| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// |
| // |
| // This file implements the bison parser for LLVM assembly languages files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| %{ |
| #include "ParserInternals.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Module.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOperators.h" |
| #include "llvm/iPHINode.h" |
| #include "Support/STLExtras.h" |
| #include "Support/DepthFirstIterator.h" |
| #include <list> |
| #include <utility> |
| #include <algorithm> |
| |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit |
| int yylex(); // declaration" of xxx warnings. |
| int yyparse(); |
| |
| static Module *ParserResult; |
| std::string CurFilename; |
| |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output |
| // relating to upreferences in the input stream. |
| // |
| //#define DEBUG_UPREFS 1 |
| #ifdef DEBUG_UPREFS |
| #define UR_OUT(X) std::cerr << X |
| #else |
| #define UR_OUT(X) |
| #endif |
| |
| #define YYERROR_VERBOSE 1 |
| |
| // This contains info used when building the body of a function. It is |
| // destroyed when the function is completed. |
| // |
| typedef std::vector<Value *> ValueList; // Numbered defs |
| static void ResolveDefinitions(std::vector<ValueList> &LateResolvers, |
| std::vector<ValueList> *FutureLateResolvers = 0); |
| |
| static struct PerModuleInfo { |
| Module *CurrentModule; |
| std::vector<ValueList> Values; // Module level numbered definitions |
| std::vector<ValueList> LateResolveValues; |
| std::vector<PATypeHolder> Types; |
| std::map<ValID, PATypeHolder> LateResolveTypes; |
| |
| // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward |
| // references to global values. Global values may be referenced before they |
| // are defined, and if so, the temporary object that they represent is held |
| // here. This is used for forward references of ConstantPointerRefs. |
| // |
| typedef std::map<std::pair<const PointerType *, |
| ValID>, GlobalVariable*> GlobalRefsType; |
| GlobalRefsType GlobalRefs; |
| |
| void ModuleDone() { |
| // If we could not resolve some functions at function compilation time |
| // (calls to functions before they are defined), resolve them now... Types |
| // are resolved when the constant pool has been completely parsed. |
| // |
| ResolveDefinitions(LateResolveValues); |
| |
| // Check to make sure that all global value forward references have been |
| // resolved! |
| // |
| if (!GlobalRefs.empty()) { |
| std::string UndefinedReferences = "Unresolved global references exist:\n"; |
| |
| for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); |
| I != E; ++I) { |
| UndefinedReferences += " " + I->first.first->getDescription() + " " + |
| I->first.second.getName() + "\n"; |
| } |
| ThrowException(UndefinedReferences); |
| } |
| |
| Values.clear(); // Clear out function local definitions |
| Types.clear(); |
| CurrentModule = 0; |
| } |
| |
| |
| // DeclareNewGlobalValue - Called every time a new GV has been defined. This |
| // is used to remove things from the forward declaration map, resolving them |
| // to the correct thing as needed. |
| // |
| void DeclareNewGlobalValue(GlobalValue *GV, ValID D) { |
| // Check to see if there is a forward reference to this global variable... |
| // if there is, eliminate it and patch the reference to use the new def'n. |
| GlobalRefsType::iterator I = |
| GlobalRefs.find(std::make_pair(GV->getType(), D)); |
| |
| if (I != GlobalRefs.end()) { |
| GlobalVariable *OldGV = I->second; // Get the placeholder... |
| I->first.second.destroy(); // Free string memory if necessary |
| |
| // Loop over all of the uses of the GlobalValue. The only thing they are |
| // allowed to be is ConstantPointerRef's. |
| assert(OldGV->hasOneUse() && "Only one reference should exist!"); |
| User *U = OldGV->use_back(); // Must be a ConstantPointerRef... |
| ConstantPointerRef *CPR = cast<ConstantPointerRef>(U); |
| |
| // Change the const pool reference to point to the real global variable |
| // now. This should drop a use from the OldGV. |
| CPR->mutateReferences(OldGV, GV); |
| assert(OldGV->use_empty() && "All uses should be gone now!"); |
| |
| // Remove OldGV from the module... |
| CurrentModule->getGlobalList().remove(OldGV); |
| delete OldGV; // Delete the old placeholder |
| |
| // Remove the map entry for the global now that it has been created... |
| GlobalRefs.erase(I); |
| } |
| } |
| |
| } CurModule; |
| |
| static struct PerFunctionInfo { |
| Function *CurrentFunction; // Pointer to current function being created |
| |
| std::vector<ValueList> Values; // Keep track of numbered definitions |
| std::vector<ValueList> LateResolveValues; |
| std::vector<PATypeHolder> Types; |
| std::map<ValID, PATypeHolder> LateResolveTypes; |
| bool isDeclare; // Is this function a forward declararation? |
| |
| inline PerFunctionInfo() { |
| CurrentFunction = 0; |
| isDeclare = false; |
| } |
| |
| inline ~PerFunctionInfo() {} |
| |
| inline void FunctionStart(Function *M) { |
| CurrentFunction = M; |
| } |
| |
| void FunctionDone() { |
| // If we could not resolve some blocks at parsing time (forward branches) |
| // resolve the branches now... |
| ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); |
| |
| // Make sure to resolve any constant expr references that might exist within |
| // the function we just declared itself. |
| ValID FID; |
| if (CurrentFunction->hasName()) { |
| FID = ValID::create((char*)CurrentFunction->getName().c_str()); |
| } else { |
| unsigned Slot = CurrentFunction->getType()->getUniqueID(); |
| assert(CurModule.Values.size() > Slot && "Function not inserted?"); |
| // Figure out which slot number if is... |
| for (unsigned i = 0; ; ++i) { |
| assert(i < CurModule.Values[Slot].size() && "Function not found!"); |
| if (CurModule.Values[Slot][i] == CurrentFunction) { |
| FID = ValID::create((int)i); |
| break; |
| } |
| } |
| } |
| CurModule.DeclareNewGlobalValue(CurrentFunction, FID); |
| |
| Values.clear(); // Clear out function local definitions |
| Types.clear(); |
| CurrentFunction = 0; |
| isDeclare = false; |
| } |
| } CurMeth; // Info for the current function... |
| |
| static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle definitions of all the types |
| //===----------------------------------------------------------------------===// |
| |
| static int InsertValue(Value *D, |
| std::vector<ValueList> &ValueTab = CurMeth.Values) { |
| if (D->hasName()) return -1; // Is this a numbered definition? |
| |
| // Yes, insert the value into the value table... |
| unsigned type = D->getType()->getUniqueID(); |
| if (ValueTab.size() <= type) |
| ValueTab.resize(type+1, ValueList()); |
| //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D); |
| ValueTab[type].push_back(D); |
| return ValueTab[type].size()-1; |
| } |
| |
| // TODO: FIXME when Type are not const |
| static void InsertType(const Type *Ty, std::vector<PATypeHolder> &Types) { |
| Types.push_back(Ty); |
| } |
| |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { |
| switch (D.Type) { |
| case ValID::NumberVal: { // Is it a numbered definition? |
| unsigned Num = (unsigned)D.Num; |
| |
| // Module constants occupy the lowest numbered slots... |
| if (Num < CurModule.Types.size()) |
| return CurModule.Types[Num]; |
| |
| Num -= CurModule.Types.size(); |
