Children.push_back(Node); |
| } else { |
| std::cerr << '"'; |
| Arg->dump(); |
| std::cerr << "\": "; |
| error("Unknown leaf value for tree pattern!"); |
| } |
| } |
| |
| // If the operator is an intrinsic, then this is just syntactic sugar for for |
| // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
| // convert the intrinsic name to a number. |
| if (Operator->isSubClassOf("Intrinsic")) { |
| const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); |
| unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; |
| |
| // If this intrinsic returns void, it must have side-effects and thus a |
| // chain. |
| if (Int.ArgVTs[0] == MVT::isVoid) { |
| Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); |
| } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { |
| // Has side-effects, requires chain. |
| Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); |
| } else { |
| // Otherwise, no chain. |
| Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); |
| } |
| |
| TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); |
| Children.insert(Children.begin(), IIDNode); |
| } |
| |
| return new TreePatternNode(Operator, Children); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are infered, false |
| /// otherwise. Throw an exception if a type contradiction is found. |
| bool TreePattern::InferAllTypes() { |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(std::ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| OS << "\t"; |
| Trees[i]->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(std::cerr); } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DAGISelEmitter implementation |
| // |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void DAGISelEmitter::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_back(); |
| } |
| |
| // Get the buildin intrinsic nodes. |
| intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); |
| intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); |
| intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); |
| } |
| |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| /// map, and emit them to the file as functions. |
| void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { |
| OS << "\n// Node transformations.\n"; |
| std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| while (!Xforms.empty()) { |
| Record *XFormNode = Xforms.back(); |
| Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| std::string Code = XFormNode->getValueAsCode("XFormFunction"); |
| SDNodeXForms.insert(std::make_pair(XFormNode, |
| std::make_pair(SDNode, Code))); |
| |
| if (!Code.empty()) { |
| std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline SDOperand Transform_" << XFormNode->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| } |
| |
| Xforms.pop_back(); |
| } |
| } |
| |
| void DAGISelEmitter::ParseComplexPatterns() { |
| std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); |
| while (!AMs.empty()) { |
| ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); |
| AMs.pop_back(); |
| } |
| } |
| |
| |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
| /// file, building up the PatternFragments map. After we've collected them all, |
| /// inline fragments together as necessary, so that there are no references left |
| /// inside a pattern fragment to a pattern fragment. |
| /// |
| /// This also emits all of the predicate functions to the output file. |
| /// |
| void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { |
| std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| |
| // First step, parse all of the fragments and emit predicate functions. |
| OS << "\n// Predicate functions.\n"; |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); |
| TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); |
| PatternFragments[Fragments[i]] = P; |
| |
| // Validate the argument list, converting it to map, to discard duplicates. |
| std::vector<std::string> &Args = P->getArgList(); |
| std::set<std::string> OperandsMap(Args.begin(), Args.end()); |
| |
| if (OperandsMap.count("")) |
| P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| |
| // Parse the operands list. |
| DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); |
| if (!OpsOp || OpsOp->getDef()->getName() != "ops") |
| P->error("Operands list should start with '(ops ... '!"); |
| |
| // Copy over the arguments. |
| Args.clear(); |
| for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || |
| static_cast<DefInit*>(OpsList->getArg(j))-> |
| getDef()->getName() != "node") |
| P->error("Operands list should all be 'node' values."); |
| if (OpsList->getArgName(j).empty()) |
| P->error("Operands list should have names for each operand!"); |
| if (!OperandsMap.count(OpsList->getArgName(j))) |
| P->error("'" + OpsList->getArgName(j) + |
| "' does not occur in pattern or was multiply specified!"); |
| OperandsMap.erase(OpsList->getArgName(j)); |
| Args.push_back(OpsList->getArgName(j)); |
| } |
| |
| if (!OperandsMap.empty()) |
| P->error("Operands list does not contain an entry for operand '" + |
| *OperandsMap.begin() + "'!"); |
| |
| // If there is a code init for this fragment, emit the predicate code and |
| // keep track of the fact that this fragment uses it. |
| std::string Code = Fragments[i]->getValueAsCode("Predicate"); |
| if (!Code.empty()) { |
| assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); |
| std::string ClassName = |
| getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline bool Predicate_" << Fragments[i]->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); |
| } |
| |
| // If there is a node transformation corresponding to this, keep track of |
| // it. |
| Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| P->getOnlyTree()->setTransformFn(Transform); |
| } |
| |
| OS << "\n\n"; |
| |
| // Now that we've parsed all of the tree fragments, do a closure on them so |
| // that there are not references to PatFrags left inside of them. |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) { |
| TreePattern *ThePat = I->second; |
| ThePat->InlinePatternFragments(); |
| |
| // Infer as many types as possible. Don't worry about it if we don't infer |
| // all of them, some may depend on the inputs of the pattern. |
| try { |
| ThePat->InferAllTypes(); |
| } catch (...) { |
| // If this pattern fragment is not supported by this target (no types can |
| // satisfy its constraints), just ignore it. If the bogus pattern is |
| // actually used by instructions, the type consistency error will be |
| // reported there. |
| } |
| |
| // If debugging, print out the pattern fragment result. |
| DEBUG(ThePat->dump()); |
| } |
| } |
| |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| /// instruction input. Return true if this is a real use. |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::vector<Record*> &InstImpInputs) { |
| // No name -> not interesting. |
| if (Pat->getName().empty()) { |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf("RegisterClass")) |
| I->error("Input " + DI->getDef()->getName() + " must be named!"); |
| else if (DI && DI->getDef()->isSubClassOf("Register")) |
| InstImpInputs.push_back(DI->getDef()); |
| } |
| return false; |
| } |
| |
| Record *Rec; |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| Rec = DI->getDef(); |
| } else { |
| assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); |
| Rec = Pat->getOperator(); |
| } |
| |
| // SRCVALUE nodes are ignored. |
| if (Rec->getName() == "srcvalue") |
| return false; |
| |
| TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| if (!Slot) { |
| Slot = Pat; |
| } else { |
| Record *SlotRec; |
| if (Slot->isLeaf()) { |
| SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); |
| } else { |
| assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| SlotRec = Slot->getOperator(); |
| } |
| |
| // Ensure that the inputs agree if we've already seen this input. |
| if (Rec != SlotRec) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| if (Slot->getExtTypes() != Pat->getExtTypes()) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| } |
| return true; |
| } |
| |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| /// part of "I", the instruction), computing the set of inputs and outputs of |
| /// the pattern. Report errors if we see anything naughty. |
| void DAGISelEmitter:: |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::map<std::string, TreePatternNode*>&InstResults, |
| std::vector<Record*> &InstImpInputs, |
| std::vector<Record*> &InstImpResults) { |
| if (Pat->isLeaf()) { |
| bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } else if (Pat->getOperator()->getName() != "set") { |
| // If this is not a set, verify that the children nodes are not void typed, |
| // and recurse. |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) |
| I->error("Cannot have void nodes inside of patterns!"); |
| FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| // If this is a non-leaf node with no children, treat it basically as if |
| // it were a leaf. This handles nodes like (imm). |
| bool isUse = false; |
| if (Pat->getNumChildren() == 0) |
| isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } |
| |
| // Otherwise, this is a set, validate and collect instruction results. |
| if (Pat->getNumChildren() == 0) |
| I->error("set requires operands!"); |
| else if (Pat->getNumChildren() & 1) |
| I->error("set requires an even number of operands"); |
| |
| if (Pat->getTransformFn()) |
| I->error("Cannot specify a transform function on a set node!"); |
| |
| // Check the set destinations. |
| unsigned NumValues = Pat->getNumChildren()/2; |
| for (unsigned i = 0; i != NumValues; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("set destination should be a register!"); |
| |
| DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| if (!Val) |
| I->error("set destination should be a register!"); |
| |
| if (Val->getDef()->isSubClassOf("RegisterClass")) { |
| if (Dest->getName().empty()) |
| I->error("set destination must have a name!"); |
| if (InstResults.count(Dest->getName())) |
| I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| InstResults[Dest->getName()] = Dest; |
| } else if (Val->getDef()->isSubClassOf("Register")) { |
| InstImpResults.push_back(Val->getDef()); |
| } else { |
| I->error("set destination should be a register!"); |
| } |
| |
| // Verify and collect info from the computation. |
| FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), |
| InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| } |
| |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving |
| /// any fragments involved. This populates the Instructions list with fully |
| /// resolved instructions. |
| void DAGISelEmitter::ParseInstructions() { |
| std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| ListInit *LI = 0; |
| |
| if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) |
| LI = Instrs[i]->getValueAsListInit("Pattern"); |
| |
| // If there is no pattern, only collect minimal information about the |
| // instruction for its operand list. We have to assume that there is one |
| // result, as we have no detailed info. |
| if (!LI || LI->getSize() == 0) { |
| std::vector<Record*> Results; |
| std::vector<Record*> Operands; |
| |
| CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); |
| |
| if (InstInfo.OperandList.size() != 0) { |
| // FIXME: temporary hack... |
| if (InstInfo.noResults) { |
| // These produce no results |
| for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) |
| Operands.push_back(InstInfo.OperandList[j].Rec); |
| } else { |
| // Assume the first operand is the result. |
| Results.push_back(InstInfo.OperandList[0].Rec); |
| |
| // The rest are inputs. |
| for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) |
| Operands.push_back(InstInfo.OperandList[j].Rec); |
| } |
| } |
| |
| // Create and insert the instruction. |
