| // $Id$ |
| //*************************************************************************** |
| // File: |
| // Sparc.cpp |
| // |
| // Purpose: |
| // |
| // History: |
| // 7/15/01 - Vikram Adve - Created |
| //**************************************************************************/ |
| |
| |
| #include "SparcInternals.h" |
| #include "llvm/Target/Sparc.h" |
| #include "llvm/CodeGen/InstrScheduling.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/CodeGen/PhyRegAlloc.h" |
| #include "llvm/Method.h" |
| #include "llvm/PassManager.h" |
| #include <iostream> |
| using std::cerr; |
| |
| // Build the MachineInstruction Description Array... |
| const MachineInstrDescriptor SparcMachineInstrDesc[] = { |
| #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ |
| NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ |
| { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ |
| NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS }, |
| #include "SparcInstr.def" |
| }; |
| |
| //---------------------------------------------------------------------------- |
| // allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine |
| // that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface) |
| //---------------------------------------------------------------------------- |
| // |
| |
| TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Entry point for register allocation for a module |
| //---------------------------------------------------------------------------- |
| |
| class RegisterAllocation : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline RegisterAllocation(TargetMachine &T) : Target(T) {} |
| bool runOnMethod(Method *M) { |
| if (DEBUG_RA) |
| cerr << "\n******************** Method "<< M->getName() |
| << " ********************\n"; |
| |
| MethodLiveVarInfo LVI(M ); // Analyze live varaibles |
| LVI.analyze(); |
| |
| PhyRegAlloc PRA(M, Target, &LVI); // allocate registers |
| PRA.allocateRegisters(); |
| |
| if (DEBUG_RA) cerr << "\nRegister allocation complete!\n"; |
| return false; |
| } |
| }; |
| |
| static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR]; |
| |
| //--------------------------------------------------------------------------- |
| // class InsertPrologEpilogCode |
| // |
| // Insert SAVE/RESTORE instructions for the method |
| // |
| // Insert prolog code at the unique method entry point. |
| // Insert epilog code at each method exit point. |
| // InsertPrologEpilog invokes these only if the method is not compiled |
| // with the leaf method optimization. |
| // |
| //--------------------------------------------------------------------------- |
| |
| class InsertPrologEpilogCode : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline InsertPrologEpilogCode(TargetMachine &T) : Target(T) {} |
| bool runOnMethod(Method *M) { |
| MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(M); |
| if (!mcodeInfo.isCompiledAsLeafMethod()) { |
| InsertPrologCode(M); |
| InsertEpilogCode(M); |
| } |
| return false; |
| } |
| |
| void InsertPrologCode(Method *M); |
| void InsertEpilogCode(Method *M); |
| }; |
| |
| void InsertPrologEpilogCode::InsertPrologCode(Method* method) |
| { |
| BasicBlock* entryBB = method->getEntryNode(); |
| unsigned N = GetInstructionsForProlog(entryBB, Target, minstrVec); |
| assert(N <= MAX_INSTR_PER_VMINSTR); |
| MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec(); |
| bbMvec.insert(bbMvec.begin(), minstrVec, minstrVec+N); |
| } |
| |
| |
| void InsertPrologEpilogCode::InsertEpilogCode(Method* method) |
| { |
| for (Method::iterator I=method->begin(), E=method->end(); I != E; ++I) |
| if ((*I)->getTerminator()->getOpcode() == Instruction::Ret) |
| { |
| BasicBlock* exitBB = *I; |
| unsigned N = GetInstructionsForEpilog(exitBB, Target, minstrVec); |
| |
| MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec(); |
| MachineCodeForInstruction &termMvec = |
| MachineCodeForInstruction::get(exitBB->getTerminator()); |
| |
| // Remove the NOPs in the delay slots of the return instruction |
| const MachineInstrInfo &mii = Target.getInstrInfo(); |
| unsigned numNOPs = 0; |
| while (termMvec.back()->getOpCode() == NOP) |
| { |
| assert( termMvec.back() == bbMvec.back()); |
| termMvec.pop_back(); |
| bbMvec.pop_back(); |
| ++numNOPs; |
| } |
| assert(termMvec.back() == bbMvec.back()); |
| |
| // Check that we found the right number of NOPs and have the right |