| |
| // Check that the number is within bounds... |
| if (Num <= CurMeth.Types.size()) |
| return CurMeth.Types[Num]; |
| break; |
| } |
| case ValID::NameVal: { // Is it a named definition? |
| std::string Name(D.Name); |
| SymbolTable *SymTab = 0; |
| Value *N = 0; |
| if (inFunctionScope()) { |
| SymTab = &CurMeth.CurrentFunction->getSymbolTable(); |
| N = SymTab->lookup(Type::TypeTy, Name); |
| } |
| |
| if (N == 0) { |
| // Symbol table doesn't automatically chain yet... because the function |
| // hasn't been added to the module... |
| // |
| SymTab = &CurModule.CurrentModule->getSymbolTable(); |
| N = SymTab->lookup(Type::TypeTy, Name); |
| if (N == 0) break; |
| } |
| |
| D.destroy(); // Free old strdup'd memory... |
| return cast<Type>(N); |
| } |
| default: |
| ThrowException("Internal parser error: Invalid symbol type reference!"); |
| } |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| if (DoNotImprovise) return 0; // Do we just want a null to be returned? |
| |
| std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? |
| CurMeth.LateResolveTypes : CurModule.LateResolveTypes; |
| |
| std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D); |
| if (I != LateResolver.end()) { |
| return I->second; |
| } |
| |
| Type *Typ = OpaqueType::get(); |
| LateResolver.insert(std::make_pair(D, Typ)); |
| return Typ; |
| } |
| |
| static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) { |
| SymbolTable &SymTab = |
| inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() : |
| CurModule.CurrentModule->getSymbolTable(); |
| return SymTab.lookup(Ty, Name); |
| } |
| |
| // getValNonImprovising - Look up the value specified by the provided type and |
| // the provided ValID. If the value exists and has already been defined, return |
| // it. Otherwise return null. |
| // |
| static Value *getValNonImprovising(const Type *Ty, const ValID &D) { |
| if (isa<FunctionType>(Ty)) |
| ThrowException("Functions are not values and " |
| "must be referenced as pointers"); |
| |
| switch (D.Type) { |
| case ValID::NumberVal: { // Is it a numbered definition? |
| unsigned type = Ty->getUniqueID(); |
| unsigned Num = (unsigned)D.Num; |
| |
| // Module constants occupy the lowest numbered slots... |
| if (type < CurModule.Values.size()) { |
| if (Num < CurModule.Values[type].size()) |
| return CurModule.Values[type][Num]; |
| |
| Num -= CurModule.Values[type].size(); |
| } |
| |
| // Make sure that our type is within bounds |
| if (CurMeth.Values.size() <= type) return 0; |
| |
| // Check that the number is within bounds... |
| if (CurMeth.Values[type].size() <= Num) return 0; |
| |
| return CurMeth.Values[type][Num]; |
| } |
| |
| case ValID::NameVal: { // Is it a named definition? |
| Value *N = lookupInSymbolTable(Ty, std::string(D.Name)); |
| if (N == 0) return 0; |
| |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| |
| // Check to make sure that "Ty" is an integral type, and that our |
| // value will fit into the specified type... |
| case ValID::ConstSIntVal: // Is it a constant pool reference?? |
| if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) |
| ThrowException("Signed integral constant '" + |
| itostr(D.ConstPool64) + "' is invalid for type '" + |
| Ty->getDescription() + "'!"); |
| return ConstantSInt::get(Ty, D.ConstPool64); |
| |
| case ValID::ConstUIntVal: // Is it an unsigned const pool reference? |
| if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { |
| if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { |
| ThrowException("Integral constant '" + utostr(D.UConstPool64) + |
| "' is invalid or out of range!"); |
| } else { // This is really a signed reference. Transmogrify. |
| return ConstantSInt::get(Ty, D.ConstPool64); |
| } |
| } else { |
| return ConstantUInt::get(Ty, D.UConstPool64); |
| } |
| |
| case ValID::ConstFPVal: // Is it a floating point const pool reference? |
| if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) |
| ThrowException("FP constant invalid for type!!"); |
| return ConstantFP::get(Ty, D.ConstPoolFP); |
| |
| case ValID::ConstNullVal: // Is it a null value? |
| if (!isa<PointerType>(Ty)) |
| ThrowException("Cannot create a a non pointer null!"); |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| |
| case ValID::ConstantVal: // Fully resolved constant? |
| if (D.ConstantValue->getType() != Ty) |
| ThrowException("Constant expression type different from required type!"); |
| return D.ConstantValue; |
| |
| default: |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } // End of switch |
| |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } |
| |
| |
| // getVal - This function is identical to getValNonImprovising, except that if a |
| // value is not already defined, it "improvises" by creating a placeholder var |
| // that looks and acts just like the requested variable. When the value is |
| // defined later, all uses of the placeholder variable are replaced with the |
| // real thing. |
| // |
| static Value *getVal(const Type *Ty, const ValID &D) { |
| assert(Ty != Type::TypeTy && "Should use getTypeVal for types!"); |
| |
| // See if the value has already been defined... |
| Value *V = getValNonImprovising(Ty, D); |
| if (V) return V; |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| Value *d = 0; |
| switch (Ty->getPrimitiveID()) { |
| case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break; |
| default: d = new ValuePlaceHolder(Ty, D); break; |
| } |
| |
| assert(d != 0 && "How did we not make something?"); |
| if (inFunctionScope()) |
| InsertValue(d, CurMeth.LateResolveValues); |
| else |
| InsertValue(d, CurModule.LateResolveValues); |
| return d; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle forward references in instructions |
| //===----------------------------------------------------------------------===// |
| // |
| // This code handles the late binding needed with statements that reference |
| // values not defined yet... for example, a forward branch, or the PHI node for |
| // a loop body. |
| // |
| // This keeps a table (CurMeth.LateResolveValues) of all such forward references |
| // and back patchs after we are done. |
| // |
| |
| // ResolveDefinitions - If we could not resolve some defs at parsing |
| // time (forward branches, phi functions for loops, etc...) resolve the |
| // defs now... |
| // |
| static void ResolveDefinitions(std::vector<ValueList> &LateResolvers, |
| std::vector<ValueList> *FutureLateResolvers) { |
| // Loop over LateResolveDefs fixing up stuff that couldn't be resolved |
| for (unsigned ty = 0; ty < LateResolvers.size(); ty++) { |
| while (!LateResolvers[ty].empty()) { |
| Value *V = LateResolvers[ty].back(); |
| assert(!isa<Type>(V) && "Types should be in LateResolveTypes!"); |
| |
| LateResolvers[ty].pop_back(); |
| ValID &DID = getValIDFromPlaceHolder(V); |
| |
| Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID); |
| if (TheRealValue) { |
| V->replaceAllUsesWith(TheRealValue); |
| delete V; |
| } else if (FutureLateResolvers) { |
| // Functions have their unresolved items forwarded to the module late |
| // resolver table |
| InsertValue(V, *FutureLateResolvers); |
| } else { |
| if (DID.Type == ValID::NameVal) |
| ThrowException("Reference to an invalid definition: '" +DID.getName()+ |
| "' of type '" + V->getType()->getDescription() + "'", |
