| //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs loop invariant code motion on machine instructions. We |
| // attempt to remove as much code from the body of a loop as possible. |
| // |
| // This pass does not attempt to throttle itself to limit register pressure. |
| // The register allocation phases are expected to perform rematerialization |
| // to recover when register pressure is high. |
| // |
| // This pass is not intended to be a replacement or a complete alternative |
| // for the LLVM-IR-level LICM pass. It is only designed to hoist simple |
| // constructs that are not exposed before lowering and instruction selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "machine-licm" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AvoidSpeculation("avoid-speculation", |
| cl::desc("MachineLICM should avoid speculation"), |
| cl::init(true), cl::Hidden); |
| |
| STATISTIC(NumHoisted, |
| "Number of machine instructions hoisted out of loops"); |
| STATISTIC(NumLowRP, |
| "Number of instructions hoisted in low reg pressure situation"); |
| STATISTIC(NumHighLatency, |
| "Number of high latency instructions hoisted"); |
| STATISTIC(NumCSEed, |
| "Number of hoisted machine instructions CSEed"); |
| STATISTIC(NumPostRAHoisted, |
| "Number of machine instructions hoisted out of loops post regalloc"); |
| |
| namespace { |
| class MachineLICM : public MachineFunctionPass { |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetLoweringBase *TLI; |
| const TargetRegisterInfo *TRI; |
| const MachineFrameInfo *MFI; |
| MachineRegisterInfo *MRI; |
| const InstrItineraryData *InstrItins; |
| bool PreRegAlloc; |
| |
| // Various analyses that we use... |
| AliasAnalysis *AA; // Alias analysis info. |
| MachineLoopInfo *MLI; // Current MachineLoopInfo |
| MachineDominatorTree *DT; // Machine dominator tree for the cur loop |
| |
| // State that is updated as we process loops |
| bool Changed; // True if a loop is changed. |
| bool FirstInLoop; // True if it's the first LICM in the loop. |
| MachineLoop *CurLoop; // The current loop we are working on. |
| MachineBasicBlock *CurPreheader; // The preheader for CurLoop. |
| |
| // Exit blocks for CurLoop. |
| SmallVector<MachineBasicBlock*, 8> ExitBlocks; |
| |
| bool isExitBlock(const MachineBasicBlock *MBB) const { |
| return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != |
| ExitBlocks.end(); |
| } |
| |
| // Track 'estimated' register pressure. |
| SmallSet<unsigned, 32> RegSeen; |
| SmallVector<unsigned, 8> RegPressure; |
| |
| // Register pressure "limit" per register class. If the pressure |
| // is higher than the limit, then it's considered high. |
| SmallVector<unsigned, 8> RegLimit; |
| |
| // Register pressure on path leading from loop preheader to current BB. |
| SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; |
| |
| // For each opcode, keep a list of potential CSE instructions. |
| DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; |
| |
| enum { |
| SpeculateFalse = 0, |
| SpeculateTrue = 1, |
| SpeculateUnknown = 2 |
| }; |
| |
| // If a MBB does not dominate loop exiting blocks then it may not safe |
| // to hoist loads from this block. |
| // Tri-state: 0 - false, 1 - true, 2 - unknown |
| unsigned SpeculationState; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| MachineLICM() : |
| MachineFunctionPass(ID), PreRegAlloc(true) { |
| initializeMachineLICMPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| explicit MachineLICM(bool PreRA) : |
| MachineFunctionPass(ID), PreRegAlloc(PreRA) { |
| initializeMachineLICMPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual void releaseMemory() { |
| RegSeen.clear(); |
| RegPressure.clear(); |
| RegLimit.clear(); |
| BackTrace.clear(); |
| for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI) |
| CI->second.clear(); |
| CSEMap.clear(); |
| } |
| |
| private: |
| /// CandidateInfo - Keep track of information about hoisting candidates. |
| struct CandidateInfo { |
| MachineInstr *MI; |
| unsigned Def; |
| int FI; |
| CandidateInfo(MachineInstr *mi, unsigned def, int fi) |
| : MI(mi), Def(def), FI(fi) {} |
| }; |
| |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop |
| /// invariants out to the preheader. |
| void HoistRegionPostRA(); |
| |
| /// HoistPostRA - When an instruction is found to only use loop invariant |
| /// operands that is safe to hoist, this instruction is called to do the |
| /// dirty work. |
| void HoistPostRA(MachineInstr *MI, unsigned Def); |
| |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also |
| /// gather register def and frame object update information. |
| void ProcessMI(MachineInstr *MI, |
| BitVector &PhysRegDefs, |
| BitVector &PhysRegClobbers, |
| SmallSet<int, 32> &StoredFIs, |
| SmallVector<CandidateInfo, 32> &Candidates); |
| |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the |
| /// current loop. |
| void AddToLiveIns(unsigned Reg); |
| |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable |
| /// candidate for LICM. e.g. If the instruction is a call, then it's |
| /// obviously not safe to hoist it. |
| bool IsLICMCandidate(MachineInstr &I); |
| |
| /// IsLoopInvariantInst - Returns true if the instruction is loop |
| /// invariant. I.e., all virtual register operands are defined outside of |
| /// the loop, physical registers aren't accessed (explicitly or implicitly), |
| /// and the instruction is hoistable. |
| /// |
| bool IsLoopInvariantInst(MachineInstr &I); |
| |
| /// HasLoopPHIUse - Return true if the specified instruction is used by any |
| /// phi node in the current loop. |
| bool HasLoopPHIUse(const MachineInstr *MI) const; |
| |
| /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' |
| /// and an use in the current loop, return true if the target considered |
| /// it 'high'. |
| bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, |
| unsigned Reg) const; |
| |
| bool IsCheapInstruction(MachineInstr &MI) const; |
| |
| /// CanCauseHighRegPressure - Visit BBs from header to current BB, |