| // number of instructions to replace them. |
| unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode()); |
| assert(numNOPs == ndelays && "Missing NOPs in delay slots?"); |
| assert(N == ndelays && "Cannot use epilog code for delay slots?"); |
| |
| // Append the epilog code to the end of the basic block. |
| bbMvec.push_back(minstrVec[0]); |
| } |
| } |
| |
| |
| /*--------------------------------------------------------------------------- |
| Scheduling guidelines for SPARC IIi: |
| |
| I-Cache alignment rules (pg 326) |
| -- Align a branch target instruction so that it's entire group is within |
| the same cache line (may be 1-4 instructions). |
| ** Don't let a branch that is predicted taken be the last instruction |
| on an I-cache line: delay slot will need an entire line to be fetched |
| -- Make a FP instruction or a branch be the 4th instruction in a group. |
| For branches, there are tradeoffs in reordering to make this happen |
| (see pg. 327). |
| ** Don't put a branch in a group that crosses a 32-byte boundary! |
| An artificial branch is inserted after every 32 bytes, and having |
| another branch will force the group to be broken into 2 groups. |
| |
| iTLB rules: |
| -- Don't let a loop span two memory pages, if possible |
| |
| Branch prediction performance: |
| -- Don't make the branch in a delay slot the target of a branch |
| -- Try not to have 2 predicted branches within a group of 4 instructions |
| (because each such group has a single branch target field). |
| -- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid |
| the wrong prediction bits being used in some cases). |
| |
| D-Cache timing constraints: |
| -- Signed int loads of less than 64 bits have 3 cycle latency, not 2 |
| -- All other loads that hit in D-Cache have 2 cycle latency |
| -- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit |
| -- Mis-aligned loads or stores cause a trap. In particular, replace |
| mis-aligned FP double precision l/s with 2 single-precision l/s. |
| -- Simulations of integer codes show increase in avg. group size of |
| 33% when code (including esp. non-faulting loads) is moved across |
| one branch, and 50% across 2 branches. |
| |
| E-Cache timing constraints: |
| -- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering) |
| |
| Store buffer timing constraints: |
| -- Stores can be executed in same cycle as instruction producing the value |
| -- Stores are buffered and have lower priority for E-cache until |
| highwater mark is reached in the store buffer (5 stores) |
| |
| Pipeline constraints: |
| -- Shifts can only use IEU0. |
| -- CC setting instructions can only use IEU1. |
| -- Several other instructions must only use IEU1: |
| EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP. |
| -- Two instructions cannot store to the same register file in a single cycle |
| (single write port per file). |
| |
| Issue and grouping constraints: |
| -- FP and branch instructions must use slot 4. |
| -- Shift instructions cannot be grouped with other IEU0-specific instructions. |
| -- CC setting instructions cannot be grouped with other IEU1-specific instrs. |
| -- Several instructions must be issued in a single-instruction group: |
| MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others |
| -- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs. |
| -- |
| -- |
| |
| Branch delay slot scheduling rules: |
| -- A CTI couple (two back-to-back CTI instructions in the dynamic stream) |
| has a 9-instruction penalty: the entire pipeline is flushed when the |
| second instruction reaches stage 9 (W-Writeback). |
| -- Avoid putting multicycle instructions, and instructions that may cause |
| load misses, in the delay slot of an annulling branch. |
| -- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the |
| delay slot of an annulling branch. |
| |
| *--------------------------------------------------------------------------- */ |
| |
| //--------------------------------------------------------------------------- |
| // List of CPUResources for UltraSPARC IIi. |
| //--------------------------------------------------------------------------- |
| |
| static const CPUResource AllIssueSlots( "All Instr Slots", 4); |
| static const CPUResource IntIssueSlots( "Int Instr Slots", 3); |
| static const CPUResource First3IssueSlots("Instr Slots 0-3", 3); |
| static const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1); |