| getLineNumFromPlaceHolder(V)); |
| else |
| ThrowException("Reference to an invalid definition: #" + |
| itostr(DID.Num) + " of type '" + |
| V->getType()->getDescription() + "'", |
| getLineNumFromPlaceHolder(V)); |
| } |
| } |
| } |
| |
| LateResolvers.clear(); |
| } |
| |
| // ResolveTypeTo - A brand new type was just declared. This means that (if |
| // name is not null) things referencing Name can be resolved. Otherwise, things |
| // refering to the number can be resolved. Do this now. |
| // |
| static void ResolveTypeTo(char *Name, const Type *ToTy) { |
| std::vector<PATypeHolder> &Types = inFunctionScope() ? |
| CurMeth.Types : CurModule.Types; |
| |
| ValID D; |
| if (Name) D = ValID::create(Name); |
| else D = ValID::create((int)Types.size()); |
| |
| std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? |
| CurMeth.LateResolveTypes : CurModule.LateResolveTypes; |
| |
| std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D); |
| if (I != LateResolver.end()) { |
| ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); |
| LateResolver.erase(I); |
| } |
| } |
| |
| // ResolveTypes - At this point, all types should be resolved. Any that aren't |
| // are errors. |
| // |
| static void ResolveTypes(std::map<ValID, PATypeHolder> &LateResolveTypes) { |
| if (!LateResolveTypes.empty()) { |
| const ValID &DID = LateResolveTypes.begin()->first; |
| |
| if (DID.Type == ValID::NameVal) |
| ThrowException("Reference to an invalid type: '" +DID.getName() + "'"); |
| else |
| ThrowException("Reference to an invalid type: #" + itostr(DID.Num)); |
| } |
| } |
| |
| |
| // setValueName - Set the specified value to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is freed by this function. |
| // |
| // This function returns true if the value has already been defined, but is |
| // allowed to be redefined in the specified context. If the name is a new name |
| // for the typeplane, false is returned. |
| // |
| static bool setValueName(Value *V, char *NameStr) { |
| if (NameStr == 0) return false; |
| |
| std::string Name(NameStr); // Copy string |
| free(NameStr); // Free old string |
| |
| if (V->getType() == Type::VoidTy) |
| ThrowException("Can't assign name '" + Name + |
| "' to a null valued instruction!"); |
| |
| SymbolTable &ST = inFunctionScope() ? |
| CurMeth.CurrentFunction->getSymbolTable() : |
| CurModule.CurrentModule->getSymbolTable(); |
| |
| Value *Existing = ST.lookup(V->getType(), Name); |
| if (Existing) { // Inserting a name that is already defined??? |
| // There is only one case where this is allowed: when we are refining an |
| // opaque type. In this case, Existing will be an opaque type. |
| if (const Type *Ty = dyn_cast<Type>(Existing)) { |
| if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) { |
| // We ARE replacing an opaque type! |
| ((OpaqueType*)OpTy)->refineAbstractTypeTo(cast<Type>(V)); |
| return true; |
| } |
| } |
| |
| // Otherwise, we are a simple redefinition of a value, check to see if it |
| // is defined the same as the old one... |
| if (const Type *Ty = dyn_cast<Type>(Existing)) { |
| if (Ty == cast<Type>(V)) return true; // Yes, it's equal. |
| // std::cerr << "Type: " << Ty->getDescription() << " != " |
| // << cast<Type>(V)->getDescription() << "!\n"; |
| } else if (const Constant *C = dyn_cast<Constant>(Existing)) { |
| if (C == V) return true; // Constants are equal to themselves |
| } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) { |
| // We are allowed to redefine a global variable in two circumstances: |
| // 1. If at least one of the globals is uninitialized or |
| // 2. If both initializers have the same value. |
| // |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| if (!EGV->hasInitializer() || !GV->hasInitializer() || |
| EGV->getInitializer() == GV->getInitializer()) { |
| |
| // Make sure the existing global version gets the initializer! Make |
| // sure that it also gets marked const if the new version is. |
| if (GV->hasInitializer() && !EGV->hasInitializer()) |
| EGV->setInitializer(GV->getInitializer()); |
| if (GV->isConstant()) |
| EGV->setConstant(true); |
| EGV->setLinkage(GV->getLinkage()); |
| |
| delete GV; // Destroy the duplicate! |
| return true; // They are equivalent! |
| } |
| } |
| } |
| ThrowException("Redefinition of value named '" + Name + "' in the '" + |
| V->getType()->getDescription() + "' type plane!"); |
| } |
| |
| V->setName(Name, &ST); |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code for handling upreferences in type names... |
| // |
| |
| // TypeContains - Returns true if Ty contains E in it. |
| // |
| static bool TypeContains(const Type *Ty, const Type *E) { |
| return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty); |
| } |
| |
| |
| static std::vector<std::pair<unsigned, OpaqueType *> > UpRefs; |
| |
| static PATypeHolder HandleUpRefs(const Type *ty) { |
| PATypeHolder Ty(ty); |
| UR_OUT("Type '" << ty->getDescription() << |
| "' newly formed. Resolving upreferences.\n" << |
| UpRefs.size() << " upreferences active!\n"); |
| for (unsigned i = 0; i < UpRefs.size(); ) { |
| UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " |
| << UpRefs[i].second->getDescription() << ") = " |
| << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl); |
| if (TypeContains(Ty, UpRefs[i].second)) { |
| unsigned Level = --UpRefs[i].first; // Decrement level of upreference |
| UR_OUT(" Uplevel Ref Level = " << Level << endl); |
| if (Level == 0) { // Upreference should be resolved! |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].second->getDescription() << endl; |
| std::string OldName = UpRefs[i].second->getDescription()); |
| UpRefs[i].second->refineAbstractTypeTo(Ty); |
| UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... |
| UR_OUT(" * Type '" << OldName << "' refined upreference to: " |
| << (const void*)Ty << ", " << Ty->getDescription() << endl); |
| continue; |
| } |
| } |
| |
| ++i; // Otherwise, no resolve, move on... |
| } |
| // FIXME: TODO: this should return the updated type |
| return Ty; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // RunVMAsmParser - Define an interface to this parser |
| //===----------------------------------------------------------------------===// |
| // |
| Module *RunVMAsmParser(const std::string &Filename, FILE *F) { |
| llvmAsmin = F; |
| CurFilename = Filename; |
| llvmAsmlineno = 1; // Reset the current line number... |
| |
| // Allocate a new module to read |
| CurModule.CurrentModule = new Module(Filename); |
| yyparse(); // Parse the file. |
| Module *Result = ParserResult; |
| llvmAsmin = stdin; // F is about to go away, don't use it anymore... |
| ParserResult = 0; |
| |
| return Result; |
| } |
| |
| %} |
| |
| %union { |
| Module *ModuleVal; |
| Function *FunctionVal; |
| std::pair<PATypeHolder*, char*> *ArgVal; |
| BasicBlock *BasicBlockVal; |
| TerminatorInst *TermInstVal; |
| Instruction *InstVal; |
| Constant *ConstVal; |
| |
| const Type *PrimType; |
| PATypeHolder *TypeVal; |
| Value *ValueVal; |
| |
| std::vector<std::pair<PATypeHolder*,char*> > *ArgList; |
| std::vector<Value*> *ValueList; |
| std::list<PATypeHolder> *TypeList; |
| std::list<std::pair<Value*, |
| BasicBlock*> > *PHIList; // Represent the RHS of PHI node |
| std::vector<std::pair<Constant*, BasicBlock*> > *JumpTable; |
| std::vector<Constant*> *ConstVector; |