| /// check if hoisting an instruction of the given cost matrix can cause high |
| /// register pressure. |
| bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); |
| |
| /// UpdateBackTraceRegPressure - Traverse the back trace from header to |
| /// the current block and update their register pressures to reflect the |
| /// effect of hoisting MI from the current block to the preheader. |
| void UpdateBackTraceRegPressure(const MachineInstr *MI); |
| |
| /// IsProfitableToHoist - Return true if it is potentially profitable to |
| /// hoist the given loop invariant. |
| bool IsProfitableToHoist(MachineInstr &MI); |
| |
| /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. |
| /// If not then a load from this mbb may not be safe to hoist. |
| bool IsGuaranteedToExecute(MachineBasicBlock *BB); |
| |
| void EnterScope(MachineBasicBlock *MBB); |
| |
| void ExitScope(MachineBasicBlock *MBB); |
| |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given |
| /// dominator tree node if its a leaf or all of its children are done. Walk |
| /// up the dominator tree to destroy ancestors which are now done. |
| void ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, |
| DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); |
| |
| /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all |
| /// blocks dominated by the specified header block, and that are in the |
| /// current loop) in depth first order w.r.t the DominatorTree. This allows |
| /// us to visit definitions before uses, allowing us to hoist a loop body in |
| /// one pass without iteration. |
| /// |
| void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); |
| void HoistRegion(MachineDomTreeNode *N, bool IsHeader); |
| |
| /// getRegisterClassIDAndCost - For a given MI, register, and the operand |
| /// index, return the ID and cost of its representative register class by |
| /// reference. |
| void getRegisterClassIDAndCost(const MachineInstr *MI, |
| unsigned Reg, unsigned OpIdx, |
| unsigned &RCId, unsigned &RCCost) const; |
| |
| /// InitRegPressure - Find all virtual register references that are liveout |
| /// of the preheader to initialize the starting "register pressure". Note |
| /// this does not count live through (livein but not used) registers. |
| void InitRegPressure(MachineBasicBlock *BB); |
| |
| /// UpdateRegPressure - Update estimate of register pressure after the |
| /// specified instruction. |
| void UpdateRegPressure(const MachineInstr *MI); |
| |
| /// ExtractHoistableLoad - Unfold a load from the given machineinstr if |
| /// the load itself could be hoisted. Return the unfolded and hoistable |
| /// load, or null if the load couldn't be unfolded or if it wouldn't |
| /// be hoistable. |
| MachineInstr *ExtractHoistableLoad(MachineInstr *MI); |
| |
| /// LookForDuplicate - Find an instruction amount PrevMIs that is a |
| /// duplicate of MI. Return this instruction if it's found. |
| const MachineInstr *LookForDuplicate(const MachineInstr *MI, |
| std::vector<const MachineInstr*> &PrevMIs); |
| |
| /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on |
| /// the preheader that compute the same value. If it's found, do a RAU on |
| /// with the definition of the existing instruction rather than hoisting |
| /// the instruction to the preheader. |
| bool EliminateCSE(MachineInstr *MI, |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); |
| |
| /// MayCSE - Return true if the given instruction will be CSE'd if it's |
| /// hoisted out of the loop. |
| bool MayCSE(MachineInstr *MI); |
| |
| /// Hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// It returns true if the instruction is hoisted. |
| bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); |
| |
| /// InitCSEMap - Initialize the CSE map with instructions that are in the |
| /// current loop preheader that may become duplicates of instructions that |
| /// are hoisted out of the loop. |
| void InitCSEMap(MachineBasicBlock *BB); |
| |
| /// getCurPreheader - Get the preheader for the current loop, splitting |
| /// a critical edge if needed. |
| MachineBasicBlock *getCurPreheader(); |
| }; |
| } // end anonymous namespace |
| |
| char MachineLICM::ID = 0; |
| char &llvm::MachineLICMID = MachineLICM::ID; |
| INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", |
| "Machine Loop Invariant Code Motion", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(MachineLICM, "machinelicm", |
| "Machine Loop Invariant Code Motion", false, false) |
| |
| /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most |
| /// loop that has a unique predecessor. |
| static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { |
| // Check whether this loop even has a unique predecessor. |
| if (!CurLoop->getLoopPredecessor()) |
| return false; |
| // Ok, now check to see if any of its outer loops do. |
| for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) |
| if (L->getLoopPredecessor()) |
| return false; |
| // None of them did, so this is the outermost with a unique predecessor. |
| return true; |
| } |
| |
| bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { |
| Changed = FirstInLoop = false; |
| TM = &MF.getTarget(); |
| TII = TM->getInstrInfo(); |
| TLI = TM->getTargetLowering(); |
| TRI = TM->getRegisterInfo(); |
| MFI = MF.getFrameInfo(); |
| MRI = &MF.getRegInfo(); |
| InstrItins = TM->getInstrItineraryData(); |
| |
| PreRegAlloc = MRI->isSSA(); |
| |
| if (PreRegAlloc) |
| DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); |
| else |
| DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); |
| DEBUG(dbgs() << MF.getName() << " ********\n"); |
| |
| if (PreRegAlloc) { |
| // Estimate register pressure during pre-regalloc pass. |
| unsigned NumRC = TRI->getNumRegClasses(); |
| RegPressure.resize(NumRC); |
| std::fill(RegPressure.begin(), RegPressure.end(), 0); |
| RegLimit.resize(NumRC); |
| for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), |
| E = TRI->regclass_end(); I != E; ++I) |
| RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); |
| } |
| |