| std::vector<Record*> ImpResults; |
| std::vector<Record*> ImpOperands; |
| Instructions.insert(std::make_pair(Instrs[i], |
| DAGInstruction(0, Results, Operands, ImpResults, |
| ImpOperands))); |
| continue; // no pattern. |
| } |
| |
| // Parse the instruction. |
| TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); |
| // Inline pattern fragments into it. |
| I->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this instruction pattern: report it to the user. |
| if (!I->InferAllTypes()) |
| I->error("Could not infer all types in pattern!"); |
| |
| // InstInputs - Keep track of all of the inputs of the instruction, along |
| // with the record they are declared as. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| |
| // InstResults - Keep track of all the virtual registers that are 'set' |
| // in the instruction, including what reg class they are. |
| std::map<std::string, TreePatternNode*> InstResults; |
| |
| std::vector<Record*> InstImpInputs; |
| std::vector<Record*> InstImpResults; |
| |
| // Verify that the top-level forms in the instruction are of void type, and |
| // fill in the InstResults map. |
| for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| TreePatternNode *Pat = I->getTree(j); |
| if (Pat->getExtTypeNum(0) != MVT::isVoid) |
| I->error("Top-level forms in instruction pattern should have" |
| " void types"); |
| |
| // Find inputs and outputs, and verify the structure of the uses/defs. |
| FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| // Now that we have inputs and outputs of the pattern, inspect the operands |
| // list for the instruction. This determines the order that operands are |
| // added to the machine instruction the node corresponds to. |
| unsigned NumResults = InstResults.size(); |
| |
| // Parse the operands list from the (ops) list, validating it. |
| std::vector<std::string> &Args = I->getArgList(); |
| assert(Args.empty() && "Args list should still be empty here!"); |
| CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); |
| |
| // Check that all of the results occur first in the list. |
| std::vector<Record*> Results; |
| TreePatternNode *Res0Node = NULL; |
| for (unsigned i = 0; i != NumResults; ++i) { |
| if (i == CGI.OperandList.size()) |
| I->error("'" + InstResults.begin()->first + |
| "' set but does not appear in operand list!"); |
| const std::string &OpName = CGI.OperandList[i].Name; |
| |
| // Check that it exists in InstResults. |
| TreePatternNode *RNode = InstResults[OpName]; |
| if (RNode == 0) |
| I->error("Operand $" + OpName + " does not exist in operand list!"); |
| |
| if (i == 0) |
| Res0Node = RNode; |
| Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); |
| if (R == 0) |
| I->error("Operand $" + OpName + " should be a set destination: all " |
| "outputs must occur before inputs in operand list!"); |
| |
| if (CGI.OperandList[i].Rec != R) |
| I->error("Operand $" + OpName + " class mismatch!"); |
| |
| // Remember the return type. |
| Results.push_back(CGI.OperandList[i].Rec); |
| |
| // Okay, this one checks out. |
| InstResults.erase(OpName); |
| } |
| |
| // Loop over the inputs next. Make a copy of InstInputs so we can destroy |
| // the copy while we're checking the inputs. |
| std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); |
| |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| std::vector<Record*> Operands; |
| for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { |
| const std::string &OpName = CGI.OperandList[i].Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| if (!InstInputsCheck.count(OpName)) |
| I->error("Operand $" + OpName + |
| " does not appear in the instruction pattern"); |
| TreePatternNode *InVal = InstInputsCheck[OpName]; |
| InstInputsCheck.erase(OpName); // It occurred, remove from map. |
| |
| if (InVal->isLeaf() && |
| dynamic_cast<DefInit*>(InVal->getLeafValue())) { |
| Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); |
| if (CGI.OperandList[i].Rec != InRec && |
| !InRec->isSubClassOf("ComplexPattern")) |
| I->error("Operand $" + OpName + "'s register class disagrees" |
| " between the operand and pattern"); |
| } |
| Operands.push_back(CGI.OperandList[i].Rec); |
| |
| // Construct the result for the dest-pattern operand list. |
| TreePatternNode *OpNode = InVal->clone(); |
| |
| // No predicate is useful on the result. |
| OpNode->setPredicateFn(""); |
| |
| // Promote the xform function to be an explicit node if set. |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children); |
| } |
| |
| ResultNodeOperands.push_back(OpNode); |
| } |
| |
| if (!InstInputsCheck.empty()) |
| I->error("Input operand $" + InstInputsCheck.begin()->first + |
| " occurs in pattern but not in operands list!"); |
| |
| TreePatternNode *ResultPattern = |
| new TreePatternNode(I->getRecord(), ResultNodeOperands); |
| // Copy fully inferred output node type to instruction result pattern. |
| if (NumResults > 0) |
| ResultPattern->setTypes(Res0Node->getExtTypes()); |
| |
| // Create and insert the instruction. |
| DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); |
| Instructions.insert(std::make_pair(I->getRecord(), TheInst)); |
| |
| // Use a temporary tree pattern to infer all types and make sure that the |
| // constructed result is correct. This depends on the instruction already |
| // being inserted into the Instructions map. |
| TreePattern Temp(I->getRecord(), ResultPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; |
| TheInsertedInst.setResultPattern(Temp.getOnlyTree()); |
| |
| DEBUG(I->dump()); |
| } |
| |
| // If we can, convert the instructions to be patterns that are matched! |
| for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), |
| E = Instructions.end(); II != E; ++II) { |
| DAGInstruction &TheInst = II->second; |
| TreePattern *I = TheInst.getPattern(); |
| if (I == 0) continue; // No pattern. |
| |
| if (I->getNumTrees() != 1) { |
| std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; |
| continue; |
| } |
| TreePatternNode *Pattern = I->getTree(0); |
| TreePatternNode *SrcPattern; |
| if (Pattern->getOperator()->getName() == "set") { |
| if (Pattern->getNumChildren() != 2) |
| continue; // Not a set of a single value (not handled so far) |
| |
| SrcPattern = Pattern->getChild(1)->clone(); |
| } else{ |
| // Not a set (store or something?) |
| SrcPattern = Pattern; |
| } |
| |
| std::string Reason; |
| if (!SrcPattern->canPatternMatch(Reason, *this)) |
| I->error("Instruction can never match: " + Reason); |
| |
| Record *Instr = II->first; |
| TreePatternNode *DstPattern = TheInst.getResultPattern(); |
| PatternsToMatch. |
| push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), |
| SrcPattern, DstPattern, |
| Instr->getValueAsInt("AddedComplexity"))); |
| } |
| } |
| |
| void DAGISelEmitter::ParsePatterns() { |
| std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); |
| TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); |
| |
| // Inline pattern fragments into it. |
| Pattern->InlinePatternFragments(); |
| |
| ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); |
| if (LI->getSize() == 0) continue; // no pattern. |
| |
| // Parse the instruction. |
| TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); |
| |
| // Inline pattern fragments into it. |
| Result->InlinePatternFragments(); |
| |
| if (Result->getNumTrees() != 1) |
| Result->error("Cannot handle instructions producing instructions " |
| "with temporaries yet!"); |
| |
| bool IterateInference; |
| bool InferredAllPatternTypes, InferredAllResultTypes; |
| do { |
| // Infer as many types as possible. If we cannot infer all of them, we |
| // can never do anything with this pattern: report it to the user. |
| InferredAllPatternTypes = Pattern->InferAllTypes(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this pattern: report it to the user. |
| InferredAllResultTypes = Result->InferAllTypes(); |
| |
| // Apply the type of the result to the source pattern. This helps us |
| // resolve cases where the input type is known to be a pointer type (which |
| // is considered resolved), but the result knows it needs to be 32- or |
| // 64-bits. Infer the other way for good measure. |
| IterateInference = Pattern->getOnlyTree()-> |
| UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); |
| IterateInference |= Result->getOnlyTree()-> |
| UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); |
| } while (IterateInference); |
| |
| // Verify that we inferred enough types that we can do something with the |
| // pattern and result. If these fire the user has to add type casts. |
| if (!InferredAllPatternTypes) |
| Pattern->error("Could not infer all types in pattern!"); |
| if (!InferredAllResultTypes) |
| Result->error("Could not infer all types in pattern result!"); |
| |
| // Validate that the input pattern is correct. |
| { |
| std::map<std::string, TreePatternNode*> InstInputs; |
| std::map<std::string, TreePatternNode*> InstResults; |
| std::vector<Record*> InstImpInputs; |
| std::vector<Record*> InstImpResults; |
| FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), |
| InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| // Promote the xform function to be an explicit node if set. |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| TreePatternNode *DstPattern = Result->getOnlyTree(); |
| for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { |
| TreePatternNode *OpNode = DstPattern->getChild(ii); |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children); |
| } |
| ResultNodeOperands.push_back(OpNode); |
| } |
| DstPattern = Result->getOnlyTree(); |
| if (!DstPattern->isLeaf()) |
| DstPattern = new TreePatternNode(DstPattern->getOperator(), |
| ResultNodeOperands); |
| DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); |
| TreePattern Temp(Result->getRecord(), DstPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| std::string Reason; |
| if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) |
| Pattern->error("Pattern can never match: " + Reason); |
| |
| PatternsToMatch. |
| push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), |
| Pattern->getOnlyTree(), |
| Temp.getOnlyTree(), |
| Patterns[i]->getValueAsInt("AddedComplexity"))); |
| } |
| } |
| |
| /// CombineChildVariants - Given a bunch of permutations of each child of the |
| /// 'operator' node, put them together in all possible ways. |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<std::vector<TreePatternNode*> > &ChildVariants, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| // Make sure that each operand has at least one variant to choose from. |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| if (ChildVariants[i].empty()) |
| return; |
| |
| // The end result is an all-pairs construction of the resultant pattern. |
| std::vector<unsigned> Idxs; |
| Idxs.resize(ChildVariants.size()); |
| bool NotDone = true; |
| while (NotDone) { |
| // Create the variant and add it to the output list. |
| std::vector<TreePatternNode*> NewChildren; |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| NewChildren.push_back(ChildVariants[i][Idxs[i]]); |
| TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); |
| |
| // Copy over properties. |
| R->setName(Orig->getName()); |
| R->setPredicateFn(Orig->getPredicateFn()); |
| R->setTransformFn(Orig->getTransformFn()); |
| R->setTypes(Orig->getExtTypes()); |
| |
| // If this pattern cannot every match, do not include it as a variant. |
| std::string ErrString; |
| if (!R->canPatternMatch(ErrString, ISE)) { |
| delete R; |
| } else { |
| bool AlreadyExists = false; |
| |
| // Scan to see if this pattern has already been emitted. We can get |
| // duplication due to things like commuting: |
| // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
| // which are the same pattern. Ignore the dups. |
| for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) |