| static const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1); |
| static const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1); |
| static const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1); |
| |
| // IEUN instructions can use either Alu and should use IAluN. |
| // IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0. |
| // IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1. |
| static const CPUResource IAluN("Int ALU 1or2", 2); |
| static const CPUResource IAlu0("Int ALU 1", 1); |
| static const CPUResource IAlu1("Int ALU 2", 1); |
| |
| static const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1); |
| static const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1); |
| static const CPUResource LdReturn("Load Return Unit", 1); |
| |
| static const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1); |
| static const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1); |
| static const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1); |
| |
| static const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1); |
| static const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1); |
| static const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1); |
| |
| static const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK |
| static const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK |
| static const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX);// CHECK |
| static const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK |
| |
| static const CPUResource CTIDelayCycle( "CTI delay cycle", 1); |
| static const CPUResource FCMPDelayCycle("FCMP delay cycle", 1); |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrClassRUsage SparcRUsageDesc[] |
| // |
| // Purpose: |
| // Resource usage information for instruction in each scheduling class. |
| // The InstrRUsage Objects for individual classes are specified first. |
| // Note that fetch and decode are decoupled from the execution pipelines |
| // via an instr buffer, so they are not included in the cycles below. |
| //--------------------------------------------------------------------------- |
| |
| static const InstrClassRUsage NoneClassRUsage = { |
| SPARC_NONE, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 4, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 0, |
| /* V[] */ { |
| /*Cycle G */ |
| /*Ccle E */ |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| static const InstrClassRUsage IEUNClassRUsage = { |
| SPARC_IEUN, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 3, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage IEU0ClassRUsage = { |
| SPARC_IEU0, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| { IAlu0.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage IEU1ClassRUsage = { |
| SPARC_IEU1, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { IntIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAluN.rid, 1, 1 }, |
| { IAlu1.rid, 1, 1 }, |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage FPMClassRUsage = { |
| SPARC_FPM, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 7, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { FPMIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, |
| /*Cycle C */ { FPMAluC1.rid, 2, 1 }, |
| /*Cycle N1*/ { FPMAluC2.rid, 3, 1 }, |
| /*Cycle N1*/ { FPMAluC3.rid, 4, 1 }, |
| /*Cycle N1*/ |
| /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage FPAClassRUsage = { |
| SPARC_FPA, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 7, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { FPAIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, |
| /*Cycle C */ { FPAAluC1.rid, 2, 1 }, |
| /*Cycle N1*/ { FPAAluC2.rid, 3, 1 }, |
| /*Cycle N1*/ { FPAAluC3.rid, 4, 1 }, |
| /*Cycle N1*/ |
| /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage LDClassRUsage = { |
| SPARC_LD, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2, }, |
| |
| /*numEntries*/ 6, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { First3IssueSlots.rid, 0, 1 }, |
| { LSIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { LSAluC1.rid, 1, 1 }, |
| /*Cycle C */ { LSAluC2.rid, 2, 1 }, |
| { LdReturn.rid, 2, 1 }, |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ { IRegWritePorts.rid, 6, 1 } |
| } |
| }; |
| |
| static const InstrClassRUsage STClassRUsage = { |
| SPARC_ST, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 3, |