| // Get our Loop information... |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); |
| while (!Worklist.empty()) { |
| CurLoop = Worklist.pop_back_val(); |
| CurPreheader = 0; |
| ExitBlocks.clear(); |
| |
| // If this is done before regalloc, only visit outer-most preheader-sporting |
| // loops. |
| if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { |
| Worklist.append(CurLoop->begin(), CurLoop->end()); |
| continue; |
| } |
| |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| if (!PreRegAlloc) |
| HoistRegionPostRA(); |
| else { |
| // CSEMap is initialized for loop header when the first instruction is |
| // being hoisted. |
| MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); |
| FirstInLoop = true; |
| HoistOutOfLoop(N); |
| CSEMap.clear(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// InstructionStoresToFI - Return true if instruction stores to the |
| /// specified frame. |
| static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); o != oe; ++o) { |
| if (!(*o)->isStore() || !(*o)->getValue()) |
| continue; |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| if (Value->getFrameIndex() == FI) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also |
| /// gather register def and frame object update information. |
| void MachineLICM::ProcessMI(MachineInstr *MI, |
| BitVector &PhysRegDefs, |
| BitVector &PhysRegClobbers, |
| SmallSet<int, 32> &StoredFIs, |
| SmallVector<CandidateInfo, 32> &Candidates) { |
| bool RuledOut = false; |
| bool HasNonInvariantUse = false; |
| unsigned Def = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isFI()) { |
| // Remember if the instruction stores to the frame index. |
| int FI = MO.getIndex(); |
| if (!StoredFIs.count(FI) && |
| MFI->isSpillSlotObjectIndex(FI) && |
| InstructionStoresToFI(MI, FI)) |
| StoredFIs.insert(FI); |
| HasNonInvariantUse = true; |
| continue; |
| } |
| |
| // We can't hoist an instruction defining a physreg that is clobbered in |
| // the loop. |
| if (MO.isRegMask()) { |
| PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); |
| continue; |
| } |
| |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg) && |
| "Not expecting virtual register!"); |
| |
| if (!MO.isDef()) { |
| if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) |
| // If it's using a non-loop-invariant register, then it's obviously not |
| // safe to hoist. |
| HasNonInvariantUse = true; |
| continue; |
| } |
| |
| if (MO.isImplicit()) { |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) |
| PhysRegClobbers.set(*AI); |
| if (!MO.isDead()) |
| // Non-dead implicit def? This cannot be hoisted. |
| RuledOut = true; |
| // No need to check if a dead implicit def is also defined by |
| // another instruction. |
| continue; |
| } |
| |
| // FIXME: For now, avoid instructions with multiple defs, unless |
| // it's a dead implicit def. |
| if (Def) |
| RuledOut = true; |
| else |
| Def = Reg; |
| |
| // If we have already seen another instruction that defines the same |
| // register, then this is not safe. Two defs is indicated by setting a |
| // PhysRegClobbers bit. |
| for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { |
| if (PhysRegDefs.test(*AS)) |
| PhysRegClobbers.set(*AS); |
| if (PhysRegClobbers.test(*AS)) |
| // MI defined register is seen defined by another instruction in |
| // the loop, it cannot be a LICM candidate. |
| RuledOut = true; |
| PhysRegDefs.set(*AS); |
| } |
| } |
| |
| // Only consider reloads for now and remats which do not have register |
| // operands. FIXME: Consider unfold load folding instructions. |
| if (Def && !RuledOut) { |
| int FI = INT_MIN; |
| if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || |
| (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) |
| Candidates.push_back(CandidateInfo(MI, Def, FI)); |
| } |
| } |
| |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop |
| /// invariants out to the preheader. |
| void MachineLICM::HoistRegionPostRA() { |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| if (!Preheader) |
| return; |
| |
| unsigned NumRegs = TRI->getNumRegs(); |
| BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. |
| BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. |
| |
| SmallVector<CandidateInfo, 32> Candidates; |
| SmallSet<int, 32> StoredFIs; |
| |
| // Walk the entire region, count number of defs for each register, and |
| // collect potential LICM candidates. |
| const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| MachineBasicBlock *BB = Blocks[i]; |
| |
| // If the header of the loop containing this basic block is a landing pad, |
| // then don't try to hoist instructions out of this loop. |
| const MachineLoop *ML = MLI->getLoopFor(BB); |
| if (ML && ML->getHeader()->isLandingPad()) continue; |
| |
| // Conservatively treat live-in's as an external def. |
| // FIXME: That means a reload that're reused in successor block(s) will not |
| // be LICM'ed. |
| for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), |
| E = BB->livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) |
| PhysRegDefs.set(*AI); |
| } |
| |
| SpeculationState = SpeculateUnknown; |
| for (MachineBasicBlock::iterator |
| MII = BB->begin(), E = BB->end(); MII != E; ++MII) { |
| MachineInstr *MI = &*MII; |
| ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); |
| } |
| } |
| |
| // Gather the registers read / clobbered by the terminator. |
| BitVector TermRegs(NumRegs); |
| MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); |
| if (TI != Preheader->end()) { |
| for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = TI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) |
| TermRegs.set(*AI); |
| } |
| } |
| |
| // Now evaluate whether the potential candidates qualify. |
| // 1. Check if the candidate defined register is defined by another |
| // instruction in the loop. |
| // 2. If the candidate is a load from stack slot (always true for now), |
| // check if the slot is stored anywhere in the loop. |
| // 3. Make sure candidate def should not clobber |