| if (R->isIsomorphicTo(OutVariants[i])) { |
| AlreadyExists = true; |
| break; |
| } |
| |
| if (AlreadyExists) |
| delete R; |
| else |
| OutVariants.push_back(R); |
| } |
| |
| // Increment indices to the next permutation. |
| NotDone = false; |
| // Look for something we can increment without causing a wrap-around. |
| for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { |
| if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { |
| NotDone = true; // Found something to increment. |
| break; |
| } |
| Idxs[IdxsIdx] = 0; |
| } |
| } |
| } |
| |
| /// CombineChildVariants - A helper function for binary operators. |
| /// |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<TreePatternNode*> &LHS, |
| const std::vector<TreePatternNode*> &RHS, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.push_back(LHS); |
| ChildVariants.push_back(RHS); |
| CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); |
| } |
| |
| |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, |
| std::vector<TreePatternNode *> &Children) { |
| assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); |
| Record *Operator = N->getOperator(); |
| |
| // Only permit raw nodes. |
| if (!N->getName().empty() || !N->getPredicateFn().empty() || |
| N->getTransformFn()) { |
| Children.push_back(N); |
| return; |
| } |
| |
| if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) |
| Children.push_back(N->getChild(0)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); |
| |
| if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) |
| Children.push_back(N->getChild(1)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); |
| } |
| |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
| /// the (potentially recursive) pattern by using algebraic laws. |
| /// |
| static void GenerateVariantsOf(TreePatternNode *N, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| // We cannot permute leaves. |
| if (N->isLeaf()) { |
| OutVariants.push_back(N); |
| return; |
| } |
| |
| // Look up interesting info about the node. |
| const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); |
| |
| // If this node is associative, reassociate. |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) { |
| // Reassociate by pulling together all of the linked operators |
| std::vector<TreePatternNode*> MaximalChildren; |
| GatherChildrenOfAssociativeOpcode(N, MaximalChildren); |
| |
| // Only handle child sizes of 3. Otherwise we'll end up trying too many |
| // permutations. |
| if (MaximalChildren.size() == 3) { |
| // Find the variants of all of our maximal children. |
| std::vector<TreePatternNode*> AVariants, BVariants, CVariants; |
| GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); |
| GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); |
| GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); |
| |
| // There are only two ways we can permute the tree: |
| // (A op B) op C and A op (B op C) |
| // Within these forms, we can also permute A/B/C. |
| |
| // Generate legal pair permutations of A/B/C. |
| std::vector<TreePatternNode*> ABVariants; |
| std::vector<TreePatternNode*> BAVariants; |
| std::vector<TreePatternNode*> ACVariants; |
| std::vector<TreePatternNode*> CAVariants; |
| std::vector<TreePatternNode*> BCVariants; |
| std::vector<TreePatternNode*> CBVariants; |
| CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); |
| CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); |
| CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); |
| CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); |
| CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); |
| CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); |
| |
| // Combine those into the result: (x op x) op x |
| CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); |
| CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); |
| CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); |
| CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); |
| CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); |
| CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); |
| |
| // Combine those into the result: x op (x op x) |
| CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); |
| CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); |
| CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); |
| CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); |
| CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); |
| CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); |
| return; |
| } |
| } |
| |
| // Compute permutations of all children. |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.resize(N->getNumChildren()); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); |
| |
| // Build all permutations based on how the children were formed. |
| CombineChildVariants(N, ChildVariants, OutVariants, ISE); |
| |
| // If this node is commutative, consider the commuted order. |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { |
| assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); |
| // Don't count children which are actually register references. |
| unsigned NC = 0; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (Child->isLeaf()) |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| Record *RR = DI->getDef(); |
| if (RR->isSubClassOf("Register")) |
| continue; |
| } |
| NC++; |
| } |
| // Consider the commuted order. |
| if (NC == 2) |
| CombineChildVariants(N, ChildVariants[1], ChildVariants[0], |
| OutVariants, ISE); |
| } |
| } |
| |
| |
| // GenerateVariants - Generate variants. For example, commutative patterns can |
| // match multiple ways. Add them to PatternsToMatch as well. |
| void DAGISelEmitter::GenerateVariants() { |
| |
| DEBUG(std::cerr << "Generating instruction variants.\n"); |
| |
| // Loop over all of the patterns we've collected, checking to see if we can |
| // generate variants of the instruction, through the exploitation of |
| // identities. This permits the target to provide agressive matching without |
| // the .td file having to contain tons of variants of instructions. |
| // |
| // Note that this loop adds new patterns to the PatternsToMatch list, but we |
| // intentionally do not reconsider these. Any variants of added patterns have |
| // already been added. |
| // |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| std::vector<TreePatternNode*> Variants; |
| GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); |
| |
| assert(!Variants.empty() && "Must create at least original variant!"); |
| Variants.erase(Variants.begin()); // Remove the original pattern. |
| |
| if (Variants.empty()) // No variants for this pattern. |
| continue; |
| |
| DEBUG(std::cerr << "FOUND VARIANTS OF: "; |
| PatternsToMatch[i].getSrcPattern()->dump(); |
| std::cerr << "\n"); |
| |
| for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
| TreePatternNode *Variant = Variants[v]; |
| |
| DEBUG(std::cerr << " VAR#" << v << ": "; |
| Variant->dump(); |
| std::cerr << "\n"); |
| |
| // Scan to see if an instruction or explicit pattern already matches this. |
| bool AlreadyExists = false; |
| for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
| // Check to see if this variant already exists. |
| if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { |
| DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n"); |
| AlreadyExists = true; |
| break; |
| } |
| } |
| // If we already have it, ignore the variant. |
| if (AlreadyExists) continue; |
| |
| // Otherwise, add it to the list of patterns we have. |
| PatternsToMatch. |
| push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), |
| Variant, PatternsToMatch[i].getDstPattern(), |
| PatternsToMatch[i].getAddedComplexity())); |
| } |
| |
| DEBUG(std::cerr << "\n"); |
| } |
| } |
| |
| |
| // NodeIsComplexPattern - return true if N is a leaf node and a subclass of |
| // ComplexPattern. |
| static bool NodeIsComplexPattern(TreePatternNode *N) |
| { |
| return (N->isLeaf() && |
| dynamic_cast<DefInit*>(N->getLeafValue()) && |
| static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| isSubClassOf("ComplexPattern")); |
| } |
| |
| // NodeGetComplexPattern - return the pointer to the ComplexPattern if N |
| // is a leaf node and a subclass of ComplexPattern, else it returns NULL. |
| static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, |
| DAGISelEmitter &ISE) |
| { |
| if (N->isLeaf() && |
| dynamic_cast<DefInit*>(N->getLeafValue()) && |
| static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| isSubClassOf("ComplexPattern")) { |
| return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) |
| ->getDef()); |
| } |
| return NULL; |
| } |
| |
| /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| /// patterns before small ones. This is used to determine the size of a |
| /// pattern. |
| static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { |
| assert((isExtIntegerInVTs(P->getExtTypes()) || |
| isExtFloatingPointInVTs(P->getExtTypes()) || |
| P->getExtTypeNum(0) == MVT::isVoid || |
| P->getExtTypeNum(0) == MVT::Flag || |
| P->getExtTypeNum(0) == MVT::iPTR) && |
| "Not a valid pattern node to size!"); |
| unsigned Size = 2; // The node itself. |
| // If the root node is a ConstantSDNode, increases its size. |
| // e.g. (set R32:$dst, 0). |
| if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) |
| Size++; |
| |
| // FIXME: This is a hack to statically increase the priority of patterns |
| // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. |
| // Later we can allow complexity / cost for each pattern to be (optionally) |
| // specified. To get best possible pattern match we'll need to dynamically |
| // calculate the complexity of all patterns a dag can potentially map to. |
| const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); |
| if (AM) |
| Size += AM->getNumOperands() * 2; |
| |
| // If this node has some predicate function that must match, it adds to the |
| // complexity of this node. |
| if (!P->getPredicateFn().empty()) |
| ++Size; |
| |
| // Count children in the count if they are also nodes. |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = P->getChild(i); |
| if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) |
| Size += getPatternSize(Child, ISE); |
| else if (Child->isLeaf()) { |
| if (dynamic_cast<IntInit*>(Child->getLeafValue())) |
| Size += 3; // Matches a ConstantSDNode (+2) and a specific value (+1). |
| else if (NodeIsComplexPattern(Child)) |
| Size += getPatternSize(Child, ISE); |
| else if (!Child->getPredicateFn().empty()) |
| ++Size; |
| } |
| } |
| |
| return Size; |
| } |
| |
| /// getResultPatternCost - Compute the number of instructions for this pattern. |
| /// This is a temporary hack. We should really include the instruction |
| /// latencies in this calculation. |
| static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost++; |
| CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); |
| if (II.usesCustomDAGSchedInserter) |
| Cost += 10; |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternCost(P->getChild(i), ISE); |
| return Cost; |
| } |
| |
| /// getResultPatternCodeSize - Compute the code size of instructions for this |
| /// pattern. |
| static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost += Op->getValueAsInt("CodeSize"); |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternSize(P->getChild(i), ISE); |
| return Cost; |
| } |
| |
| // PatternSortingPredicate - return true if we prefer to match LHS before RHS. |
| // In particular, we want to match maximal patterns first and lowest cost within |
| // a particular complexity first. |
| struct PatternSortingPredicate { |
| PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; |
| DAGISelEmitter &ISE; |
| |
| bool operator()(PatternToMatch *LHS, |
| PatternToMatch *RHS) { |
| unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); |
| unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); |
| LHSSize += LHS->getAddedComplexity(); |
| RHSSize += RHS->getAddedComplexity(); |
| if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost |
| if (LHSSize < RHSSize) return false; |
| |
| // If the patterns have equal complexity, compare generated instruction cost |
| unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); |
| unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); |
| if (LHSCost < RHSCost) return true; |
| if (LHSCost > RHSCost) return false; |
| |
| return getResultPatternSize(LHS->getDstPattern(), ISE) < |
| getResultPatternSize(RHS->getDstPattern(), ISE); |
| } |
| }; |
| |
| /// getRegisterValueType - Look up and return the first ValueType of specified |
| /// RegisterClass record |
| static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { |
| if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) |
| return RC->getValueTypeNum(0); |
| return MVT::Other; |
| } |
| |
| |
| /// RemoveAllTypes - A quick recursive walk over a pattern which removes all |
| /// type information from it. |
| static void RemoveAllTypes(TreePatternNode *N) { |
| N->removeTypes(); |
| if (!N->isLeaf()) |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| RemoveAllTypes(N->getChild(i)); |
| } |
| |
| Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { |
| Record *N = Records.getDef(Name); |
| if (!N || !N->isSubClassOf("SDNode")) { |
| std::cerr << "Error getting SDNode '" << Name << "'!\n"; |
| exit(1); |
| } |
| return N; |
| } |
| |
| /// NodeHasProperty - return true if TreePatternNode has the specified |
| /// property. |
| static bool NodeHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, |
| DAGISelEmitter &ISE) |
| { |
| if (N->isLeaf()) return false; |
| Record *Operator = N->getOperator(); |
| if (!Operator->isSubClassOf("SDNode")) return false; |
| |
| const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); |
| return NodeInfo.hasProperty(Property); |
| } |
| |
| static bool PatternHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, |
| DAGISelEmitter &ISE) |
| { |
| if (NodeHasProperty(N, Property, ISE)) |
| return true; |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (PatternHasProperty(Child, Property, ISE)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| class PatternCodeEmitter { |
| private: |
| DAGISelEmitter &ISE; |
| |
| // Predicates. |
| ListInit *Predicates; |
| // Pattern cost. |
| unsigned Cost; |
| // Instruction selector pattern. |
| TreePatternNode *Pattern; |
| // Matched instruction. |
| TreePatternNode *Instruction; |
| |
| // Node to name mapping |
| std::map<std::string, std::string> VariableMap; |
| // Node to operator mapping |
| std::map<std::string, Record*> OperatorMap; |
| // Names of all the folded nodes which produce chains. |
| std::vector<std::pair<std::string, unsigned> > FoldedChains; |
| std::set<std::string> Duplicates; |
| |
| /// GeneratedCode - This is the buffer that we emit code to. The first bool |
| /// indicates whether this is an exit predicate (something that should be |
| /// tested, and if true, the match fails) [when true] or normal code to emit |
| /// [when false]. |
| std::vector<std::pair<bool, std::string> > &GeneratedCode; |
| /// GeneratedDecl - This is the set of all SDOperand declarations needed for |
| /// the set of patterns for each top-level opcode. |
| std::set<std::pair<unsigned, std::string> > &GeneratedDecl; |
| /// TargetOpcodes - The target specific opcodes used by the resulting |
| /// instructions. |
| std::vector<std::string> &TargetOpcodes; |
| std::vector<std::string> &TargetVTs; |
| |
| std::string ChainName; |
| unsigned TmpNo; |
| unsigned OpcNo; |
| unsigned VTNo; |
| |
| void emitCheck(const std::string &S) { |
| if (!S.empty()) |
| GeneratedCode.push_back(std::make_pair(true, S)); |
| } |
| void emitCode(const std::string &S) { |
| if (!S.empty()) |
| GeneratedCode.push_back(std::make_pair(false, S)); |
| } |
| void emitDecl(const std::string &S, unsigned T=0) { |
| assert(!S.empty() && "Invalid declaration"); |
| GeneratedDecl.insert(std::make_pair(T, S)); |
| } |
| void emitOpcode(const std::string &Opc) { |
| TargetOpcodes.push_back(Opc); |
| OpcNo++; |
| } |
| void emitVT(const std::string &VT) { |
| TargetVTs.push_back(VT); |
| VTNo++; |
| } |
| public: |
| PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, |
| TreePatternNode *pattern, TreePatternNode *instr, |
| std::vector<std::pair<bool, std::string> > &gc, |
| std::set<std::pair<unsigned, std::string> > &gd, |
| std::vector<std::string> &to, |
| std::vector<std::string> &tv) |
| : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), |
| GeneratedCode(gc), GeneratedDecl(gd), TargetOpcodes(to), TargetVTs(tv), |
| TmpNo(0), OpcNo(0), VTNo(0) {} |
| |
| /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo |
| /// if the match fails. At this point, we already know that the opcode for N |
| /// matches, and the SDNode for the result has the RootName specified name. |
| void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, |
| const std::string &RootName, const std::string &ParentName, |
| const std::string &ChainSuffix, bool &FoundChain) { |
| bool isRoot = (P == NULL); |
| // Emit instruction predicates. Each predicate is just a string for now. |
| if (isRoot) { |
| std::string PredicateCheck; |
| for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { |
| if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { |
| Record *Def = Pred->getDef(); |
| if (!Def->isSubClassOf("Predicate")) { |
| #ifndef NDEBUG |
| Def->dump(); |
| #endif |
| assert(0 && "Unknown predicate type!"); |
| } |
| if (!PredicateCheck.empty()) |
| PredicateCheck += " || "; |
| PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; |
| } |
| } |
| |
| emitCheck(PredicateCheck); |
| } |
| |
| if (N->isLeaf()) { |
| if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| emitCheck("cast<ConstantSDNode>(" + RootName + |
| ")->getSignExtended() == " + itostr(II->getValue())); |
| return; |
| } else if (!NodeIsComplexPattern(N)) { |
| assert(0 && "Cannot match this as a leaf value!"); |
| abort(); |
| } |
| } |
| |
| // If this node has a name associated with it, capture it in VariableMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!N->getName().empty()) { |
| std::string &VarMapEntry = VariableMap[N->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName; |
| } else { |
| // If we get here, this is a second reference to a specific name. Since |
| // we already have checked that the first reference is valid, we don't |
| // have to recursively match it, just check that it's the same as the |
| // previously named thing. |
| emitCheck(VarMapEntry + " == " + RootName); |
| return; |
| } |
| |
| if (!N->isLeaf()) |
| OperatorMap[N->getName()] = N->getOperator(); |
| } |
| |
| |
| // Emit code to load the child nodes and match their contents recursively. |
| unsigned OpNo = 0; |
| bool NodeHasChain = NodeHasProperty (N, SDNodeInfo::SDNPHasChain, ISE); |
| bool HasChain = PatternHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); |
| bool HasOutFlag = PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE); |
| bool EmittedUseCheck = false; |
| if (HasChain) { |
| if (NodeHasChain) |
| OpNo = 1; |
| if (!isRoot) { |
| const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); |
| // Multiple uses of actual result? |
| emitCheck(RootName + ".hasOneUse()"); |
| EmittedUseCheck = true; |
| if (NodeHasChain) { |
| // FIXME: Don't fold if 1) the parent node writes a flag, 2) the node |
| // has a chain use. |
| // This a workaround for this problem: |
| // |
| // [ch, r : ld] |
| // ^ ^ |
| // | | |
| // [XX]--/ \- [flag : cmp] |
| // ^ ^ |
| // | | |
| // \---[br flag]- |
| // |
| // cmp + br should be considered as a single node as they are flagged |
| // together. So, if the ld is folded into the cmp, the XX node in the |
| // graph is now both an operand and a use of the ld/cmp/br node. |
| if (NodeHasProperty(P, SDNodeInfo::SDNPOutFlag, ISE)) |
| emitCheck(ParentName + ".Val->isOnlyUse(" + RootName + ".Val)"); |
| |
| // If the immediate use can somehow reach this node through another |
| // path, then can't fold it either or it will create a cycle. |
| // e.g. In the following diagram, XX can reach ld through YY. If |
| // ld is folded into XX, then YY is both a predecessor and a successor |
| // of XX. |
| // |
| // [ld] |
| // ^ ^ |
| // | | |
| // / \--- |
| // / [YY] |
| // | ^ |
| // [XX]-------| |
| const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); |
| if (PInfo.getNumOperands() > 1 || |
| PInfo.hasProperty(SDNodeInfo::SDNPHasChain) || |
| PInfo.hasProperty(SDNodeInfo::SDNPInFlag) || |
| PInfo.hasProperty(SDNodeInfo::SDNPOptInFlag)) |
| emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + |
| ".Val)"); |
| } |
| } |
| |
| if (NodeHasChain) { |
| if (FoundChain) |
| emitCheck("Chain.Val == " + RootName + ".Val"); |
| else |
| FoundChain = true; |
| ChainName = "Chain" + ChainSuffix; |
| emitDecl(ChainName); |
| emitCode(ChainName + " = " + RootName + |
| ".getOperand(0);"); |
| } |
| } |
| |
| // Don't fold any node which reads or writes a flag and has multiple uses. |
| // FIXME: We really need to separate the concepts of flag and "glue". Those |
| // real flag results, e.g. X86CMP output, can have multiple uses. |
| // FIXME: If the optional incoming flag does not exist. Then it is ok to |
| // fold it. |
| if (!isRoot && |
| (PatternHasProperty(N, SDNodeInfo::SDNPInFlag, ISE) || |
| PatternHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE) || |
| PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE))) { |
| const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); |
| if (!EmittedUseCheck) { |
| // Multiple uses of actual result? |
| emitCheck(RootName + ".hasOneUse()"); |
| } |
| } |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| emitDecl(RootName + utostr(OpNo)); |
| emitCode(RootName + utostr(OpNo) + " = " + |
| RootName + ".getOperand(" +utostr(OpNo) + ");"); |
| TreePatternNode *Child = N->getChild(i); |
| |
| if (!Child->isLeaf()) { |
| // If it's not a leaf, recursively match. |
| const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); |
| emitCheck(RootName + utostr(OpNo) + ".getOpcode() == " + |
| CInfo.getEnumName()); |
| EmitMatchCode(Child, N, RootName + utostr(OpNo), RootName, |
| ChainSuffix + utostr(OpNo), FoundChain); |
| if (NodeHasProperty(Child, SDNodeInfo::SDNPHasChain, ISE)) |
| FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo), |
| CInfo.getNumResults())); |
| } else { |
| // If this child has a name associated with it, capture it in VarMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!Child->getName().empty()) { |
| std::string &VarMapEntry = VariableMap[Child->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName + utostr(OpNo); |
| } else { |
| // If we get here, this is a second reference to a specific name. |
| // Since we already have checked that the first reference is valid, |
| // we don't have to recursively match it, just check that it's the |
| // same as the previously named thing. |
| emitCheck(VarMapEntry + " == " + RootName + utostr(OpNo)); |
| Duplicates.insert(RootName + utostr(OpNo)); |
| continue; |
| } |
| } |
| |
| // Handle leaves of various types. |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| Record *LeafRec = DI->getDef(); |
| if (LeafRec->isSubClassOf("RegisterClass")) { |
| // Handle register references. Nothing to do here. |
| } else if (LeafRec->isSubClassOf("Register")) { |
| // Handle register references. |
| } else if (LeafRec->isSubClassOf("ComplexPattern")) { |
| // Handle complex pattern. Nothing to do here. |
| } else if (LeafRec->getName() == "srcvalue") { |
| // Place holder for SRCVALUE nodes. Nothing to do here. |
| } else if (LeafRec->isSubClassOf("ValueType")) { |