| |
| GlobalValue::LinkageTypes Linkage; |
| int64_t SInt64Val; |
| uint64_t UInt64Val; |
| int SIntVal; |
| unsigned UIntVal; |
| double FPVal; |
| bool BoolVal; |
| |
| char *StrVal; // This memory is strdup'd! |
| ValID ValIDVal; // strdup'd memory maybe! |
| |
| Instruction::BinaryOps BinaryOpVal; |
| Instruction::TermOps TermOpVal; |
| Instruction::MemoryOps MemOpVal; |
| Instruction::OtherOps OtherOpVal; |
| Module::Endianness Endianness; |
| } |
| |
| %type <ModuleVal> Module FunctionList |
| %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList |
| %type <BasicBlockVal> BasicBlock InstructionList |
| %type <TermInstVal> BBTerminatorInst |
| %type <InstVal> Inst InstVal MemoryInst |
| %type <ConstVal> ConstVal ConstExpr |
| %type <ConstVector> ConstVector |
| %type <ArgList> ArgList ArgListH |
| %type <ArgVal> ArgVal |
| %type <PHIList> PHIList |
| %type <ValueList> ValueRefList ValueRefListE // For call param lists |
| %type <ValueList> IndexList // For GEP derived indices |
| %type <TypeList> TypeListI ArgTypeListI |
| %type <JumpTable> JumpTable |
| %type <BoolVal> GlobalType // GLOBAL or CONSTANT? |
| %type <BoolVal> OptVolatile // 'volatile' or not |
| %type <Linkage> OptLinkage |
| %type <Endianness> BigOrLittle |
| |
| // ValueRef - Unresolved reference to a definition or BB |
| %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef |
| %type <ValueVal> ResolvedVal // <type> <valref> pair |
| // Tokens and types for handling constant integer values |
| // |
| // ESINT64VAL - A negative number within long long range |
| %token <SInt64Val> ESINT64VAL |
| |
| // EUINT64VAL - A positive number within uns. long long range |
| %token <UInt64Val> EUINT64VAL |
| %type <SInt64Val> EINT64VAL |
| |
| %token <SIntVal> SINTVAL // Signed 32 bit ints... |
| %token <UIntVal> UINTVAL // Unsigned 32 bit ints... |
| %type <SIntVal> INTVAL |
| %token <FPVal> FPVAL // Float or Double constant |
| |
| // Built in types... |
| %type <TypeVal> Types TypesV UpRTypes UpRTypesV |
| %type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL |
| |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT |
| %type <StrVal> Name OptName OptAssign |
| |
| |
| %token IMPLEMENTATION ZEROINITIALIZER TRUE FALSE BEGINTOK ENDTOK |
| %token DECLARE GLOBAL CONSTANT VOLATILE |
| %token TO EXCEPT DOTDOTDOT NULL_TOK CONST INTERNAL LINKONCE WEAK APPENDING |
| %token OPAQUE NOT EXTERNAL TARGET ENDIAN POINTERSIZE LITTLE BIG |
| |
| // Basic Block Terminating Operators |
| %token <TermOpVal> RET BR SWITCH INVOKE UNWIND |
| |
| // Binary Operators |
| %type <BinaryOpVal> BinaryOps // all the binary operators |
| %type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories |
| %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators |
| |
| // Memory Instructions |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR |
| |
| // Other Operators |
| %type <OtherOpVal> ShiftOps |
| %token <OtherOpVal> PHI CALL CAST SHL SHR VA_ARG |
| |
| %start Module |
| %% |
| |
| // Handle constant integer size restriction and conversion... |
| // |
| INTVAL : SINTVAL; |
| INTVAL : UINTVAL { |
| if ($1 > (uint32_t)INT32_MAX) // Outside of my range! |
| ThrowException("Value too large for type!"); |
| $$ = (int32_t)$1; |
| }; |
| |
| |
| EINT64VAL : ESINT64VAL; // These have same type and can't cause problems... |
| EINT64VAL : EUINT64VAL { |
| if ($1 > (uint64_t)INT64_MAX) // Outside of my range! |
| ThrowException("Value too large for type!"); |
| $$ = (int64_t)$1; |
| }; |
| |
| // Operations that are notably excluded from this list include: |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially. |
| // |
| ArithmeticOps: ADD | SUB | MUL | DIV | REM; |
| LogicalOps : AND | OR | XOR; |
| SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE; |
| BinaryOps : ArithmeticOps | LogicalOps | SetCondOps; |
| |
| ShiftOps : SHL | SHR; |
| |
| // These are some types that allow classification if we only want a particular |
| // thing... for example, only a signed, unsigned, or integral type. |
| SIntType : LONG | INT | SHORT | SBYTE; |
| UIntType : ULONG | UINT | USHORT | UBYTE; |
| IntType : SIntType | UIntType; |
| FPType : FLOAT | DOUBLE; |
| |
| // OptAssign - Value producing statements have an optional assignment component |
| OptAssign : Name '=' { |
| $$ = $1; |
| } |
| | /*empty*/ { |
| $$ = 0; |
| }; |
| |
| OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } | |
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | |
| WEAK { $$ = GlobalValue::WeakLinkage; } | |
| APPENDING { $$ = GlobalValue::AppendingLinkage; } | |
| /*empty*/ { $$ = GlobalValue::ExternalLinkage; }; |
| |
| //===----------------------------------------------------------------------===// |
| // Types includes all predefined types... except void, because it can only be |
| // used in specific contexts (function returning void for example). To have |
| // access to it, a user must explicitly use TypesV. |
| // |
| |
| // TypesV includes all of 'Types', but it also includes the void type. |
| TypesV : Types | VOID { $$ = new PATypeHolder($1); }; |
| UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); }; |
| |
| Types : UpRTypes { |
| if (UpRefs.size()) |
| ThrowException("Invalid upreference in type: " + (*$1)->getDescription()); |
| $$ = $1; |
| }; |
| |
| |
| // Derived types are added later... |
| // |
| PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ; |
| PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL; |
| UpRTypes : OPAQUE { |
| $$ = new PATypeHolder(OpaqueType::get()); |
| } |
| | PrimType { |
| $$ = new PATypeHolder($1); |
| }; |
| UpRTypes : SymbolicValueRef { // Named types are also simple types... |
| $$ = new PATypeHolder(getTypeVal($1)); |
| }; |
| |
| // Include derived types in the Types production. |
| // |
| UpRTypes : '\\' EUINT64VAL { // Type UpReference |
| if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!"); |
| OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder |
| UpRefs.push_back(std::make_pair((unsigned)$2, OT)); // Add to vector... |
| $$ = new PATypeHolder(OT); |
| UR_OUT("New Upreference!\n"); |
| } |
| | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? |
| std::vector<const Type*> Params; |
| mapto($3->begin(), $3->end(), std::back_inserter(Params), |
| std::mem_fun_ref(&PATypeHolder::get)); |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg))); |
| delete $3; // Delete the argument list |
| delete $1; // Delete the old type handle |
| } |
| | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? |
| $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); |
| delete $4; |
| } |
| | '{' TypeListI '}' { // Structure type? |
| std::vector<const Type*> Elements; |
| mapto($2->begin(), $2->end(), std::back_inserter(Elements), |
| std::mem_fun_ref(&PATypeHolder::get)); |
| |
| $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); |
| delete $2; |
| } |
| | '{' '}' { // Empty structure type? |
| $$ = new PATypeHolder(StructType::get(std::vector<const Type*>())); |
| } |
| | UpRTypes '*' { // Pointer type? |
| $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1))); |
| delete $1; |
| }; |
| |
| // TypeList - Used for struct declarations and as a basis for function type |
| // declaration type lists |
| // |
| TypeListI : UpRTypes { |
| $$ = new std::list<PATypeHolder>(); |