| /* feasibleSlots[] */ { 0, 1, 2 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { First3IssueSlots.rid, 0, 1 }, |
| { LSIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { LSAluC1.rid, 1, 1 }, |
| /*Cycle C */ { LSAluC2.rid, 2, 1 } |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| static const InstrClassRUsage CTIClassRUsage = { |
| SPARC_CTI, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ false, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 4, |
| /* feasibleSlots[] */ { 0, 1, 2, 3 }, |
| |
| /*numEntries*/ 4, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { CTIIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAlu0.rid, 1, 1 }, |
| /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 } |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| static const InstrClassRUsage SingleClassRUsage = { |
| SPARC_SINGLE, |
| /*totCycles*/ 7, |
| |
| /* maxIssueNum */ 1, |
| /* isSingleIssue */ true, |
| /* breaksGroup */ false, |
| /* numBubbles */ 0, |
| |
| /*numSlots*/ 1, |
| /* feasibleSlots[] */ { 0 }, |
| |
| /*numEntries*/ 5, |
| /* V[] */ { |
| /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| { AllIssueSlots.rid, 0, 1 }, |
| /*Cycle E */ { IAlu0.rid, 1, 1 } |
| /*Cycle C */ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle N1*/ |
| /*Cycle W */ |
| } |
| }; |
| |
| |
| static const InstrClassRUsage SparcRUsageDesc[] = { |
| NoneClassRUsage, |
| IEUNClassRUsage, |
| IEU0ClassRUsage, |
| IEU1ClassRUsage, |
| FPMClassRUsage, |
| FPAClassRUsage, |
| CTIClassRUsage, |
| LDClassRUsage, |
| STClassRUsage, |
| SingleClassRUsage |
| }; |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrIssueDelta SparcInstrIssueDeltas[] |
| // |
| // Purpose: |
| // Changes to issue restrictions information in InstrClassRUsage for |
| // instructions that differ from other instructions in their class. |
| //--------------------------------------------------------------------------- |
| |
| static const InstrIssueDelta SparcInstrIssueDeltas[] = { |
| |
| // opCode, isSingleIssue, breaksGroup, numBubbles |
| |
| // Special cases for single-issue only |
| // Other single issue cases are below. |
| //{ LDDA, true, true, 0 }, |
| //{ STDA, true, true, 0 }, |
| //{ LDDF, true, true, 0 }, |
| //{ LDDFA, true, true, 0 }, |
| { ADDC, true, true, 0 }, |
| { ADDCcc, true, true, 0 }, |
| { SUBC, true, true, 0 }, |
| { SUBCcc, true, true, 0 }, |
| //{ LDSTUB, true, true, 0 }, |
| //{ SWAP, true, true, 0 }, |
| //{ SWAPA, true, true, 0 }, |
| //{ CAS, true, true, 0 }, |
| //{ CASA, true, true, 0 }, |
| //{ CASX, true, true, 0 }, |
| //{ CASXA, true, true, 0 }, |
| //{ LDFSR, true, true, 0 }, |
| //{ LDFSRA, true, true, 0 }, |
| //{ LDXFSR, true, true, 0 }, |
| //{ LDXFSRA, true, true, 0 }, |
| //{ STFSR, true, true, 0 }, |
| //{ STFSRA, true, true, 0 }, |
| //{ STXFSR, true, true, 0 }, |
| //{ STXFSRA, true, true, 0 }, |
| //{ SAVED, true, true, 0 }, |
| //{ RESTORED, true, true, 0 }, |
| //{ FLUSH, true, true, 9 }, |
| //{ FLUSHW, true, true, 9 }, |
| //{ ALIGNADDR, true, true, 0 }, |
| { RETURN, true, true, 0 }, |
| //{ DONE, true, true, 0 }, |
| //{ RETRY, true, true, 0 }, |
| //{ TCC, true, true, 0 }, |
| //{ SHUTDOWN, true, true, 0 }, |
| |
| // Special cases for breaking group *before* |
| // CURRENTLY NOT SUPPORTED! |
| { CALL, false, false, 0 }, |
| { JMPLCALL, false, false, 0 }, |
| { JMPLRET, false, false, 0 }, |
| |
| // Special cases for breaking the group *after* |
| { MULX, true, true, (4+34)/2 }, |
| { FDIVS, false, true, 0 }, |
| { FDIVD, false, true, 0 }, |
| { FDIVQ, false, true, 0 }, |
| { FSQRTS, false, true, 0 }, |
| { FSQRTD, false, true, 0 }, |
| { FSQRTQ, false, true, 0 }, |
| //{ FCMP{LE,GT,NE,EQ}, false, true, 0 }, |
| |
| // Instructions that introduce bubbles |
| //{ MULScc, true, true, 2 }, |
| //{ SMULcc, true, true, (4+18)/2 }, |
| //{ UMULcc, true, true, (4+19)/2 }, |
| { SDIVX, true, true, 68 }, |
| { UDIVX, true, true, 68 }, |
| //{ SDIVcc, true, true, 36 }, |
| //{ UDIVcc, true, true, 37 }, |
| { WRCCR, true, true, 4 }, |
| //{ WRPR, true, true, 4 }, |
| //{ RDCCR, true, true, 0 }, // no bubbles after, but see below |
| //{ RDPR, true, true, 0 }, |
| }; |
| |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // const InstrRUsageDelta SparcInstrUsageDeltas[] |
| // |
| // Purpose: |
| // Changes to resource usage information in InstrClassRUsage for |