| // Make sure this is the specified value type. |
| emitCheck("cast<VTSDNode>(" + RootName + utostr(OpNo) + |
| ")->getVT() == MVT::" + LeafRec->getName()); |
| } else if (LeafRec->isSubClassOf("CondCode")) { |
| // Make sure this is the specified cond code. |
| emitCheck("cast<CondCodeSDNode>(" + RootName + utostr(OpNo) + |
| ")->get() == ISD::" + LeafRec->getName()); |
| } else { |
| #ifndef NDEBUG |
| Child->dump(); |
| std::cerr << " "; |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| } |
| } else if (IntInit *II = |
| dynamic_cast<IntInit*>(Child->getLeafValue())) { |
| emitCheck("isa<ConstantSDNode>(" + RootName + utostr(OpNo) + ")"); |
| unsigned CTmp = TmpNo++; |
| emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+ |
| RootName + utostr(OpNo) + ")->getSignExtended();"); |
| |
| emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); |
| } else { |
| #ifndef NDEBUG |
| Child->dump(); |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| } |
| } |
| } |
| |
| // If there is a node predicate for this, emit the call. |
| if (!N->getPredicateFn().empty()) |
| emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); |
| } |
| |
| /// EmitResultCode - Emit the action for a pattern. Now that it has matched |
| /// we actually have to build a DAG! |
| std::pair<unsigned, unsigned> |
| EmitResultCode(TreePatternNode *N, bool LikeLeaf = false, |
| bool isRoot = false) { |
| // This is something selected from the pattern we matched. |
| if (!N->getName().empty()) { |
| std::string &Val = VariableMap[N->getName()]; |
| assert(!Val.empty() && |
| "Variable referenced but not defined and not caught earlier!"); |
| if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { |
| // Already selected this operand, just return the tmpval. |
| return std::make_pair(1, atoi(Val.c_str()+3)); |
| } |
| |
| const ComplexPattern *CP; |
| unsigned ResNo = TmpNo++; |
| unsigned NumRes = 1; |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") { |
| assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| std::string CastType; |
| switch (N->getTypeNum(0)) { |
| default: assert(0 && "Unknown type for constant node!"); |
| case MVT::i1: CastType = "bool"; break; |
| case MVT::i8: CastType = "unsigned char"; break; |
| case MVT::i16: CastType = "unsigned short"; break; |
| case MVT::i32: CastType = "unsigned"; break; |
| case MVT::i64: CastType = "uint64_t"; break; |
| } |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + |
| " = CurDAG->getTargetConstant(((" + CastType + |
| ") cast<ConstantSDNode>(" + Val + ")->getValue()), " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ |
| Record *Op = OperatorMap[N->getName()]; |
| // Transform ExternalSymbol to TargetExternalSymbol |
| if (Op && Op->getName() == "externalsym") { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" |
| "ExternalSymbol(cast<ExternalSymbolSDNode>(" + |
| Val + ")->getSymbol(), " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| } else { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); |
| } |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") { |
| Record *Op = OperatorMap[N->getName()]; |
| // Transform GlobalAddress to TargetGlobalAddress |
| if (Op && Op->getName() == "globaladdr") { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" |
| "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + |
| ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + |
| ");"); |
| } else { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); |
| } |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); |
| } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { |
| std::string Fn = CP->getSelectFunc(); |
| NumRes = CP->getNumOperands(); |
| for (unsigned i = 0; i < NumRes; ++i) |
| emitDecl("CPTmp" + utostr(i+ResNo)); |
| |
| std::string Code = Fn + "(" + Val; |
| for (unsigned i = 0; i < NumRes; i++) |
| Code += ", CPTmp" + utostr(i + ResNo); |
| emitCheck(Code + ")"); |
| |
| for (unsigned i = 0; i < NumRes; ++i) { |
| emitDecl("Tmp" + utostr(i+ResNo)); |
| emitCode("AddToQueue(Tmp" + utostr(i+ResNo) + ", CPTmp" + |
| utostr(i+ResNo) + ");"); |
| } |
| |
| TmpNo = ResNo + NumRes; |
| } else { |
| emitDecl("Tmp" + utostr(ResNo)); |
| // This node, probably wrapped in a SDNodeXForms, behaves like a leaf |
| // node even if it isn't one. Don't select it. |
| if (LikeLeaf) |
| emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); |
| else { |
| emitCode("AddToQueue(Tmp" + utostr(ResNo) + ", " + Val + ");"); |
| if (isRoot && N->isLeaf()) { |
| emitCode("ReplaceUses(N, Tmp" + utostr(ResNo) + ");"); |
| emitCode("Result = Tmp" + utostr(ResNo) + ";"); |
| emitCode("return;"); |
| } |
| } |
| } |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| // value if used multiple times by this pattern result. |
| Val = "Tmp"+utostr(ResNo); |
| return std::make_pair(NumRes, ResNo); |
| } |
| if (N->isLeaf()) { |
| // If this is an explicit register reference, handle it. |
| if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { |
| unsigned ResNo = TmpNo++; |
| if (DI->getDef()->isSubClassOf("Register")) { |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + |
| ISE.getQualifiedName(DI->getDef()) + ", " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| return std::make_pair(1, ResNo); |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| unsigned ResNo = TmpNo++; |
| assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + |
| " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + |
| ", " + getEnumName(N->getTypeNum(0)) + ");"); |
| return std::make_pair(1, ResNo); |
| } |
| |
| #ifndef NDEBUG |
| N->dump(); |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| return std::make_pair(1, ~0U); |
| } |
| |
| Record *Op = N->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| const CodeGenTarget &CGT = ISE.getTargetInfo(); |
| CodeGenInstruction &II = CGT.getInstruction(Op->getName()); |
| const DAGInstruction &Inst = ISE.getInstruction(Op); |
| TreePattern *InstPat = Inst.getPattern(); |
| TreePatternNode *InstPatNode = |
| isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) |
| : (InstPat ? InstPat->getOnlyTree() : NULL); |
| if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { |
| InstPatNode = InstPatNode->getChild(1); |
| } |
| bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; |
| bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; |
| bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; |
| bool NodeHasOptInFlag = isRoot && |
| PatternHasProperty(Pattern, SDNodeInfo::SDNPOptInFlag, ISE); |
| bool NodeHasInFlag = isRoot && |
| PatternHasProperty(Pattern, SDNodeInfo::SDNPInFlag, ISE); |
| bool NodeHasOutFlag = HasImpResults || (isRoot && |
| PatternHasProperty(Pattern, SDNodeInfo::SDNPOutFlag, ISE)); |
| bool NodeHasChain = InstPatNode && |
| PatternHasProperty(InstPatNode, SDNodeInfo::SDNPHasChain, ISE); |
| bool InputHasChain = isRoot && |
| NodeHasProperty(Pattern, SDNodeInfo::SDNPHasChain, ISE); |
| |
| if (NodeHasInFlag || NodeHasOutFlag || NodeHasOptInFlag || HasImpInputs) |
| emitDecl("InFlag"); |
| if (NodeHasOptInFlag) { |
| emitDecl("HasInFlag", 2); |
| emitCode("HasInFlag = " |
| "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); |
| } |
| if (HasVarOps) |
| emitCode("std::vector<SDOperand> Ops;"); |
| |
| // How many results is this pattern expected to produce? |
| unsigned PatResults = 0; |
| for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { |
| MVT::ValueType VT = Pattern->getTypeNum(i); |
| if (VT != MVT::isVoid && VT != MVT::Flag) |
| PatResults++; |
| } |
| |
| // Determine operand emission order. Complex pattern first. |
| std::vector<std::pair<unsigned, TreePatternNode*> > EmitOrder; |
| std::vector<std::pair<unsigned, TreePatternNode*> >::iterator OI; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (i == 0) { |
| EmitOrder.push_back(std::make_pair(i, Child)); |
| OI = EmitOrder.begin(); |
| } else if (NodeIsComplexPattern(Child)) { |
| OI = EmitOrder.insert(OI, std::make_pair(i, Child)); |
| } else { |
| EmitOrder.push_back(std::make_pair(i, Child)); |
| } |
| } |
| |
| // Emit all of the operands. |
| std::vector<std::pair<unsigned, unsigned> > NumTemps(EmitOrder.size()); |
| for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) { |
| unsigned OpOrder = EmitOrder[i].first; |
| TreePatternNode *Child = EmitOrder[i].second; |
| std::pair<unsigned, unsigned> NumTemp = EmitResultCode(Child); |
| NumTemps[OpOrder] = NumTemp; |
| } |
| |
| // List all the operands in the right order. |
| std::vector<unsigned> Ops; |
| for (unsigned i = 0, e = NumTemps.size(); i != e; i++) { |
| for (unsigned j = 0; j < NumTemps[i].first; j++) |
| Ops.push_back(NumTemps[i].second + j); |
| } |
| |
| // Emit all the chain and CopyToReg stuff. |
| bool ChainEmitted = NodeHasChain; |
| if (NodeHasChain) |
| emitCode("AddToQueue(" + ChainName + ", " + ChainName + ");"); |
| if (NodeHasInFlag || HasImpInputs) |
| EmitInFlagSelectCode(Pattern, "N", ChainEmitted, true); |
| if (NodeHasOptInFlag) { |
| emitCode("if (HasInFlag)"); |
| emitCode(" AddToQueue(InFlag, N.getOperand(N.getNumOperands()-1));"); |
| } |
| |
| unsigned NumResults = Inst.getNumResults(); |
| unsigned ResNo = TmpNo++; |
| if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || |
| NodeHasOptInFlag) { |
| std::string Code; |
| std::string Code2; |
| std::string NodeName; |
| if (!isRoot) { |
| NodeName = "Tmp" + utostr(ResNo); |
| emitDecl(NodeName); |
| Code2 = NodeName + " = SDOperand("; |
| } else { |
| NodeName = "ResNode"; |
| emitDecl(NodeName, true); |
| Code2 = NodeName + " = "; |
| } |
| Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); |
| emitOpcode(II.Namespace + "::" + II.TheDef->getName()); |
| |
| // Output order: results, chain, flags |
| // Result types. |
| if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { |
| Code += ", VT" + utostr(VTNo); |
| emitVT(getEnumName(N->getTypeNum(0))); |
| } |
| if (NodeHasChain) |
| Code += ", MVT::Other"; |
| if (NodeHasOutFlag) |
| Code += ", MVT::Flag"; |
| |
| // Inputs. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (HasVarOps) |
| emitCode("Ops.push_back(Tmp" + utostr(Ops[i]) + ");"); |
| else |
| Code += ", Tmp" + utostr(Ops[i]); |
| } |
| |
| if (HasVarOps) { |
| if (NodeHasInFlag || HasImpInputs) |
| emitCode("for (unsigned i = 2, e = N.getNumOperands()-1; " |
| "i != e; ++i) {"); |
| else if (NodeHasOptInFlag) |
| emitCode("for (unsigned i = 2, e = N.getNumOperands()-" |
| "(HasInFlag?1:0); i != e; ++i) {"); |
| else |
| emitCode("for (unsigned i = 2, e = N.getNumOperands(); " |
| "i != e; ++i) {"); |
| emitCode(" SDOperand VarOp(0, 0);"); |
| emitCode(" AddToQueue(VarOp, N.getOperand(i));"); |
| emitCode(" Ops.push_back(VarOp);"); |
| emitCode("}"); |
| } |
| |
| if (NodeHasChain) { |
| if (HasVarOps) |
| emitCode("Ops.push_back(" + ChainName + ");"); |
| else |
| Code += ", " + ChainName; |
| } |
| if (NodeHasInFlag || HasImpInputs) { |
| if (HasVarOps) |
| emitCode("Ops.push_back(InFlag);"); |
| else |
| Code += ", InFlag"; |
| } else if (NodeHasOptInFlag && HasVarOps) { |
| emitCode("if (HasInFlag)"); |
| emitCode(" Ops.push_back(InFlag);"); |
| } |
| |
| if (HasVarOps) |
| Code += ", &Ops[0], Ops.size()"; |
| else if (NodeHasOptInFlag) |
| Code = "HasInFlag ? " + Code + ", InFlag) : " + Code; |
| |
| if (!isRoot) |
| Code += "), 0"; |
| emitCode(Code2 + Code + ");"); |
| |
| if (NodeHasChain) |
| // Remember which op produces the chain. |
| if (!isRoot) |
| emitCode(ChainName + " = SDOperand(" + NodeName + |
| ".Val, " + utostr(PatResults) + ");"); |
| else |
| emitCode(ChainName + " = SDOperand(" + NodeName + |
| ", " + utostr(PatResults) + ");"); |
| |
| if (!isRoot) |
| return std::make_pair(1, ResNo); |
| |
| for (unsigned i = 0; i < NumResults; i++) |
| emitCode("ReplaceUses(SDOperand(N.Val, " + |
| utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); |
| |
| if (NodeHasOutFlag) |