| $$->push_back(*$1); delete $1; |
| } |
| | TypeListI ',' UpRTypes { |
| ($$=$1)->push_back(*$3); delete $3; |
| }; |
| |
| // ArgTypeList - List of types for a function type declaration... |
| ArgTypeListI : TypeListI |
| | TypeListI ',' DOTDOTDOT { |
| ($$=$1)->push_back(Type::VoidTy); |
| } |
| | DOTDOTDOT { |
| ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy); |
| } |
| | /*empty*/ { |
| $$ = new std::list<PATypeHolder>(); |
| }; |
| |
| // ConstVal - The various declarations that go into the constant pool. This |
| // production is used ONLY to represent constants that show up AFTER a 'const', |
| // 'constant' or 'global' token at global scope. Constants that can be inlined |
| // into other expressions (such as integers and constexprs) are handled by the |
| // ResolvedVal, ValueRef and ConstValueRef productions. |
| // |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| const Type *ETy = ATy->getElementType(); |
| int NumElements = ATy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != -1 && NumElements != (int)$3->size()) |
| ThrowException("Type mismatch: constant sized array initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| itostr(NumElements) + "!"); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $3->size(); i++) { |
| if (ETy != (*$3)[i]->getType()) |
| ThrowException("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$3)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ConstantArray::get(ATy, *$3); |
| delete $1; delete $3; |
| } |
| | Types '[' ']' { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| int NumElements = ATy->getNumElements(); |
| if (NumElements != -1 && NumElements != 0) |
| ThrowException("Type mismatch: constant sized array initialized with 0" |
| " arguments, but has size of " + itostr(NumElements) +"!"); |
| $$ = ConstantArray::get(ATy, std::vector<Constant*>()); |
| delete $1; |
| } |
| | Types 'c' STRINGCONSTANT { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| int NumElements = ATy->getNumElements(); |
| const Type *ETy = ATy->getElementType(); |
| char *EndStr = UnEscapeLexed($3, true); |
| if (NumElements != -1 && NumElements != (EndStr-$3)) |
| ThrowException("Can't build string constant of size " + |
| itostr((int)(EndStr-$3)) + |
| " when array has size " + itostr(NumElements) + "!"); |
| std::vector<Constant*> Vals; |
| if (ETy == Type::SByteTy) { |
| for (char *C = $3; C != EndStr; ++C) |
| Vals.push_back(ConstantSInt::get(ETy, *C)); |
| } else if (ETy == Type::UByteTy) { |
| for (char *C = $3; C != EndStr; ++C) |
| Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C)); |
| } else { |
| free($3); |
| ThrowException("Cannot build string arrays of non byte sized elements!"); |
| } |
| free($3); |
| $$ = ConstantArray::get(ATy, Vals); |
| delete $1; |
| } |
| | Types '{' ConstVector '}' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| ThrowException("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| if ($3->size() != STy->getNumContainedTypes()) |
| ThrowException("Illegal number of initializers for structure type!"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| for (unsigned i = 0, e = $3->size(); i != e; ++i) |
| if ((*$3)[i]->getType() != STy->getElementTypes()[i]) |
| ThrowException("Expected type '" + |
| STy->getElementTypes()[i]->getDescription() + |
| "' for element #" + utostr(i) + |
| " of structure initializer!"); |
| |
| $$ = ConstantStruct::get(STy, *$3); |
| delete $1; delete $3; |
| } |
| | Types '{' '}' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| ThrowException("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| if (STy->getNumContainedTypes() != 0) |
| ThrowException("Illegal number of initializers for structure type!"); |
| |
| $$ = ConstantStruct::get(STy, std::vector<Constant*>()); |
| delete $1; |
| } |
| | Types NULL_TOK { |
| const PointerType *PTy = dyn_cast<PointerType>($1->get()); |
| if (PTy == 0) |
| ThrowException("Cannot make null pointer constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| $$ = ConstantPointerNull::get(PTy); |
| delete $1; |
| } |
| | Types SymbolicValueRef { |
| const PointerType *Ty = dyn_cast<PointerType>($1->get()); |
| if (Ty == 0) |
| ThrowException("Global const reference must be a pointer type!"); |
| |
| // ConstExprs can exist in the body of a function, thus creating |
| // ConstantPointerRefs whenever they refer to a variable. Because we are in |
| // the context of a function, getValNonImprovising will search the functions |
| // symbol table instead of the module symbol table for the global symbol, |
| // which throws things all off. To get around this, we just tell |
| // getValNonImprovising that we are at global scope here. |
| // |
| Function *SavedCurFn = CurMeth.CurrentFunction; |
| CurMeth.CurrentFunction = 0; |
| |
| Value *V = getValNonImprovising(Ty, $2); |
| |
| CurMeth.CurrentFunction = SavedCurFn; |
| |
| // If this is an initializer for a constant pointer, which is referencing a |
| // (currently) undefined variable, create a stub now that shall be replaced |
| // in the future with the right type of variable. |
| // |
| if (V == 0) { |
| assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!"); |
| const PointerType *PT = cast<PointerType>(Ty); |
| |
| // First check to see if the forward references value is already created! |
| PerModuleInfo::GlobalRefsType::iterator I = |
| CurModule.GlobalRefs.find(std::make_pair(PT, $2)); |
| |
| if (I != CurModule.GlobalRefs.end()) { |
| V = I->second; // Placeholder already exists, use it... |
| } else { |
| // TODO: Include line number info by creating a subclass of |
| // TODO: GlobalVariable here that includes the said information! |
| |
| // Create a placeholder for the global variable reference... |
| GlobalVariable *GV = new GlobalVariable(PT->getElementType(), |
| false, |
| GlobalValue::ExternalLinkage); |
| // Keep track of the fact that we have a forward ref to recycle it |
| CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); |
| |
| // Must temporarily push this value into the module table... |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| V = GV; |
| } |
| } |
| |
| GlobalValue *GV = cast<GlobalValue>(V); |
| $$ = ConstantPointerRef::get(GV); |
| delete $1; // Free the type handle |
| } |
| | Types ConstExpr { |
| if ($1->get() != $2->getType()) |
| ThrowException("Mismatched types for constant expression!"); |
| $$ = $2; |
| delete $1; |
| } |
| | Types ZEROINITIALIZER { |
| $$ = Constant::getNullValue($1->get()); |
| delete $1; |
| }; |
| |
| ConstVal : SIntType EINT64VAL { // integral constants |
| if (!ConstantSInt::isValueValidForType($1, $2)) |
| ThrowException("Constant value doesn't fit in type!"); |
| $$ = ConstantSInt::get($1, $2); |
| } |
| | UIntType EUINT64VAL { // integral constants |
| if (!ConstantUInt::isValueValidForType($1, $2)) |
| ThrowException("Constant value doesn't fit in type!"); |
| $$ = ConstantUInt::get($1, $2); |
| } |
| | BOOL TRUE { // Boolean constants |
| $$ = ConstantBool::True; |
| } |
| | BOOL FALSE { // Boolean constants |
| $$ = ConstantBool::False; |
| } |
| | FPType FPVAL { // Float & Double constants |
| $$ = ConstantFP::get($1, $2); |
| }; |
| |
| |
| ConstExpr: CAST '(' ConstVal TO Types ')' { |
| if (!$5->get()->isFirstClassType()) |
| ThrowException("cast constant expression to a non-primitive type: '" + |