| // registers read by the terminator. Similarly its def should not be |
| // clobbered by the terminator. |
| for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { |
| if (Candidates[i].FI != INT_MIN && |
| StoredFIs.count(Candidates[i].FI)) |
| continue; |
| |
| unsigned Def = Candidates[i].Def; |
| if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { |
| bool Safe = true; |
| MachineInstr *MI = Candidates[i].MI; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg() || MO.isDef() || !MO.getReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (PhysRegDefs.test(Reg) || |
| PhysRegClobbers.test(Reg)) { |
| // If it's using a non-loop-invariant register, then it's obviously |
| // not safe to hoist. |
| Safe = false; |
| break; |
| } |
| } |
| if (Safe) |
| HoistPostRA(MI, Candidates[i].Def); |
| } |
| } |
| } |
| |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current |
| /// loop, and make sure it is not killed by any instructions in the loop. |
| void MachineLICM::AddToLiveIns(unsigned Reg) { |
| const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| MachineBasicBlock *BB = Blocks[i]; |
| if (!BB->isLiveIn(Reg)) |
| BB->addLiveIn(Reg); |
| for (MachineBasicBlock::iterator |
| MII = BB->begin(), E = BB->end(); MII != E; ++MII) { |
| MachineInstr *MI = &*MII; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; |
| if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) |
| MO.setIsKill(false); |
| } |
| } |
| } |
| } |
| |
| /// HoistPostRA - When an instruction is found to only use loop invariant |
| /// operands that is safe to hoist, this instruction is called to do the |
| /// dirty work. |
| void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| |
| // Now move the instructions to the predecessor, inserting it before any |
| // terminator instructions. |
| DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" |
| << MI->getParent()->getNumber() << ": " << *MI); |
| |
| // Splice the instruction to the preheader. |
| MachineBasicBlock *MBB = MI->getParent(); |
| Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); |
| |
| // Add register to livein list to all the BBs in the current loop since a |
| // loop invariant must be kept live throughout the whole loop. This is |
| // important to ensure later passes do not scavenge the def register. |
| AddToLiveIns(Def); |
| |
| ++NumPostRAHoisted; |
| Changed = true; |
| } |
| |
| // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. |
| // If not then a load from this mbb may not be safe to hoist. |
| bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { |
| if (SpeculationState != SpeculateUnknown) |
| return SpeculationState == SpeculateFalse; |
| |
| if (BB != CurLoop->getHeader()) { |
| // Check loop exiting blocks. |
| SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; |
| CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); |
| for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) |
| if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { |
| SpeculationState = SpeculateTrue; |
| return false; |
| } |
| } |
| |
| SpeculationState = SpeculateFalse; |
| return true; |
| } |
| |
| void MachineLICM::EnterScope(MachineBasicBlock *MBB) { |
| DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); |
| |
| // Remember livein register pressure. |
| BackTrace.push_back(RegPressure); |
| } |
| |
| void MachineLICM::ExitScope(MachineBasicBlock *MBB) { |
| DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); |
| BackTrace.pop_back(); |
| } |
| |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given |
| /// dominator tree node if its a leaf or all of its children are done. Walk |
| /// up the dominator tree to destroy ancestors which are now done. |
| void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, |
| DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, |
| DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { |
| if (OpenChildren[Node]) |
| return; |
| |
| // Pop scope. |
| ExitScope(Node->getBlock()); |
| |
| // Now traverse upwards to pop ancestors whose offsprings are all done. |
| while (MachineDomTreeNode *Parent = ParentMap[Node]) { |
| unsigned Left = --OpenChildren[Parent]; |
| if (Left != 0) |
| break; |
| ExitScope(Parent->getBlock()); |
| Node = Parent; |
| } |
| } |
| |
| /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all |
| /// blocks dominated by the specified header block, and that are in the |
| /// current loop) in depth first order w.r.t the DominatorTree. This allows |
| /// us to visit definitions before uses, allowing us to hoist a loop body in |
| /// one pass without iteration. |
| /// |
| void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { |
| SmallVector<MachineDomTreeNode*, 32> Scopes; |
| SmallVector<MachineDomTreeNode*, 8> WorkList; |
| DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; |
| DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; |
| |
| // Perform a DFS walk to determine the order of visit. |
| WorkList.push_back(HeaderN); |
| do { |
| MachineDomTreeNode *Node = WorkList.pop_back_val(); |
| assert(Node != 0 && "Null dominator tree node?"); |
| MachineBasicBlock *BB = Node->getBlock(); |
| |
| // If the header of the loop containing this basic block is a landing pad, |
| // then don't try to hoist instructions out of this loop. |
| const MachineLoop *ML = MLI->getLoopFor(BB); |
| if (ML && ML->getHeader()->isLandingPad()) |
| continue; |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) |
| continue; |
| |
| Scopes.push_back(Node); |
| const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); |
| unsigned NumChildren = Children.size(); |
| |
| // Don't hoist things out of a large switch statement. This often causes |
| // code to be hoisted that wasn't going to be executed, and increases |
| // register pressure in a situation where it's likely to matter. |
| if (BB->succ_size() >= 25) |
| NumChildren = 0; |
| |
| OpenChildren[Node] = NumChildren; |
| // Add children in reverse order as then the next popped worklist node is |