| emitCode("InFlag = SDOperand(ResNode, " + |
| utostr(NumResults + (unsigned)NodeHasChain) + ");"); |
| |
| if (HasImpResults && EmitCopyFromRegs(N, ChainEmitted)) { |
| emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));"); |
| NumResults = 1; |
| } |
| |
| if (InputHasChain) |
| emitCode("ReplaceUses(SDOperand(N.Val, " + |
| utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " + |
| ChainName + ".ResNo" + "));"); |
| |
| if (FoldedChains.size() > 0) { |
| std::string Code; |
| for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) |
| emitCode("ReplaceUses(SDOperand(" + |
| FoldedChains[j].first + ".Val, " + |
| utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + |
| utostr(NumResults) + "));"); |
| } |
| |
| if (NodeHasOutFlag) |
| emitCode("ReplaceUses(SDOperand(N.Val, " + |
| utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); |
| |
| // User does not expect the instruction would produce a chain! |
| bool AddedChain = NodeHasChain && !InputHasChain; |
| if (AddedChain && NodeHasOutFlag) { |
| if (PatResults == 0) { |
| emitCode("Result = SDOperand(ResNode, N.ResNo+1);"); |
| } else { |
| emitCode("if (N.ResNo < " + utostr(PatResults) + ")"); |
| emitCode(" Result = SDOperand(ResNode, N.ResNo);"); |
| emitCode("else"); |
| emitCode(" Result = SDOperand(ResNode, N.ResNo+1);"); |
| } |
| } else if (InputHasChain && !NodeHasChain) { |
| // One of the inner node produces a chain. |
| emitCode("if (N.ResNo < " + utostr(PatResults) + ")"); |
| emitCode(" Result = SDOperand(ResNode, N.ResNo);"); |
| if (NodeHasOutFlag) { |
| emitCode("else if (N.ResNo > " + utostr(PatResults) + ")"); |
| emitCode(" Result = SDOperand(ResNode, N.ResNo-1);"); |
| } |
| emitCode("else"); |
| emitCode(" Result = SDOperand(" + ChainName + ".Val, " + |
| ChainName + ".ResNo);"); |
| } else { |
| emitCode("Result = SDOperand(ResNode, N.ResNo);"); |
| } |
| } else { |
| // If this instruction is the root, and if there is only one use of it, |
| // use SelectNodeTo instead of getTargetNode to avoid an allocation. |
| emitCode("if (N.Val->hasOneUse()) {"); |
| std::string Code = " Result = CurDAG->SelectNodeTo(N.Val, Opc" + |
| utostr(OpcNo); |
| if (N->getTypeNum(0) != MVT::isVoid) |
| Code += ", VT" + utostr(VTNo); |
| if (NodeHasOutFlag) |
| Code += ", MVT::Flag"; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| Code += ", Tmp" + utostr(Ops[i]); |
| if (NodeHasInFlag || HasImpInputs) |
| Code += ", InFlag"; |
| emitCode(Code + ");"); |
| emitCode("} else {"); |
| emitDecl("ResNode", 1); |
| Code = " ResNode = CurDAG->getTargetNode(Opc" + utostr(OpcNo); |
| emitOpcode(II.Namespace + "::" + II.TheDef->getName()); |
| if (N->getTypeNum(0) != MVT::isVoid) { |
| Code += ", VT" + utostr(VTNo); |
| emitVT(getEnumName(N->getTypeNum(0))); |
| } |
| if (NodeHasOutFlag) |
| Code += ", MVT::Flag"; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| Code += ", Tmp" + utostr(Ops[i]); |
| if (NodeHasInFlag || HasImpInputs) |
| Code += ", InFlag"; |
| emitCode(Code + ");"); |
| emitCode(" ReplaceUses(N, SDOperand(ResNode, 0));"); |
| emitCode(" Result = SDOperand(ResNode, 0);"); |
| emitCode("}"); |
| } |
| |
| if (isRoot) |
| emitCode("return;"); |
| return std::make_pair(1, ResNo); |
| } else if (Op->isSubClassOf("SDNodeXForm")) { |
| assert(N->getNumChildren() == 1 && "node xform should have one child!"); |
| // PatLeaf node - the operand may or may not be a leaf node. But it should |
| // behave like one. |
| unsigned OpVal = EmitResultCode(N->getChild(0), true).second; |
| unsigned ResNo = TmpNo++; |
| emitDecl("Tmp" + utostr(ResNo)); |
| emitCode("Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() |
| + "(Tmp" + utostr(OpVal) + ".Val);"); |
| if (isRoot) { |
| emitCode("ReplaceUses(N, Tmp" + utostr(ResNo) + ");"); |
| emitCode("Result = Tmp" + utostr(ResNo) + ";"); |
| emitCode("return;"); |
| } |
| return std::make_pair(1, ResNo); |
| } else { |
| N->dump(); |
| std::cerr << "\n"; |
| throw std::string("Unknown node in result pattern!"); |
| } |
| } |
| |
| /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' |
| /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that |
| /// 'Pat' may be missing types. If we find an unresolved type to add a check |
| /// for, this returns true otherwise false if Pat has all types. |
| bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, |
| const std::string &Prefix, bool isRoot = false) { |
| // Did we find one? |
| if (Pat->getExtTypes() != Other->getExtTypes()) { |
| // Move a type over from 'other' to 'pat'. |
| Pat->setTypes(Other->getExtTypes()); |
| // The top level node type is checked outside of the select function. |
| if (!isRoot) |
| emitCheck(Prefix + ".Val->getValueType(0) == " + |
| getName(Pat->getTypeNum(0))); |
| return true; |
| } |
| |
| unsigned OpNo = |
| (unsigned) NodeHasProperty(Pat, SDNodeInfo::SDNPHasChain, ISE); |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) |
| if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), |
| Prefix + utostr(OpNo))) |
| return true; |
| return false; |
| } |
| |
| private: |
| /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is |
| /// being built. |
| void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, |
| bool &ChainEmitted, bool isRoot = false) { |
| const CodeGenTarget &T = ISE.getTargetInfo(); |
| unsigned OpNo = |
| (unsigned) NodeHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); |
| bool HasInFlag = NodeHasProperty(N, SDNodeInfo::SDNPInFlag, ISE); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| TreePatternNode *Child = N->getChild(i); |
| if (!Child->isLeaf()) { |
| EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted); |
| } else { |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| if (!Child->getName().empty()) { |
| std::string Name = RootName + utostr(OpNo); |
| if (Duplicates.find(Name) != Duplicates.end()) |
| // A duplicate! Do not emit a copy for this node. |
| continue; |
| } |
| |
| Record *RR = DI->getDef(); |
| if (RR->isSubClassOf("Register")) { |
| MVT::ValueType RVT = getRegisterValueType(RR, T); |
| if (RVT == MVT::Flag) { |
| emitCode("AddToQueue(InFlag, " + RootName + utostr(OpNo) + ");"); |
| } else { |
| if (!ChainEmitted) { |
| emitDecl("Chain"); |
| emitCode("Chain = CurDAG->getEntryNode();"); |
| ChainName = "Chain"; |
| ChainEmitted = true; |
| } |
| emitCode("AddToQueue(" + RootName + utostr(OpNo) + ", " + |
| RootName + utostr(OpNo) + ");"); |
| emitCode("ResNode = CurDAG->getCopyToReg(" + ChainName + |
| ", CurDAG->getRegister(" + ISE.getQualifiedName(RR) + |
| ", " + getEnumName(RVT) + "), " + |
| RootName + utostr(OpNo) + ", InFlag).Val;"); |
| emitCode(ChainName + " = SDOperand(ResNode, 0);"); |
| emitCode("InFlag = SDOperand(ResNode, 1);"); |
| } |
| } |
| } |
| } |
| } |
| |
| if (HasInFlag) |
| emitCode("AddToQueue(InFlag, " + RootName + |
| ".getOperand(" + utostr(OpNo) + "));"); |
| } |
| |
| /// EmitCopyFromRegs - Emit code to copy result to physical registers |
| /// as specified by the instruction. It returns true if any copy is |
| /// emitted. |
| bool EmitCopyFromRegs(TreePatternNode *N, bool &ChainEmitted) { |
| bool RetVal = false; |
| Record *Op = N->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = ISE.getInstruction(Op); |
| const CodeGenTarget &CGT = ISE.getTargetInfo(); |
| unsigned NumImpResults = Inst.getNumImpResults(); |
| for (unsigned i = 0; i < NumImpResults; i++) { |
| Record *RR = Inst.getImpResult(i); |
| if (RR->isSubClassOf("Register")) { |
| MVT::ValueType RVT = getRegisterValueType(RR, CGT); |
| if (RVT != MVT::Flag) { |
| if (!ChainEmitted) { |
| emitDecl("Chain"); |
| emitCode("Chain = CurDAG->getEntryNode();"); |
| ChainEmitted = true; |
| ChainName = "Chain"; |
| } |
| emitCode("ResNode = CurDAG->getCopyFromReg(" + ChainName + |
| ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + |
| ", InFlag).Val;"); |
| emitCode(ChainName + " = SDOperand(ResNode, 1);"); |
| emitCode("InFlag = SDOperand(ResNode, 2);"); |
| RetVal = true; |
| } |
| } |
| } |
| } |
| return RetVal; |
| } |
| }; |
| |
| /// EmitCodeForPattern - Given a pattern to match, emit code to the specified |
| /// stream to match the pattern, and generate the code for the match if it |
| /// succeeds. Returns true if the pattern is not guaranteed to match. |
| void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, |
| std::vector<std::pair<bool, std::string> > &GeneratedCode, |
| std::set<std::pair<unsigned, std::string> > &GeneratedDecl, |
| std::vector<std::string> &TargetOpcodes, |
| std::vector<std::string> &TargetVTs) { |
| PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), |
| Pattern.getSrcPattern(), Pattern.getDstPattern(), |
| GeneratedCode, GeneratedDecl, |
| TargetOpcodes, TargetVTs); |
| |
| // Emit the matcher, capturing named arguments in VariableMap. |
| bool FoundChain = false; |
| Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", "", FoundChain); |
| |
| // TP - Get *SOME* tree pattern, we don't care which. |
| TreePattern &TP = *PatternFragments.begin()->second; |
| |
| // At this point, we know that we structurally match the pattern, but the |
| // types of the nodes may not match. Figure out the fewest number of type |
| // comparisons we need to emit. For example, if there is only one integer |
| // type supported by a target, there should be no type comparisons at all for |
| // integer patterns! |
| // |
| // To figure out the fewest number of type checks needed, clone the pattern, |
| // remove the types, then perform type inference on the pattern as a whole. |
| // If there are unresolved types, emit an explicit check for those types, |
| // apply the type to the tree, then rerun type inference. Iterate until all |
| // types are resolved. |
| // |
| TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); |
| RemoveAllTypes(Pat); |
| |
| do { |
| // Resolve/propagate as many types as possible. |
| try { |
| bool MadeChange = true; |
| while (MadeChange) |
| MadeChange = Pat->ApplyTypeConstraints(TP, |
| true/*Ignore reg constraints*/); |
| } catch (...) { |
| assert(0 && "Error: could not find consistent types for something we" |
| " already decided was ok!"); |
| abort(); |
| } |
| |
| // Insert a check for an unresolved type and add it to the tree. If we find |
| // an unresolved type to add a check for, this returns true and we iterate, |
| // otherwise we are done. |
| } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); |
| |
| Emitter.EmitResultCode(Pattern.getDstPattern(), false, true /*the root*/); |
| delete Pat; |
| } |
| |
| /// EraseCodeLine - Erase one code line from all of the patterns. If removing |
| /// a line causes any of them to be empty, remove them and return true when |
| /// done. |
| static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*, |
| std::vector<std::pair<bool, std::string> > > > |
| &Patterns) { |
| bool ErasedPatterns = false; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| Patterns[i].second.pop_back(); |
| if (Patterns[i].second.empty()) { |
| Patterns.erase(Patterns.begin()+i); |
| --i; --e; |
| ErasedPatterns = true; |
| } |
| } |
| return ErasedPatterns; |
| } |
| |
| /// EmitPatterns - Emit code for at least one pattern, but try to group common |
| /// code together between the patterns. |
| void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*, |
| std::vector<std::pair<bool, std::string> > > > |
| &Patterns, unsigned Indent, |
| std::ostream &OS) { |
| typedef std::pair<bool, std::string> CodeLine; |
| typedef std::vector<CodeLine> CodeList; |
| typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList; |
| |
| if (Patterns.empty()) return; |
| |
| // Figure out how many patterns share the next code line. Explicitly copy |
| // FirstCodeLine so that we don't invalidate a reference when changing |
| // Patterns. |
| const CodeLine FirstCodeLine = Patterns.back().second.back(); |