| $5->get()->getDescription() + "'!"); |
| $$ = ConstantExpr::getCast($3, $5->get()); |
| delete $5; |
| } |
| | GETELEMENTPTR '(' ConstVal IndexList ')' { |
| if (!isa<PointerType>($3->getType())) |
| ThrowException("GetElementPtr requires a pointer operand!"); |
| |
| const Type *IdxTy = |
| GetElementPtrInst::getIndexedType($3->getType(), *$4, true); |
| if (!IdxTy) |
| ThrowException("Index list invalid for constant getelementptr!"); |
| |
| std::vector<Constant*> IdxVec; |
| for (unsigned i = 0, e = $4->size(); i != e; ++i) |
| if (Constant *C = dyn_cast<Constant>((*$4)[i])) |
| IdxVec.push_back(C); |
| else |
| ThrowException("Indices to constant getelementptr must be constants!"); |
| |
| delete $4; |
| |
| $$ = ConstantExpr::getGetElementPtr($3, IdxVec); |
| } |
| | BinaryOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| ThrowException("Binary operator types must match!"); |
| $$ = ConstantExpr::get($1, $3, $5); |
| } |
| | ShiftOps '(' ConstVal ',' ConstVal ')' { |
| if ($5->getType() != Type::UByteTy) |
| ThrowException("Shift count for shift constant must be unsigned byte!"); |
| if (!$3->getType()->isIntegral()) |
| ThrowException("Shift constant expression requires integral operand!"); |
| $$ = ConstantExpr::getShift($1, $3, $5); |
| }; |
| |
| |
| // ConstVector - A list of comma separated constants. |
| ConstVector : ConstVector ',' ConstVal { |
| ($$ = $1)->push_back($3); |
| } |
| | ConstVal { |
| $$ = new std::vector<Constant*>(); |
| $$->push_back($1); |
| }; |
| |
| |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations... |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Modules |
| //===----------------------------------------------------------------------===// |
| |
| // Module rule: Capture the result of parsing the whole file into a result |
| // variable... |
| // |
| Module : FunctionList { |
| $$ = ParserResult = $1; |
| CurModule.ModuleDone(); |
| }; |
| |
| // FunctionList - A list of functions, preceeded by a constant pool. |
| // |
| FunctionList : FunctionList Function { |
| $$ = $1; |
| assert($2->getParent() == 0 && "Function already in module!"); |
| $1->getFunctionList().push_back($2); |
| CurMeth.FunctionDone(); |
| } |
| | FunctionList FunctionProto { |
| $$ = $1; |
| } |
| | FunctionList IMPLEMENTATION { |
| $$ = $1; |
| } |
| | ConstPool { |
| $$ = CurModule.CurrentModule; |
| // Resolve circular types before we parse the body of the module |
| ResolveTypes(CurModule.LateResolveTypes); |
| }; |
| |
| // ConstPool - Constants with optional names assigned to them. |
| ConstPool : ConstPool OptAssign CONST ConstVal { |
| if (!setValueName($4, $2)) |
| InsertValue($4); |
| } |
| | ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool |
| // Eagerly resolve types. This is not an optimization, this is a |
| // requirement that is due to the fact that we could have this: |
| // |
| // %list = type { %list * } |
| // %list = type { %list * } ; repeated type decl |
| // |
| // If types are not resolved eagerly, then the two types will not be |
| // determined to be the same type! |
| // |
| ResolveTypeTo($2, $4->get()); |
| |
| // TODO: FIXME when Type are not const |
| if (!setValueName(const_cast<Type*>($4->get()), $2)) { |
| // If this is not a redefinition of a type... |
| if (!$2) { |
| InsertType($4->get(), |
| inFunctionScope() ? CurMeth.Types : CurModule.Types); |
| } |
| } |
| |
| delete $4; |
| } |
| | ConstPool FunctionProto { // Function prototypes can be in const pool |
| } |
| | ConstPool OptAssign OptLinkage GlobalType ConstVal { |
| const Type *Ty = $5->getType(); |
| // Global declarations appear in Constant Pool |
| Constant *Initializer = $5; |
| if (Initializer == 0) |
| ThrowException("Global value initializer is not a constant!"); |
| |
| GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer); |
| if (!setValueName(GV, $2)) { // If not redefining... |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| int Slot = InsertValue(GV, CurModule.Values); |
| |
| if (Slot != -1) { |
| CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); |
| } else { |
| CurModule.DeclareNewGlobalValue(GV, ValID::create( |
| (char*)GV->getName().c_str())); |
| } |
| } |
| } |
| | ConstPool OptAssign EXTERNAL GlobalType Types { |
| const Type *Ty = *$5; |
| // Global declarations appear in Constant Pool |
| GlobalVariable *GV = new GlobalVariable(Ty,$4,GlobalValue::ExternalLinkage); |
| if (!setValueName(GV, $2)) { // If not redefining... |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| int Slot = InsertValue(GV, CurModule.Values); |
| |
| if (Slot != -1) { |
| CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); |
| } else { |
| assert(GV->hasName() && "Not named and not numbered!?"); |
| CurModule.DeclareNewGlobalValue(GV, ValID::create( |
| (char*)GV->getName().c_str())); |
| } |
| } |
| delete $5; |
| } |
| | ConstPool TARGET TargetDefinition { |
| } |
| | /* empty: end of list */ { |
| }; |
| |
| |
| |
| BigOrLittle : BIG { $$ = Module::BigEndian; }; |
| BigOrLittle : LITTLE { $$ = Module::LittleEndian; }; |
| |
| TargetDefinition : ENDIAN '=' BigOrLittle { |
| CurModule.CurrentModule->setEndianness($3); |
| } |
| | POINTERSIZE '=' EUINT64VAL { |
| if ($3 == 32) |
| CurModule.CurrentModule->setPointerSize(Module::Pointer32); |
| else if ($3 == 64) |
| CurModule.CurrentModule->setPointerSize(Module::Pointer64); |
| else |
| ThrowException("Invalid pointer size: '" + utostr($3) + "'!"); |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Function Headers |
| //===----------------------------------------------------------------------===// |
| |
| Name : VAR_ID | STRINGCONSTANT; |
| OptName : Name | /*empty*/ { $$ = 0; }; |
| |
| ArgVal : Types OptName { |
| if (*$1 == Type::VoidTy) |
| ThrowException("void typed arguments are invalid!"); |
| $$ = new std::pair<PATypeHolder*, char*>($1, $2); |
| }; |
| |
| ArgListH : ArgListH ',' ArgVal { |
| $$ = $1; |
| $1->push_back(*$3); |
| delete $3; |
| } |
| | ArgVal { |
| $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); |
| $$->push_back(*$1); |
| delete $1; |
| }; |
| |
| ArgList : ArgListH { |
| $$ = $1; |
| } |
| | ArgListH ',' DOTDOTDOT { |
| $$ = $1; |
| $$->push_back(std::pair<PATypeHolder*, |
| char*>(new PATypeHolder(Type::VoidTy), 0)); |
| } |
| | DOTDOTDOT { |
| $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); |
| $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0)); |
| } |
| | /* empty */ { |
| $$ = 0; |
| }; |
| |
| FunctionHeaderH : TypesV Name '(' ArgList ')' { |
| UnEscapeLexed($2); |
| std::string FunctionName($2); |
| |
| std::vector<const Type*> ParamTypeList; |
| if ($4) { // If there are arguments... |
| for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $4->begin(); |
| I != $4->end(); ++I) |
| ParamTypeList.push_back(I->first->get()); |
| } |
| |
| bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; |
| if (isVarArg) ParamTypeList.pop_back(); |
| |
| const FunctionType *FT = FunctionType::get(*$1, ParamTypeList, isVarArg); |
| const PointerType *PFT = PointerType::get(FT); |
| delete $1; |
| |
| Function *Fn = 0; |
| // Is the function already in symtab? |
| if ((Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) { |
| // Yes it is. If this is the case, either we need to be a forward decl, |
| // or it needs to be. |
| if (!CurMeth.isDeclare && !Fn->isExternal()) |