| // instructions that differ from other instructions in their class. |
| //--------------------------------------------------------------------------- |
| |
| static const InstrRUsageDelta SparcInstrUsageDeltas[] = { |
| |
| // MachineOpCode, Resource, Start cycle, Num cycles |
| |
| // |
| // JMPL counts as a load/store instruction for issue! |
| // |
| { JMPLCALL, LSIssueSlots.rid, 0, 1 }, |
| { JMPLRET, LSIssueSlots.rid, 0, 1 }, |
| |
| // |
| // Many instructions cannot issue for the next 2 cycles after an FCMP |
| // We model that with a fake resource FCMPDelayCycle. |
| // |
| { FCMPS, FCMPDelayCycle.rid, 1, 3 }, |
| { FCMPD, FCMPDelayCycle.rid, 1, 3 }, |
| { FCMPQ, FCMPDelayCycle.rid, 1, 3 }, |
| |
| { MULX, FCMPDelayCycle.rid, 1, 1 }, |
| { SDIVX, FCMPDelayCycle.rid, 1, 1 }, |
| { UDIVX, FCMPDelayCycle.rid, 1, 1 }, |
| //{ SMULcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ UMULcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ SDIVcc, FCMPDelayCycle.rid, 1, 1 }, |
| //{ UDIVcc, FCMPDelayCycle.rid, 1, 1 }, |
| { STD, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 }, |
| { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 }, |
| |
| // |
| // Some instructions are stalled in the GROUP stage if a CTI is in |
| // the E or C stage. We model that with a fake resource CTIDelayCycle. |
| // |
| { LDD, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDA, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDSTUB, CTIDelayCycle.rid, 1, 1 }, |
| //{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 }, |
| //{ SWAP, CTIDelayCycle.rid, 1, 1 }, |
| //{ SWAPA, CTIDelayCycle.rid, 1, 1 }, |
| //{ CAS, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASA, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASX, CTIDelayCycle.rid, 1, 1 }, |
| //{ CASXA, CTIDelayCycle.rid, 1, 1 }, |
| |
| // |
| // Signed int loads of less than dword size return data in cycle N1 (not C) |
| // and put all loads in consecutive cycles into delayed load return mode. |
| // |
| { LDSB, LdReturn.rid, 2, -1 }, |
| { LDSB, LdReturn.rid, 3, 1 }, |
| |
| { LDSH, LdReturn.rid, 2, -1 }, |
| { LDSH, LdReturn.rid, 3, 1 }, |
| |
| { LDSW, LdReturn.rid, 2, -1 }, |
| { LDSW, LdReturn.rid, 3, 1 }, |
| |
| // |
| // RDPR from certain registers and RD from any register are not dispatchable |
| // until four clocks after they reach the head of the instr. buffer. |
| // Together with their single-issue requirement, this means all four issue |
| // slots are effectively blocked for those cycles, plus the issue cycle. |
| // This does not increase the latency of the instruction itself. |
| // |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| { RDCCR, AllIssueSlots.rid, 0, 5 }, |
| |
| #undef EXPLICIT_BUBBLES_NEEDED |
| #ifdef EXPLICIT_BUBBLES_NEEDED |
| // |
| // MULScc inserts one bubble. |
| // This means it breaks the current group (captured in UltraSparcSchedInfo) |
| // *and occupies all issue slots for the next cycle |
| // |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, |
| |
| // |
| // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1. |
| // We just model this with a simple average. |
| // |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, |
| |
| // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1. |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, |
| |
| // |
| // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1. |
| // |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, |
| |
| // |
| // SDIVcc inserts 36 bubbles. |
| // |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, |
| |
| // UDIVcc inserts 37 bubbles. |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, |
| |
| // |
| // SDIVX inserts 68 bubbles. |
| // |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { SDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // UDIVX inserts 68 bubbles. |
| // |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| { UDIVX, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // WR inserts 4 bubbles. |
| // |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WR, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // WRPR inserts 4 bubbles. |
| // |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, |
| |
| // |
| // DONE inserts 9 bubbles. |
| // |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| //{ DONE, AllIssueSlots.rid, 2, 9-1 }, |
| |
| // |
| // RETRY inserts 9 bubbles. |