| unsigned LastMatch = Patterns.size()-1; |
| while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) |
| --LastMatch; |
| |
| // If not all patterns share this line, split the list into two pieces. The |
| // first chunk will use this line, the second chunk won't. |
| if (LastMatch != 0) { |
| PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); |
| PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); |
| |
| // FIXME: Emit braces? |
| if (Shared.size() == 1) { |
| PatternToMatch &Pattern = *Shared.back().first; |
| OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| Pattern.getSrcPattern()->print(OS); |
| OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| Pattern.getDstPattern()->print(OS); |
| OS << "\n"; |
| unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity |
| << " cost = " |
| << getResultPatternCost(Pattern.getDstPattern(), *this) |
| << " size = " |
| << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; |
| } |
| if (!FirstCodeLine.first) { |
| OS << std::string(Indent, ' ') << "{\n"; |
| Indent += 2; |
| } |
| EmitPatterns(Shared, Indent, OS); |
| if (!FirstCodeLine.first) { |
| Indent -= 2; |
| OS << std::string(Indent, ' ') << "}\n"; |
| } |
| |
| if (Other.size() == 1) { |
| PatternToMatch &Pattern = *Other.back().first; |
| OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| Pattern.getSrcPattern()->print(OS); |
| OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| Pattern.getDstPattern()->print(OS); |
| OS << "\n"; |
| unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity |
| << " cost = " |
| << getResultPatternCost(Pattern.getDstPattern(), *this) |
| << " size = " |
| << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; |
| } |
| EmitPatterns(Other, Indent, OS); |
| return; |
| } |
| |
| // Remove this code from all of the patterns that share it. |
| bool ErasedPatterns = EraseCodeLine(Patterns); |
| |
| bool isPredicate = FirstCodeLine.first; |
| |
| // Otherwise, every pattern in the list has this line. Emit it. |
| if (!isPredicate) { |
| // Normal code. |
| OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; |
| } else { |
| OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; |
| |
| // If the next code line is another predicate, and if all of the pattern |
| // in this group share the same next line, emit it inline now. Do this |
| // until we run out of common predicates. |
| while (!ErasedPatterns && Patterns.back().second.back().first) { |
| // Check that all of fhe patterns in Patterns end with the same predicate. |
| bool AllEndWithSamePredicate = true; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) |
| if (Patterns[i].second.back() != Patterns.back().second.back()) { |
| AllEndWithSamePredicate = false; |
| break; |
| } |
| // If all of the predicates aren't the same, we can't share them. |
| if (!AllEndWithSamePredicate) break; |
| |
| // Otherwise we can. Emit it shared now. |
| OS << " &&\n" << std::string(Indent+4, ' ') |
| << Patterns.back().second.back().second; |
| ErasedPatterns = EraseCodeLine(Patterns); |
| } |
| |
| OS << ") {\n"; |
| Indent += 2; |
| } |
| |
| EmitPatterns(Patterns, Indent, OS); |
| |
| if (isPredicate) |
| OS << std::string(Indent-2, ' ') << "}\n"; |
| } |
| |
| |
| |
| namespace { |
| /// CompareByRecordName - An ordering predicate that implements less-than by |
| /// comparing the names records. |
| struct CompareByRecordName { |
| bool operator()(const Record *LHS, const Record *RHS) const { |
| // Sort by name first. |
| if (LHS->getName() < RHS->getName()) return true; |
| // If both names are equal, sort by pointer. |
| return LHS->getName() == RHS->getName() && LHS < RHS; |
| } |
| }; |
| } |
| |
| void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { |
| std::string InstNS = Target.inst_begin()->second.Namespace; |
| if (!InstNS.empty()) InstNS += "::"; |
| |
| // Group the patterns by their top-level opcodes. |
| std::map<Record*, std::vector<PatternToMatch*>, |
| CompareByRecordName> PatternsByOpcode; |
| // All unique target node emission functions. |
| std::map<std::string, unsigned> EmitFunctions; |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); |
| if (!Node->isLeaf()) { |
| PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]); |
| } else { |
| const ComplexPattern *CP; |
| if (IntInit *II = |
| dynamic_cast<IntInit*>(Node->getLeafValue())) { |
| PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]); |
| } else if ((CP = NodeGetComplexPattern(Node, *this))) { |
| std::vector<Record*> OpNodes = CP->getRootNodes(); |
| for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { |
| PatternsByOpcode[OpNodes[j]] |
| .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]); |
| } |
| } else { |
| std::cerr << "Unrecognized opcode '"; |
| Node->dump(); |
| std::cerr << "' on tree pattern '"; |
| std::cerr << |
| PatternsToMatch[i].getDstPattern()->getOperator()->getName(); |
| std::cerr << "'!\n"; |
| exit(1); |
| } |
| } |
| } |
| |
| // For each opcode, there might be multiple select functions, one per |
| // ValueType of the node (or its first operand if it doesn't produce a |
| // non-chain result. |
| std::map<std::string, std::vector<std::string> > OpcodeVTMap; |
| |
| // Emit one Select_* method for each top-level opcode. We do this instead of |
| // emitting one giant switch statement to support compilers where this will |
| // result in the recursive functions taking less stack space. |
| for (std::map<Record*, std::vector<PatternToMatch*>, |
| CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), |
| E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { |
| const std::string &OpName = PBOI->first->getName(); |
| const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); |
| std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second; |
| assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); |
| |
| // We want to emit all of the matching code now. However, we want to emit |
| // the matches in order of minimal cost. Sort the patterns so the least |
| // cost one is at the start. |
| std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), |
| PatternSortingPredicate(*this)); |
| |
| // Split them into groups by type. |
| std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType; |
| for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { |
| PatternToMatch *Pat = PatternsOfOp[i]; |
| TreePatternNode *SrcPat = Pat->getSrcPattern(); |
| if (OpcodeInfo.getNumResults() == 0 && SrcPat->getNumChildren() > 0) |
| SrcPat = SrcPat->getChild(0); |
| MVT::ValueType VT = SrcPat->getTypeNum(0); |
| std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI = |
| PatternsByType.find(VT); |
| if (TI != PatternsByType.end()) |
| TI->second.push_back(Pat); |
| else { |
| std::vector<PatternToMatch*> PVec; |
| PVec.push_back(Pat); |
| PatternsByType.insert(std::make_pair(VT, PVec)); |
| } |
| } |
| |
| for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator |
| II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; |
| ++II) { |
| MVT::ValueType OpVT = II->first; |
| std::vector<PatternToMatch*> &Patterns = II->second; |
| typedef std::vector<std::pair<bool, std::string> > CodeList; |
| typedef std::vector<std::pair<bool, std::string> >::iterator CodeListI; |
| |
| std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns; |
| std::vector<std::vector<std::string> > PatternOpcodes; |
| std::vector<std::vector<std::string> > PatternVTs; |
| std::vector<std::set<std::pair<unsigned, std::string> > > PatternDecls; |
| std::set<std::pair<unsigned, std::string> > AllGenDecls; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| CodeList GeneratedCode; |
| std::set<std::pair<unsigned, std::string> > GeneratedDecl; |
| std::vector<std::string> TargetOpcodes; |
| std::vector<std::string> TargetVTs; |
| GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, |
| TargetOpcodes, TargetVTs); |
| for (std::set<std::pair<unsigned, std::string> >::iterator |
| si = GeneratedDecl.begin(), se = GeneratedDecl.end(); si!=se; ++si) |
| AllGenDecls.insert(*si); |
| CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); |
| PatternDecls.push_back(GeneratedDecl); |
| PatternOpcodes.push_back(TargetOpcodes); |
| PatternVTs.push_back(TargetVTs); |
| } |
| |
| // Scan the code to see if all of the patterns are reachable and if it is |
| // possible that the last one might not match. |
| bool mightNotMatch = true; |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| mightNotMatch = false; |
| |
| for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { |
| if (GeneratedCode[j].first) { // predicate. |
| mightNotMatch = true; |
| break; |
| } |
| } |
| |
| // If this pattern definitely matches, and if it isn't the last one, the |
| // patterns after it CANNOT ever match. Error out. |
| if (mightNotMatch == false && i != CodeForPatterns.size()-1) { |
| std::cerr << "Pattern '"; |
| CodeForPatterns[i+1].first->getSrcPattern()->print(std::cerr); |
| std::cerr << "' is impossible to select!\n"; |
| exit(1); |
| } |
| } |
| |
| // Factor target node emission code (emitted by EmitResultCode) into |
| // separate functions. Uniquing and share them among all instruction |
| // selection routines. |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; |
| std::vector<std::string> &TargetVTs = PatternVTs[i]; |
| std::set<std::pair<unsigned, std::string> > Decls = PatternDecls[i]; |
| int CodeSize = (int)GeneratedCode.size(); |
| int LastPred = -1; |
| for (int j = CodeSize-1; j >= 0; --j) { |
| if (GeneratedCode[j].first) { |
| LastPred = j; |
| break; |
| } |
| } |
| |
| std::string CalleeDecls; |
| std::string CalleeCode = "(SDOperand &Result, const SDOperand &N"; |
| std::string CallerCode = "(Result, N"; |
| for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { |
| CalleeCode += ", unsigned Opc" + utostr(j); |
| CallerCode += ", " + TargetOpcodes[j]; |
| } |
| for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { |
| CalleeCode += ", MVT::ValueType VT" + utostr(j); |
| CallerCode += ", " + TargetVTs[j]; |
| } |
| for (std::set<std::pair<unsigned, std::string> >::iterator |
| I = Decls.begin(), E = Decls.end(); I != E; ++I) { |
| std::string Name = I->second; |
| if (I->first == 0) { |
| if (Name == "InFlag" || |
| (Name.size() > 3 && |
| Name[0] == 'T' && Name[1] == 'm' && Name[2] == 'p')) { |
| CalleeDecls += " SDOperand " + Name + "(0, 0);\n"; |
| continue; |
| } |
| CalleeCode += ", SDOperand &" + Name; |
| CallerCode += ", " + Name; |
| } else if (I->first == 1) { |
| if (Name == "ResNode") { |
| CalleeDecls += " SDNode *" + Name + " = NULL;\n"; |
| continue; |
| } |
| CalleeCode += ", SDNode *" + Name; |
| CallerCode += ", " + Name; |
| } else { |
| CalleeCode += ", bool " + Name; |
| CallerCode += ", " + Name; |
| } |
| } |
| CallerCode += ");"; |
| CalleeCode += ") "; |
| // Prevent emission routines from being inlined to reduce selection |
| // routines stack frame sizes. |
| CalleeCode += "NOINLINE "; |
| CalleeCode += "{\n" + CalleeDecls; |
| for (int j = LastPred+1; j < CodeSize; ++j) |
| CalleeCode += " " + GeneratedCode[j].second + '\n'; |
| for (int j = LastPred+1; j < CodeSize; ++j) |
| GeneratedCode.pop_back(); |
| CalleeCode += "}\n"; |
| |
| // Uniquing the emission routines. |
| unsigned EmitFuncNum; |
| std::map<std::string, unsigned>::iterator EFI = |
| EmitFunctions.find(CalleeCode); |
| if (EFI != EmitFunctions.end()) { |
| EmitFuncNum = EFI->second; |
| } else { |
| EmitFuncNum = EmitFunctions.size(); |
| EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); |
| OS << "void " << "Emit_" << utostr(EmitFuncNum) << CalleeCode; |
| } |
| |
| // Replace the emission code within selection routines with calls to the |
| // emission functions. |
| CallerCode = "Emit_" + utostr(EmitFuncNum) + CallerCode; |
| GeneratedCode.push_back(std::make_pair(false, CallerCode)); |
| GeneratedCode.push_back(std::make_pair(false, "return;")); |