| ThrowException("Redefinition of function '" + FunctionName + "'!"); |
| |
| // If we found a preexisting function prototype, remove it from the |
| // module, so that we don't get spurious conflicts with global & local |
| // variables. |
| // |
| CurModule.CurrentModule->getFunctionList().remove(Fn); |
| |
| // Make sure to strip off any argument names so we can't get conflicts... |
| for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend(); AI != AE; ++AI) |
| AI->setName(""); |
| |
| } else { // Not already defined? |
| Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName); |
| InsertValue(Fn, CurModule.Values); |
| CurModule.DeclareNewGlobalValue(Fn, ValID::create($2)); |
| } |
| free($2); // Free strdup'd memory! |
| |
| CurMeth.FunctionStart(Fn); |
| |
| // Add all of the arguments we parsed to the function... |
| if ($4) { // Is null if empty... |
| if (isVarArg) { // Nuke the last entry |
| assert($4->back().first->get() == Type::VoidTy && $4->back().second == 0&& |
| "Not a varargs marker!"); |
| delete $4->back().first; |
| $4->pop_back(); // Delete the last entry |
| } |
| Function::aiterator ArgIt = Fn->abegin(); |
| for (std::vector<std::pair<PATypeHolder*, char*> >::iterator I =$4->begin(); |
| I != $4->end(); ++I, ++ArgIt) { |
| delete I->first; // Delete the typeholder... |
| |
| if (setValueName(ArgIt, I->second)) // Insert arg into symtab... |
| assert(0 && "No arg redef allowed!"); |
| |
| InsertValue(ArgIt); |
| } |
| |
| delete $4; // We're now done with the argument list |
| } |
| }; |
| |
| BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function |
| |
| FunctionHeader : OptLinkage FunctionHeaderH BEGIN { |
| $$ = CurMeth.CurrentFunction; |
| |
| // Make sure that we keep track of the linkage type even if there was a |
| // previous "declare". |
| $$->setLinkage($1); |
| |
| // Resolve circular types before we parse the body of the function. |
| ResolveTypes(CurMeth.LateResolveTypes); |
| }; |
| |
| END : ENDTOK | '}'; // Allow end of '}' to end a function |
| |
| Function : BasicBlockList END { |
| $$ = $1; |
| }; |
| |
| FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH { |
| $$ = CurMeth.CurrentFunction; |
| assert($$->getParent() == 0 && "Function already in module!"); |
| CurModule.CurrentModule->getFunctionList().push_back($$); |
| CurMeth.FunctionDone(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Basic Blocks |
| //===----------------------------------------------------------------------===// |
| |
| ConstValueRef : ESINT64VAL { // A reference to a direct constant |
| $$ = ValID::create($1); |
| } |
| | EUINT64VAL { |
| $$ = ValID::create($1); |
| } |
| | FPVAL { // Perhaps it's an FP constant? |
| $$ = ValID::create($1); |
| } |
| | TRUE { |
| $$ = ValID::create(ConstantBool::True); |
| } |
| | FALSE { |
| $$ = ValID::create(ConstantBool::False); |
| } |
| | NULL_TOK { |
| $$ = ValID::createNull(); |
| } |
| | ConstExpr { |
| $$ = ValID::create($1); |
| }; |
| |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to |
| // another value. |
| // |
| SymbolicValueRef : INTVAL { // Is it an integer reference...? |
| $$ = ValID::create($1); |
| } |
| | Name { // Is it a named reference...? |
| $$ = ValID::create($1); |
| }; |
| |
| // ValueRef - A reference to a definition... either constant or symbolic |
| ValueRef : SymbolicValueRef | ConstValueRef; |
| |
| |
| // ResolvedVal - a <type> <value> pair. This is used only in cases where the |
| // type immediately preceeds the value reference, and allows complex constant |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') |
| ResolvedVal : Types ValueRef { |
| $$ = getVal(*$1, $2); delete $1; |
| }; |
| |
| BasicBlockList : BasicBlockList BasicBlock { |
| ($$ = $1)->getBasicBlockList().push_back($2); |
| } |
| | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks |
| ($$ = $1)->getBasicBlockList().push_back($2); |
| }; |
| |
| |
| // Basic blocks are terminated by branching instructions: |
| // br, br/cc, switch, ret |
| // |
| BasicBlock : InstructionList OptAssign BBTerminatorInst { |
| if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); } |
| InsertValue($3); |
| |
| $1->getInstList().push_back($3); |
| InsertValue($1); |
| $$ = $1; |
| } |
| | LABELSTR InstructionList OptAssign BBTerminatorInst { |
| if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); } |
| InsertValue($4); |
| |
| $2->getInstList().push_back($4); |
| if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); } |
| |
| InsertValue($2); |
| $$ = $2; |
| }; |
| |
| InstructionList : InstructionList Inst { |
| $1->getInstList().push_back($2); |
| $$ = $1; |
| } |
| | /* empty */ { |
| $$ = new BasicBlock(); |
| }; |
| |
| BBTerminatorInst : RET ResolvedVal { // Return with a result... |
| $$ = new ReturnInst($2); |
| } |
| | RET VOID { // Return with no result... |
| $$ = new ReturnInst(); |
| } |
| | BR LABEL ValueRef { // Unconditional Branch... |
| $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3))); |
| } // Conditional Branch... |
| | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { |
| $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)), |
| cast<BasicBlock>(getVal(Type::LabelTy, $9)), |
| getVal(Type::BoolTy, $3)); |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { |
| SwitchInst *S = new SwitchInst(getVal($2, $3), |
| cast<BasicBlock>(getVal(Type::LabelTy, $6))); |
| $$ = S; |
| |
| std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(), |
| E = $8->end(); |
| for (; I != E; ++I) |
| S->addCase(I->first, I->second); |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { |
| SwitchInst *S = new SwitchInst(getVal($2, $3), |
| cast<BasicBlock>(getVal(Type::LabelTy, $6))); |
| $$ = S; |
| } |
| | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal |
| EXCEPT ResolvedVal { |
| const PointerType *PFTy; |
| const FunctionType *Ty; |
| |
| if (!(PFTy = dyn_cast<PointerType>($2->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| if ($5) { |
| for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end(); |
| I != E; ++I) |
| ParamTypes.push_back((*I)->getType()); |
| } |
| |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| |
| Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); |
| PFTy = PointerType::get(Ty); |
| } |
| delete $2; |
| |
| Value *V = getVal(PFTy, $3); // Get the function we're calling... |
| |
| BasicBlock *Normal = dyn_cast<BasicBlock>($8); |
| BasicBlock *Except = dyn_cast<BasicBlock>($10); |
| |
| if (Normal == 0 || Except == 0) |
| ThrowException("Invoke instruction without label destinations!"); |
| |
| // Create the call node... |
| if (!$5) { // Has no arguments? |
| $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>()); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); |
| FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); |
| std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end(); |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) |
| if ((*ArgI)->getType() != *I) |
| ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'!"); |
| |
| if (I != E || (ArgI != ArgE && !Ty->isVarArg())) |
| ThrowException("Invalid number of parameters detected!"); |
| |
| $$ = new InvokeInst(V, Normal, Except, *$5); |
| } |
| delete $5; |
| } |
| | UNWIND { |
| $$ = new UnwindInst(); |
| }; |
| |
| |
| |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = $1; |