| // the first child of this node. This means we ultimately traverse the |
| // DOM tree in exactly the same order as if we'd recursed. |
| for (int i = (int)NumChildren-1; i >= 0; --i) { |
| MachineDomTreeNode *Child = Children[i]; |
| ParentMap[Child] = Node; |
| WorkList.push_back(Child); |
| } |
| } while (!WorkList.empty()); |
| |
| if (Scopes.size() != 0) { |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| if (!Preheader) |
| return; |
| |
| // Compute registers which are livein into the loop headers. |
| RegSeen.clear(); |
| BackTrace.clear(); |
| InitRegPressure(Preheader); |
| } |
| |
| // Now perform LICM. |
| for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { |
| MachineDomTreeNode *Node = Scopes[i]; |
| MachineBasicBlock *MBB = Node->getBlock(); |
| |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| if (!Preheader) |
| continue; |
| |
| EnterScope(MBB); |
| |
| // Process the block |
| SpeculationState = SpeculateUnknown; |
| for (MachineBasicBlock::iterator |
| MII = MBB->begin(), E = MBB->end(); MII != E; ) { |
| MachineBasicBlock::iterator NextMII = MII; ++NextMII; |
| MachineInstr *MI = &*MII; |
| if (!Hoist(MI, Preheader)) |
| UpdateRegPressure(MI); |
| MII = NextMII; |
| } |
| |
| // If it's a leaf node, it's done. Traverse upwards to pop ancestors. |
| ExitScopeIfDone(Node, OpenChildren, ParentMap); |
| } |
| } |
| |
| static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { |
| return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); |
| } |
| |
| /// getRegisterClassIDAndCost - For a given MI, register, and the operand |
| /// index, return the ID and cost of its representative register class. |
| void |
| MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, |
| unsigned Reg, unsigned OpIdx, |
| unsigned &RCId, unsigned &RCCost) const { |
| const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| MVT VT = *RC->vt_begin(); |
| if (VT == MVT::Untyped) { |
| RCId = RC->getID(); |
| RCCost = 1; |
| } else { |
| RCId = TLI->getRepRegClassFor(VT)->getID(); |
| RCCost = TLI->getRepRegClassCostFor(VT); |
| } |
| } |
| |
| /// InitRegPressure - Find all virtual register references that are liveout of |
| /// the preheader to initialize the starting "register pressure". Note this |
| /// does not count live through (livein but not used) registers. |
| void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { |
| std::fill(RegPressure.begin(), RegPressure.end(), 0); |
| |
| // If the preheader has only a single predecessor and it ends with a |
| // fallthrough or an unconditional branch, then scan its predecessor for live |
| // defs as well. This happens whenever the preheader is created by splitting |
| // the critical edge from the loop predecessor to the loop header. |
| if (BB->pred_size() == 1) { |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) |
| InitRegPressure(*BB->pred_begin()); |
| } |
| |
| for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); |
| MII != E; ++MII) { |
| MachineInstr *MI = &*MII; |
| for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| |
| bool isNew = RegSeen.insert(Reg); |
| unsigned RCId, RCCost; |
| getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); |
| if (MO.isDef()) |
| RegPressure[RCId] += RCCost; |
| else { |
| bool isKill = isOperandKill(MO, MRI); |
| if (isNew && !isKill) |
| // Haven't seen this, it must be a livein. |
| RegPressure[RCId] += RCCost; |
| else if (!isNew && isKill) |
| RegPressure[RCId] -= RCCost; |
| } |
| } |
| } |
| } |
| |
| /// UpdateRegPressure - Update estimate of register pressure after the |
| /// specified instruction. |
| void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { |
| if (MI->isImplicitDef()) |
| return; |
| |
| SmallVector<unsigned, 4> Defs; |
| for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| |
| bool isNew = RegSeen.insert(Reg); |
| if (MO.isDef()) |
| Defs.push_back(Reg); |
| else if (!isNew && isOperandKill(MO, MRI)) { |
| unsigned RCId, RCCost; |
| getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); |
| if (RCCost > RegPressure[RCId]) |
| RegPressure[RCId] = 0; |
| else |
| RegPressure[RCId] -= RCCost; |
| } |
| } |
| |
| unsigned Idx = 0; |
| while (!Defs.empty()) { |
| unsigned Reg = Defs.pop_back_val(); |
| unsigned RCId, RCCost; |
| getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); |
| RegPressure[RCId] += RCCost; |
| ++Idx; |
| } |
| } |
| |
| /// isLoadFromGOTOrConstantPool - Return true if this machine instruction |
| /// loads from global offset table or constant pool. |
| static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { |
| assert (MI.mayLoad() && "Expected MI that loads!"); |
| for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), |
| E = MI.memoperands_end(); I != E; ++I) { |
| if (const Value *V = (*I)->getValue()) { |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) |
| if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable |
| /// candidate for LICM. e.g. If the instruction is a call, then it's obviously |
| /// not safe to hoist it. |
| bool MachineLICM::IsLICMCandidate(MachineInstr &I) { |
| // Check if it's safe to move the instruction. |
| bool DontMoveAcrossStore = true; |
| if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) |
| return false; |
| |
| // If it is load then check if it is guaranteed to execute by making sure that |
| // it dominates all exiting blocks. If it doesn't, then there is a path out of |
| // the loop which does not execute this load, so we can't hoist it. Loads |
| // from constant memory are not safe to speculate all the time, for example |
| // indexed load from a jump table. |
| // Stores and side effects are already checked by isSafeToMove. |
| if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && |
| !IsGuaranteedToExecute(I.getParent())) |
| return false; |
| |
| return true; |
| } |
| |
| /// IsLoopInvariantInst - Returns true if the instruction is loop |
| /// invariant. I.e., all virtual register operands are defined outside of the |
| /// loop, physical registers aren't accessed explicitly, and there are no side |