| } |
| |
| // Print function. |
| std::string OpVTStr = (OpVT != MVT::isVoid && OpVT != MVT::iPTR) |
| ? getEnumName(OpVT).substr(5) : "" ; |
| std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| OpcodeVTMap.find(OpName); |
| if (OpVTI == OpcodeVTMap.end()) { |
| std::vector<std::string> VTSet; |
| VTSet.push_back(OpVTStr); |
| OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); |
| } else |
| OpVTI->second.push_back(OpVTStr); |
| |
| OS << "void Select_" << OpName << (OpVTStr != "" ? "_" : "") |
| << OpVTStr << "(SDOperand &Result, const SDOperand &N) {\n"; |
| |
| // Print all declarations. |
| for (std::set<std::pair<unsigned, std::string> >::iterator |
| I = AllGenDecls.begin(), E = AllGenDecls.end(); I != E; ++I) |
| if (I->first == 0) |
| OS << " SDOperand " << I->second << "(0, 0);\n"; |
| else if (I->first == 1) |
| OS << " SDNode *" << I->second << " = NULL;\n"; |
| else |
| OS << " bool " << I->second << " = false;\n"; |
| |
| // Loop through and reverse all of the CodeList vectors, as we will be |
| // accessing them from their logical front, but accessing the end of a |
| // vector is more efficient. |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| std::reverse(GeneratedCode.begin(), GeneratedCode.end()); |
| } |
| |
| // Next, reverse the list of patterns itself for the same reason. |
| std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); |
| |
| // Emit all of the patterns now, grouped together to share code. |
| EmitPatterns(CodeForPatterns, 2, OS); |
| |
| // If the last pattern has predicates (which could fail) emit code to catch |
| // the case where nothing handles a pattern. |
| if (mightNotMatch) { |
| OS << " std::cerr << \"Cannot yet select: \";\n"; |
| if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" && |
| OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" && |
| OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") { |
| OS << " N.Val->dump(CurDAG);\n"; |
| } else { |
| OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" |
| << " std::cerr << \"intrinsic %\"<< " |
| "Intrinsic::getName((Intrinsic::ID)iid);\n"; |
| } |
| OS << " std::cerr << '\\n';\n" |
| << " abort();\n"; |
| } |
| OS << "}\n\n"; |
| } |
| } |
| |
| // Emit boilerplate. |
| OS << "void Select_INLINEASM(SDOperand& Result, SDOperand N) {\n" |
| << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n" |
| << " AddToQueue(Ops[0], N.getOperand(0)); // Select the chain.\n\n" |
| << " // Select the flag operand.\n" |
| << " if (Ops.back().getValueType() == MVT::Flag)\n" |
| << " AddToQueue(Ops.back(), Ops.back());\n" |
| << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n" |
| << " std::vector<MVT::ValueType> VTs;\n" |
| << " VTs.push_back(MVT::Other);\n" |
| << " VTs.push_back(MVT::Flag);\n" |
| << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " |
| "Ops.size());\n" |
| << " ReplaceUses(SDOperand(N.Val, 0), New);\n" |
| << " ReplaceUses(SDOperand(N.Val, 1), SDOperand(New.Val, 1));\n" |
| << " Result = New.getValue(N.ResNo);\n" |
| << " return;\n" |
| << "}\n\n"; |
| |
| OS << "// The main instruction selector code.\n" |
| << "void SelectCode(SDOperand &Result, SDOperand N) {\n" |
| << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" |
| << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS |
| << "INSTRUCTION_LIST_END)) {\n" |
| << " Result = N;\n" |
| << " return; // Already selected.\n" |
| << " }\n\n" |
| << " switch (N.getOpcode()) {\n" |
| << " default: break;\n" |
| << " case ISD::EntryToken: // These leaves remain the same.\n" |
| << " case ISD::BasicBlock:\n" |
| << " case ISD::Register:\n" |
| << " case ISD::HANDLENODE:\n" |
| << " case ISD::TargetConstant:\n" |
| << " case ISD::TargetConstantPool:\n" |
| << " case ISD::TargetFrameIndex:\n" |
| << " case ISD::TargetJumpTable:\n" |
| << " case ISD::TargetGlobalAddress: {\n" |
| << " Result = N;\n" |
| << " return;\n" |
| << " }\n" |
| << " case ISD::AssertSext:\n" |
| << " case ISD::AssertZext: {\n" |
| << " AddToQueue(Result, N.getOperand(0));\n" |
| << " ReplaceUses(N, Result);\n" |
| << " return;\n" |
| << " }\n" |
| << " case ISD::TokenFactor:\n" |
| << " case ISD::CopyFromReg:\n" |
| << " case ISD::CopyToReg: {\n" |
| << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) {\n" |
| << " SDOperand Dummy;\n" |
| << " AddToQueue(Dummy, N.getOperand(i));\n" |
| << " }\n" |
| << " Result = N;\n" |
| << " return;\n" |
| << " }\n" |
| << " case ISD::INLINEASM: Select_INLINEASM(Result, N); return;\n"; |
| |
| |
| // Loop over all of the case statements, emiting a call to each method we |
| // emitted above. |
| for (std::map<Record*, std::vector<PatternToMatch*>, |
| CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), |
| E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { |
| const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); |
| const std::string &OpName = PBOI->first->getName(); |
| // Potentially multiple versions of select for this opcode. One for each |
| // ValueType of the node (or its first true operand if it doesn't produce a |
| // result. |
| std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| OpcodeVTMap.find(OpName); |
| std::vector<std::string> &OpVTs = OpVTI->second; |
| OS << " case " << OpcodeInfo.getEnumName() << ": {\n"; |
| if (OpVTs.size() == 1) { |
| std::string &VTStr = OpVTs[0]; |
| OS << " Select_" << OpName |
| << (VTStr != "" ? "_" : "") << VTStr << "(Result, N);\n"; |
| } else { |
| if (OpcodeInfo.getNumResults()) |
| OS << " MVT::ValueType NVT = N.Val->getValueType(0);\n"; |
| else if (OpcodeInfo.hasProperty(SDNodeInfo::SDNPHasChain)) |
| OS << " MVT::ValueType NVT = (N.getNumOperands() > 1) ?" |
| << " N.getOperand(1).Val->getValueType(0) : MVT::isVoid;\n"; |
| else |
| OS << " MVT::ValueType NVT = (N.getNumOperands() > 0) ?" |
| << " N.getOperand(0).Val->getValueType(0) : MVT::isVoid;\n"; |
| int ElseCase = -1; |
| bool First = true; |
| for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { |
| std::string &VTStr = OpVTs[i]; |
| if (VTStr == "") { |
| ElseCase = i; |
| continue; |
| } |
| OS << (First ? " if" : " else if") |
| << " (NVT == MVT::" << VTStr << ")\n" |
| << " Select_" << OpName |
| << "_" << VTStr << "(Result, N);\n"; |
| First = false; |
| } |
| if (ElseCase != -1) |
| OS << " else\n" << " Select_" << OpName << "(Result, N);\n"; |
| else |
| OS << " else\n" << " break;\n"; |
| } |
| OS << " return;\n"; |
| OS << " }\n"; |
| } |
| |
| OS << " } // end of big switch.\n\n" |
| << " std::cerr << \"Cannot yet select: \";\n" |
| << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" |
| << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" |
| << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" |
| << " N.Val->dump(CurDAG);\n" |
| << " } else {\n" |
| << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" |
| << " std::cerr << \"intrinsic %\"<< " |
| "Intrinsic::getName((Intrinsic::ID)iid);\n" |
| << " }\n" |
| << " std::cerr << '\\n';\n" |
| << " abort();\n" |
| << "}\n"; |
| } |
| |
| void DAGISelEmitter::run(std::ostream &OS) { |
| EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + |
| " target", OS); |
| |
| OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| << "// *** instruction selector class. These functions are really " |
| << "methods.\n\n"; |
| |
| OS << "#if defined(__GNUC__) && \\\n"; |
| OS << " ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4)))\n"; |
| OS << "#define NOINLINE __attribute__((noinline))\n"; |
| OS << "#else\n"; |
| OS << "#define NOINLINE\n"; |
| OS << "#endif\n\n"; |
| |
| OS << "// Instruction selector priority queue:\n" |
| << "std::vector<SDNode*> ISelQueue;\n"; |
| OS << "/// Keep track of nodes which have already been added to queue.\n" |
| << "unsigned char *ISelQueued;\n"; |
| OS << "/// Keep track of nodes which have already been selected.\n" |
| << "unsigned char *ISelSelected;\n"; |
| OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" |
| << "std::vector<SDNode*> ISelKilled;\n\n"; |
| |
| OS << "/// Sorting functions for the selection queue.\n" |
| << "struct isel_sort : public std::binary_function" |
| << "<SDNode*, SDNode*, bool> {\n" |
| << " bool operator()(const SDNode* left, const SDNode* right) " |
| << "const {\n" |
| << " return (left->getNodeId() > right->getNodeId());\n" |
| << " }\n" |
| << "};\n\n"; |
| |
| OS << "inline void setQueued(int Id) {\n"; |
| OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; |
| OS << "}\n"; |
| OS << "inline bool isQueued(int Id) {\n"; |
| OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; |
| OS << "}\n"; |
| OS << "inline void setSelected(int Id) {\n"; |
| OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; |
| OS << "}\n"; |
| OS << "inline bool isSelected(int Id) {\n"; |
| OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; |
| OS << "}\n\n"; |
| |
| OS << "inline void AddToQueue(SDOperand &Result, SDOperand N) {\n"; |
| OS << " Result = N;\n"; |
| OS << " int Id = N.Val->getNodeId();\n"; |
| OS << " if (Id != -1 && !isQueued(Id)) {\n"; |
| OS << " ISelQueue.push_back(N.Val);\n"; |
| OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| OS << " setQueued(Id);\n"; |
| OS << " }\n"; |
| OS << "}\n\n"; |
| |
| OS << "inline void RemoveKilled() {\n"; |
| OS << " unsigned NumKilled = ISelKilled.size();\n"; |
| OS << " if (NumKilled) {\n"; |
| OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; |
| OS << " SDNode *Temp = ISelKilled[i];\n"; |
| OS << " std::remove(ISelQueue.begin(), ISelQueue.end(), Temp);\n"; |
| OS << " };\n"; |
| OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| OS << " ISelKilled.clear();\n"; |
| OS << " }\n"; |
| OS << "}\n\n"; |
| |
| OS << "inline void ReplaceUses(SDOperand F, SDOperand T) {\n"; |
| OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; |
| OS << " setSelected(F.Val->getNodeId());\n"; |
| OS << " RemoveKilled();\n"; |
| OS << "}\n\n"; |
| |
| OS << "// SelectRoot - Top level entry to DAG isel.\n"; |
| OS << "SDOperand SelectRoot(SDOperand Root) {\n"; |
| OS << " SelectRootInit();\n"; |
| OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; |
| OS << " ISelQueued = new unsigned char[NumBytes];\n"; |
| OS << " ISelSelected = new unsigned char[NumBytes];\n"; |
| OS << " memset(ISelQueued, 0, NumBytes);\n"; |
| OS << " memset(ISelSelected, 0, NumBytes);\n"; |
| OS << "\n"; |
| OS << " SDOperand ResNode;\n"; |
| OS << " Select(ResNode, Root);\n"; |
| OS << " while (!ISelQueue.empty()) {\n"; |
| OS << " SDOperand Tmp;\n"; |
| OS << " SDNode *Node = ISelQueue.front();\n"; |
| OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| OS << " ISelQueue.pop_back();\n"; |
| OS << " if (!isSelected(Node->getNodeId()))\n"; |
| OS << " Select(Tmp, SDOperand(Node, 0));\n"; |
| OS << " }\n"; |
| OS << "\n"; |
| OS << " delete[] ISelQueued;\n"; |
| OS << " ISelQueued = NULL;\n"; |
| OS << " delete[] ISelSelected;\n"; |
| OS << " ISelSelected = NULL;\n"; |
| OS << " return ResNode;\n"; |
| OS << "}\n"; |
| |
| Intrinsics = LoadIntrinsics(Records); |
| ParseNodeInfo(); |
| ParseNodeTransforms(OS); |
| ParseComplexPatterns(); |
| ParsePatternFragments(OS); |
| ParseInstructions(); |
| ParsePatterns(); |
| |
| // Generate variants. For example, commutative patterns can match |
| // multiple ways. Add them to PatternsToMatch as well. |
| GenerateVariants(); |
| |
| |
| DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump(); |
| std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump(); |
| std::cerr << "\n"; |
| }); |
| |
| // At this point, we have full information about the 'Patterns' we need to |
| // parse, both implicitly from instructions as well as from explicit pattern |
| // definitions. Emit the resultant instruction selector. |
| EmitInstructionSelector(OS); |
| |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) |
| delete I->second; |
| PatternFragments.clear(); |
| |
| Instructions.clear(); |
| } |