| Constant *V = cast<Constant>(getValNonImprovising($2, $3)); |
| if (V == 0) |
| ThrowException("May only switch on a constant pool value!"); |
| |
| $$->push_back(std::make_pair(V, cast<BasicBlock>(getVal($5, $6)))); |
| } |
| | IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = new std::vector<std::pair<Constant*, BasicBlock*> >(); |
| Constant *V = cast<Constant>(getValNonImprovising($1, $2)); |
| |
| if (V == 0) |
| ThrowException("May only switch on a constant pool value!"); |
| |
| $$->push_back(std::make_pair(V, cast<BasicBlock>(getVal($4, $5)))); |
| }; |
| |
| Inst : OptAssign InstVal { |
| // Is this definition named?? if so, assign the name... |
| if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); } |
| InsertValue($2); |
| $$ = $2; |
| }; |
| |
| PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes |
| $$ = new std::list<std::pair<Value*, BasicBlock*> >(); |
| $$->push_back(std::make_pair(getVal(*$1, $3), |
| cast<BasicBlock>(getVal(Type::LabelTy, $5)))); |
| delete $1; |
| } |
| | PHIList ',' '[' ValueRef ',' ValueRef ']' { |
| $$ = $1; |
| $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4), |
| cast<BasicBlock>(getVal(Type::LabelTy, $6)))); |
| }; |
| |
| |
| ValueRefList : ResolvedVal { // Used for call statements, and memory insts... |
| $$ = new std::vector<Value*>(); |
| $$->push_back($1); |
| } |
| | ValueRefList ',' ResolvedVal { |
| $$ = $1; |
| $1->push_back($3); |
| }; |
| |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty! |
| ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }; |
| |
| InstVal : ArithmeticOps Types ValueRef ',' ValueRef { |
| if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint()) |
| ThrowException("Arithmetic operator requires integer or FP operands!"); |
| $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | LogicalOps Types ValueRef ',' ValueRef { |
| if (!(*$2)->isIntegral()) |
| ThrowException("Logical operator requires integral operands!"); |
| $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | SetCondOps Types ValueRef ',' ValueRef { |
| $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | NOT ResolvedVal { |
| std::cerr << "WARNING: Use of eliminated 'not' instruction:" |
| << " Replacing with 'xor'.\n"; |
| |
| Value *Ones = ConstantIntegral::getAllOnesValue($2->getType()); |
| if (Ones == 0) |
| ThrowException("Expected integral type for not instruction!"); |
| |
| $$ = BinaryOperator::create(Instruction::Xor, $2, Ones); |
| if ($$ == 0) |
| ThrowException("Could not create a xor instruction!"); |
| } |
| | ShiftOps ResolvedVal ',' ResolvedVal { |
| if ($4->getType() != Type::UByteTy) |
| ThrowException("Shift amount must be ubyte!"); |
| $$ = new ShiftInst($1, $2, $4); |
| } |
| | CAST ResolvedVal TO Types { |
| if (!$4->get()->isFirstClassType()) |
| ThrowException("cast instruction to a non-primitive type: '" + |
| $4->get()->getDescription() + "'!"); |
| $$ = new CastInst($2, *$4); |
| delete $4; |
| } |
| | VA_ARG ResolvedVal ',' Types { |
| $$ = new VarArgInst($2, *$4); |
| delete $4; |
| } |
| | PHI PHIList { |
| const Type *Ty = $2->front().first->getType(); |
| $$ = new PHINode(Ty); |
| $$->op_reserve($2->size()*2); |
| while ($2->begin() != $2->end()) { |
| if ($2->front().first->getType() != Ty) |
| ThrowException("All elements of a PHI node must be of the same type!"); |
| cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second); |
| $2->pop_front(); |
| } |
| delete $2; // Free the list... |
| } |
| | CALL TypesV ValueRef '(' ValueRefListE ')' { |
| const PointerType *PFTy; |
| const FunctionType *Ty; |
| |
| if (!(PFTy = dyn_cast<PointerType>($2->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| if ($5) { |
| for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end(); |
| I != E; ++I) |
| ParamTypes.push_back((*I)->getType()); |
| } |
| |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| |
| Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); |
| PFTy = PointerType::get(Ty); |
| } |
| delete $2; |
| |
| Value *V = getVal(PFTy, $3); // Get the function we're calling... |
| |
| // Create the call node... |
| if (!$5) { // Has no arguments? |
| // Make sure no arguments is a good thing! |
| if (Ty->getNumParams() != 0) |
| ThrowException("No arguments passed to a function that " |
| "expects arguments!"); |
| |
| $$ = new CallInst(V, std::vector<Value*>()); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); |
| FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); |
| std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end(); |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) |
| if ((*ArgI)->getType() != *I) |
| ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'!"); |
| |
| if (I != E || (ArgI != ArgE && !Ty->isVarArg())) |
| ThrowException("Invalid number of parameters detected!"); |
| |
| $$ = new CallInst(V, *$5); |
| } |
| delete $5; |
| } |
| | MemoryInst { |
| $$ = $1; |
| }; |
| |
| |
| // IndexList - List of indices for GEP based instructions... |
| IndexList : ',' ValueRefList { |
| $$ = $2; |
| } | /* empty */ { |
| $$ = new std::vector<Value*>(); |
| }; |
| |
| OptVolatile : VOLATILE { |
| $$ = true; |
| } |
| | /* empty */ { |
| $$ = false; |
| }; |
| |
| |
| MemoryInst : MALLOC Types { |
| $$ = new MallocInst(*$2); |
| delete $2; |
| } |
| | MALLOC Types ',' UINT ValueRef { |
| $$ = new MallocInst(*$2, getVal($4, $5)); |
| delete $2; |
| } |
| | ALLOCA Types { |
| $$ = new AllocaInst(*$2); |
| delete $2; |
| } |
| | ALLOCA Types ',' UINT ValueRef { |
| $$ = new AllocaInst(*$2, getVal($4, $5)); |
| delete $2; |
| } |
| | FREE ResolvedVal { |
| if (!isa<PointerType>($2->getType())) |
| ThrowException("Trying to free nonpointer type " + |
| $2->getType()->getDescription() + "!"); |
| $$ = new FreeInst($2); |
| } |
| |
| | OptVolatile LOAD Types ValueRef { |
| if (!isa<PointerType>($3->get())) |
| ThrowException("Can't load from nonpointer type: " + |
| (*$3)->getDescription()); |
| $$ = new LoadInst(getVal(*$3, $4), "", $1); |
| delete $3; |
| } |
| | OptVolatile STORE ResolvedVal ',' Types ValueRef { |
| const PointerType *PT = dyn_cast<PointerType>($5->get()); |
| if (!PT) |
| ThrowException("Can't store to a nonpointer type: " + |
| (*$5)->getDescription()); |
| const Type *ElTy = PT->getElementType(); |
| if (ElTy != $3->getType()) |
| ThrowException("Can't store '" + $3->getType()->getDescription() + |
| "' into space of type '" + ElTy->getDescription() + "'!"); |
| |
| $$ = new StoreInst($3, getVal(*$5, $6), $1); |
| delete $5; |
| } |
| | GETELEMENTPTR Types ValueRef IndexList { |
| if (!isa<PointerType>($2->get())) |
| ThrowException("getelementptr insn requires pointer operand!"); |
| if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) |
| ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!"); |
| $$ = new GetElementPtrInst(getVal(*$2, $3), *$4); |
| delete $2; delete $4; |
| }; |
| |
| %% |
| int yyerror(const char *ErrorMsg) { |
| std::string where |
| = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename) |
| + ":" + utostr((unsigned) llvmAsmlineno) + ": "; |
| std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading "; |
| if (yychar == YYEMPTY) |
| errMsg += "end-of-file."; |
| else |
| errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'"; |
| ThrowException(errMsg); |
| return 0; |
| } |