| /// effects that aren't captured by the operands or other flags. |
| /// |
| bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { |
| if (!IsLICMCandidate(I)) |
| return false; |
| |
| // The instruction is loop invariant if all of its operands are. |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = I.getOperand(i); |
| |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| // Don't hoist an instruction that uses or defines a physical register. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) |
| return false; |
| // Otherwise it's safe to move. |
| continue; |
| } else if (!MO.isDead()) { |
| // A def that isn't dead. We can't move it. |
| return false; |
| } else if (CurLoop->getHeader()->isLiveIn(Reg)) { |
| // If the reg is live into the loop, we can't hoist an instruction |
| // which would clobber it. |
| return false; |
| } |
| } |
| |
| if (!MO.isUse()) |
| continue; |
| |
| assert(MRI->getVRegDef(Reg) && |
| "Machine instr not mapped for this vreg?!"); |
| |
| // If the loop contains the definition of an operand, then the instruction |
| // isn't loop invariant. |
| if (CurLoop->contains(MRI->getVRegDef(Reg))) |
| return false; |
| } |
| |
| // If we got this far, the instruction is loop invariant! |
| return true; |
| } |
| |
| |
| /// HasLoopPHIUse - Return true if the specified instruction is used by a |
| /// phi node and hoisting it could cause a copy to be inserted. |
| bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { |
| SmallVector<const MachineInstr*, 8> Work(1, MI); |
| do { |
| MI = Work.pop_back_val(); |
| for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { |
| if (!MO->isReg() || !MO->isDef()) |
| continue; |
| unsigned Reg = MO->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), |
| UE = MRI->use_end(); UI != UE; ++UI) { |
| MachineInstr *UseMI = &*UI; |
| // A PHI may cause a copy to be inserted. |
| if (UseMI->isPHI()) { |
| // A PHI inside the loop causes a copy because the live range of Reg is |
| // extended across the PHI. |
| if (CurLoop->contains(UseMI)) |
| return true; |
| // A PHI in an exit block can cause a copy to be inserted if the PHI |
| // has multiple predecessors in the loop with different values. |
| // For now, approximate by rejecting all exit blocks. |
| if (isExitBlock(UseMI->getParent())) |
| return true; |
| continue; |
| } |
| // Look past copies as well. |
| if (UseMI->isCopy() && CurLoop->contains(UseMI)) |
| Work.push_back(UseMI); |
| } |
| } |
| } while (!Work.empty()); |
| return false; |
| } |
| |
| /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' |
| /// and an use in the current loop, return true if the target considered |
| /// it 'high'. |
| bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, |
| unsigned DefIdx, unsigned Reg) const { |
| if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) |
| return false; |
| |
| for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), |
| E = MRI->use_nodbg_end(); I != E; ++I) { |
| MachineInstr *UseMI = &*I; |
| if (UseMI->isCopyLike()) |
| continue; |
| if (!CurLoop->contains(UseMI->getParent())) |
| continue; |
| for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = UseMI->getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MOReg != Reg) |
| continue; |
| |
| if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i)) |
| return true; |
| } |
| |
| // Only look at the first in loop use. |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// IsCheapInstruction - Return true if the instruction is marked "cheap" or |
| /// the operand latency between its def and a use is one or less. |
| bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { |
| if (MI.isAsCheapAsAMove() || MI.isCopyLike()) |
| return true; |
| if (!InstrItins || InstrItins->isEmpty()) |
| return false; |
| |
| bool isCheap = false; |
| unsigned NumDefs = MI.getDesc().getNumDefs(); |
| for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { |
| MachineOperand &DefMO = MI.getOperand(i); |
| if (!DefMO.isReg() || !DefMO.isDef()) |
| continue; |
| --NumDefs; |
| unsigned Reg = DefMO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| |
| if (!TII->hasLowDefLatency(InstrItins, &MI, i)) |
| return false; |
| isCheap = true; |
| } |
| |
| return isCheap; |
| } |
| |
| /// CanCauseHighRegPressure - Visit BBs from header to current BB, check |
| /// if hoisting an instruction of the given cost matrix can cause high |
| /// register pressure. |
| bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, |
| bool CheapInstr) { |
| for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); |
| CI != CE; ++CI) { |
| if (CI->second <= 0) |
| continue; |
| |
| unsigned RCId = CI->first; |
| unsigned Limit = RegLimit[RCId]; |
| int Cost = CI->second; |
| |
| // Don't hoist cheap instructions if they would increase register pressure, |
| // even if we're under the limit. |
| if (CheapInstr) |
| return true; |
| |
| for (unsigned i = BackTrace.size(); i != 0; --i) { |
| SmallVector<unsigned, 8> &RP = BackTrace[i-1]; |
| if (RP[RCId] + Cost >= Limit) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// UpdateBackTraceRegPressure - Traverse the back trace from header to the |
| /// current block and update their register pressures to reflect the effect |
| /// of hoisting MI from the current block to the preheader. |
| void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { |
| if (MI->isImplicitDef()) |
| return; |
| |
| // First compute the 'cost' of the instruction, i.e. its contribution |
| // to register pressure. |
| DenseMap<unsigned, int> Cost; |
| for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| |
| unsigned RCId, RCCost; |
| getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); |
| if (MO.isDef()) { |
| DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); |
| if (CI != Cost.end()) |
| CI->second += RCCost; |
| else |
| Cost.insert(std::make_pair(RCId, RCCost)); |
| } else if (isOperandKill(MO, MRI)) { |
| DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); |
| if (CI != Cost.end()) |
| CI->second -= RCCost; |
| else |
| Cost.insert(std::make_pair(RCId, -RCCost)); |
| } |
| } |
| |
| // Update register pressure of blocks from loop header to current block. |
| for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { |
| SmallVector<unsigned, 8> &RP = BackTrace[i]; |
| for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); |
| CI != CE; ++CI) { |
| unsigned RCId = CI->first; |
| RP[RCId] += CI->second; |
| } |
| } |
| } |
| |
| /// IsProfitableToHoist - Return true if it is potentially profitable to hoist |
| /// the given loop invariant. |
| bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { |
| if (MI.isImplicitDef()) |
| return true; |
| |
| // Besides removing computation from the loop, hoisting an instruction has |
| // these effects: |
| // |
| // - The value defined by the instruction becomes live across the entire |
| // loop. This increases register pressure in the loop. |
| // |
| // - If the value is used by a PHI in the loop, a copy will be required for |
| // lowering the PHI after extending the live range. |
| // |
| // - When hoisting the last use of a value in the loop, that value no longer |
| // needs to be live in the loop. This lowers register pressure in the loop. |
| |
| bool CheapInstr = IsCheapInstruction(MI); |
| bool CreatesCopy = HasLoopPHIUse(&MI); |
| |
| // Don't hoist a cheap instruction if it would create a copy in the loop. |
| if (CheapInstr && CreatesCopy) { |
| DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); |
| return false; |
| } |
| |
| // Rematerializable instructions should always be hoisted since the register |
| // allocator can just pull them down again when needed. |
| if (TII->isTriviallyReMaterializable(&MI, AA)) |
| return true; |
| |
| // Estimate register pressure to determine whether to LICM the instruction. |
| // In low register pressure situation, we can be more aggressive about |
| // hoisting. Also, favors hoisting long latency instructions even in |
| // moderately high pressure situation. |
| // Cheap instructions will only be hoisted if they don't increase register |
| // pressure at all. |
| // FIXME: If there are long latency loop-invariant instructions inside the |
| // loop at this point, why didn't the optimizer's LICM hoist them? |
| DenseMap<unsigned, int> Cost; |
| for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.isImplicit()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| |
| unsigned RCId, RCCost; |
| getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); |
| if (MO.isDef()) { |
| if (HasHighOperandLatency(MI, i, Reg)) { |
| DEBUG(dbgs() << "Hoist High Latency: " << MI); |
| ++NumHighLatency; |
| return true; |
| } |
| Cost[RCId] += RCCost; |
| } else if (isOperandKill(MO, MRI)) { |
| // Is a virtual register use is a kill, hoisting it out of the loop |
| // may actually reduce register pressure or be register pressure |
| // neutral. |
| Cost[RCId] -= RCCost; |
| } |
| } |
| |
| // Visit BBs from header to current BB, if hoisting this doesn't cause |
| // high register pressure, then it's safe to proceed. |
| if (!CanCauseHighRegPressure(Cost, CheapInstr)) { |
| DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); |
| ++NumLowRP; |
| return true; |
| } |
| |
| // Don't risk increasing register pressure if it would create copies. |
| if (CreatesCopy) { |
| DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); |
| return false; |
| } |
| |
| // Do not "speculate" in high register pressure situation. If an |
| // instruction is not guaranteed to be executed in the loop, it's best to be |
| // conservative. |
| if (AvoidSpeculation && |
| (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { |
| DEBUG(dbgs() << "Won't speculate: " << MI); |
| return false; |
| } |
| |
| // High register pressure situation, only hoist if the instruction is going |
| // to be remat'ed. |
| if (!TII->isTriviallyReMaterializable(&MI, AA) && |
| !MI.isInvariantLoad(AA)) { |
| DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { |
| // Don't unfold simple loads. |
| if (MI->canFoldAsLoad()) |
| return 0; |
| |
| // If not, we may be able to unfold a load and hoist that. |
| // First test whether the instruction is loading from an amenable |
| // memory location. |
| if (!MI->isInvariantLoad(AA)) |
| return 0; |
| |
| // Next determine the register class for a temporary register. |
| unsigned LoadRegIndex; |
| unsigned NewOpc = |
| TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), |
| /*UnfoldLoad=*/true, |
| /*UnfoldStore=*/false, |
| &LoadRegIndex); |
| if (NewOpc == 0) return 0; |
| const MCInstrDesc &MID = TII->get(NewOpc); |
| if (MID.getNumDefs() != 1) return 0; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); |
| // Ok, we're unfolding. Create a temporary register and do the unfold. |
| unsigned Reg = MRI->createVirtualRegister(RC); |
| |
| SmallVector<MachineInstr *, 2> NewMIs; |
| bool Success = |
| TII->unfoldMemoryOperand(MF, MI, Reg, |
| /*UnfoldLoad=*/true, /*UnfoldStore=*/false, |
| NewMIs); |
| (void)Success; |
| assert(Success && |
| "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " |
| "succeeded!"); |
| assert(NewMIs.size() == 2 && |
| "Unfolded a load into multiple instructions!"); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MachineBasicBlock::iterator Pos = MI; |
| MBB->insert(Pos, NewMIs[0]); |
| MBB->insert(Pos, NewMIs[1]); |
| // If unfolding produced a load that wasn't loop-invariant or profitable to |
| // hoist, discard the new instructions and bail. |
| if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { |
| NewMIs[0]->eraseFromParent(); |
| NewMIs[1]->eraseFromParent(); |
| return 0; |
| } |
| |
| // Update register pressure for the unfolded instruction. |
| UpdateRegPressure(NewMIs[1]); |
| |
| // Otherwise we successfully unfolded a load that we can hoist. |
| MI->eraseFromParent(); |
| return NewMIs[0]; |
| } |
| |
| void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { |
| for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { |
| const MachineInstr *MI = &*I; |
| unsigned Opcode = MI->getOpcode(); |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.find(Opcode); |
| if (CI != CSEMap.end()) |
| CI->second.push_back(MI); |
| else { |
| std::vector<const MachineInstr*> CSEMIs; |
| CSEMIs.push_back(MI); |
| CSEMap.insert(std::make_pair(Opcode, CSEMIs)); |
| } |
| } |
| } |
| |
| const MachineInstr* |
| MachineLICM::LookForDuplicate(const MachineInstr *MI, |
| std::vector<const MachineInstr*> &PrevMIs) { |
| for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { |
| const MachineInstr *PrevMI = PrevMIs[i]; |
| if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0))) |
| return PrevMI; |
| } |
| return 0; |
| } |
| |
| bool MachineLICM::EliminateCSE(MachineInstr *MI, |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { |
| // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate |
| // the undef property onto uses. |
| if (CI == CSEMap.end() || MI->isImplicitDef()) |
| return false; |
| |
| if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { |
| DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); |
| |
| // Replace virtual registers defined by MI by their counterparts defined |
| // by Dup. |
| SmallVector<unsigned, 2> Defs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| |
| // Physical registers may not differ here. |
| assert((!MO.isReg() || MO.getReg() == 0 || |
| !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || |
| MO.getReg() == Dup->getOperand(i).getReg()) && |
| "Instructions with different phys regs are not identical!"); |
| |
| if (MO.isReg() && MO.isDef() && |
| !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) |
| Defs.push_back(i); |
| } |
| |
| SmallVector<const TargetRegisterClass*, 2> OrigRCs; |
| for (unsigned i = 0, e = Defs.size(); i != e; ++i) { |
| unsigned Idx = Defs[i]; |
| unsigned Reg = MI->getOperand(Idx).getReg(); |
| unsigned DupReg = Dup->getOperand(Idx).getReg(); |
| OrigRCs.push_back(MRI->getRegClass(DupReg)); |
| |
| if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { |
| // Restore old RCs if more than one defs. |
| for (unsigned j = 0; j != i; ++j) |
| MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); |
| return false; |
| } |
| } |
| |
| for (unsigned i = 0, e = Defs.size(); i != e; ++i) { |
| unsigned Idx = Defs[i]; |
| unsigned Reg = MI->getOperand(Idx).getReg(); |
| unsigned DupReg = Dup->getOperand(Idx).getReg(); |
| MRI->replaceRegWith(Reg, DupReg); |
| MRI->clearKillFlags(DupReg); |
| } |
| |
| MI->eraseFromParent(); |
| ++NumCSEed; |
| return true; |
| } |
| return false; |
| } |
| |
| /// MayCSE - Return true if the given instruction will be CSE'd if it's |
| /// hoisted out of the loop. |
| bool MachineLICM::MayCSE(MachineInstr *MI) { |
| unsigned Opcode = MI->getOpcode(); |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.find(Opcode); |
| // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate |
| // the undef property onto uses. |
| if (CI == CSEMap.end() || MI->isImplicitDef()) |
| return false; |
| |
| return LookForDuplicate(MI, CI->second) != 0; |
| } |
| |
| /// Hoist - When an instruction is found to use only loop invariant operands |
| /// that are safe to hoist, this instruction is called to do the dirty work. |
| /// |
| bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { |
| // First check whether we should hoist this instruction. |
| if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { |
| // If not, try unfolding a hoistable load. |
| MI = ExtractHoistableLoad(MI); |
| if (!MI) return false; |
| } |
| |
| // Now move the instructions to the predecessor, inserting it before any |
| // terminator instructions. |
| DEBUG({ |
| dbgs() << "Hoisting " << *MI; |
| if (Preheader->getBasicBlock()) |
| dbgs() << " to MachineBasicBlock " |
| << Preheader->getName(); |
| if (MI->getParent()->getBasicBlock()) |
| dbgs() << " from MachineBasicBlock " |
| << MI->getParent()->getName(); |
| dbgs() << "\n"; |
| }); |
| |
| // If this is the first instruction being hoisted to the preheader, |
| // initialize the CSE map with potential common expressions. |
| if (FirstInLoop) { |
| InitCSEMap(Preheader); |
| FirstInLoop = false; |
| } |
| |
| // Look for opportunity to CSE the hoisted instruction. |
| unsigned Opcode = MI->getOpcode(); |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.find(Opcode); |
| if (!EliminateCSE(MI, CI)) { |
| // Otherwise, splice the instruction to the preheader. |
| Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); |
| |
| // Update register pressure for BBs from header to this block. |
| UpdateBackTraceRegPressure(MI); |
| |
| // Clear the kill flags of any register this instruction defines, |
| // since they may need to be live throughout the entire loop |
| // rather than just live for part of it. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && !MO.isDead()) |
| MRI->clearKillFlags(MO.getReg()); |
| } |
| |
| // Add to the CSE map. |
| if (CI != CSEMap.end()) |
| CI->second.push_back(MI); |
| else { |
| std::vector<const MachineInstr*> CSEMIs; |
| CSEMIs.push_back(MI); |
| CSEMap.insert(std::make_pair(Opcode, CSEMIs)); |
| } |
| } |
| |
| ++NumHoisted; |
| Changed = true; |
| |
| return true; |
| } |
| |
| MachineBasicBlock *MachineLICM::getCurPreheader() { |
| // Determine the block to which to hoist instructions. If we can't find a |
| // suitable loop predecessor, we can't do any hoisting. |
| |
| // If we've tried to get a preheader and failed, don't try again. |
| if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) |
| return 0; |
| |
| if (!CurPreheader) { |
| CurPreheader = CurLoop->getLoopPreheader(); |
| if (!CurPreheader) { |
| MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); |
| if (!Pred) { |
| CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); |
| return 0; |
| } |
| |
| CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); |
| if (!CurPreheader) { |
| CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); |
| return 0; |
| } |
| } |
| } |
| return CurPreheader; |
| } |