| // |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, |
| |
| #endif /*EXPLICIT_BUBBLES_NEEDED */ |
| }; |
| |
| // Additional delays to be captured in code: |
| // 1. RDPR from several state registers (page 349) |
| // 2. RD from *any* register (page 349) |
| // 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349) |
| // 4. Integer store can be in same group as instr producing value to store. |
| // 5. BICC and BPICC can be in the same group as instr producing CC (pg 350) |
| // 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351). |
| // 7. The second instr. of a CTI group inserts 9 bubbles (pg 351) |
| // 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that |
| // follow an annulling branch cannot be issued in the same group or in |
| // the 3 groups following the branch. |
| // 9. A predicted annulled load does not stall dependent instructions. |
| // Other annulled delay slot instructions *do* stall dependents, so |
| // nothing special needs to be done for them during scheduling. |
| //10. Do not put a load use that may be annulled in the same group as the |
| // branch. The group will stall until the load returns. |
| //11. Single-prec. FP loads lock 2 registers, for dependency checking. |
| // |
| // |
| // Additional delays we cannot or will not capture: |
| // 1. If DCTI is last word of cache line, it is delayed until next line can be |
| // fetched. Also, other DCTI alignment-related delays (pg 352) |
| // 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache. |
| // Also, several other store-load and load-store conflicts (pg 358) |
| // 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358) |
| // 4. There can be at most 8 outstanding buffered store instructions |
| // (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH) |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcSchedInfo |
| // |
| // Purpose: |
| // Scheduling information for the UltraSPARC. |
| // Primarily just initializes machine-dependent parameters in |
| // class MachineSchedInfo. |
| //--------------------------------------------------------------------------- |
| |
| /*ctor*/ |
| UltraSparcSchedInfo::UltraSparcSchedInfo(const TargetMachine& tgt) |
| : MachineSchedInfo(tgt, |
| (unsigned int) SPARC_NUM_SCHED_CLASSES, |
| SparcRUsageDesc, |
| SparcInstrUsageDeltas, |
| SparcInstrIssueDeltas, |
| sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta), |
| sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta)) |
| { |
| maxNumIssueTotal = 4; |
| longestIssueConflict = 0; // computed from issuesGaps[] |
| |
| branchMispredictPenalty = 4; // 4 for SPARC IIi |
| branchTargetUnknownPenalty = 2; // 2 for SPARC IIi |
| l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi |
| l1ICacheMissPenalty = 8; // ? for SPARC IIi |
| |
| inOrderLoads = true; // true for SPARC IIi |
| inOrderIssue = true; // true for SPARC IIi |
| inOrderExec = false; // false for most architectures |
| inOrderRetire= true; // true for most architectures |
| |
| // must be called after above parameters are initialized. |
| this->initializeResources(); |
| } |
| |
| void |
| UltraSparcSchedInfo::initializeResources() |
| { |
| // Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps |
| MachineSchedInfo::initializeResources(); |
| |
| // Machine-dependent fixups go here. None for now. |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcFrameInfo |
| // |
| // Purpose: |
| // Interface to stack frame layout info for the UltraSPARC. |
| // Starting offsets for each area of the stack frame are aligned at |
| // a multiple of getStackFrameSizeAlignment(). |
| //--------------------------------------------------------------------------- |
| |
| int |
| UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& , |
| bool& pos) const |
| { |
| pos = false; // static stack area grows downwards |
| return StaticAreaOffsetFromFP; |
| } |
| |
| int |
| UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo, |
| bool& pos) const |
| { |
| pos = false; // static stack area grows downwards |
| unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); |
| if (int mod = autoVarsSize % getStackFrameSizeAlignment()) |
| autoVarsSize += (getStackFrameSizeAlignment() - mod); |
| return StaticAreaOffsetFromFP - autoVarsSize; |
| } |
| |
| int |
| UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo, |
| bool& pos) const |
| { |
| pos = false; // static stack area grows downwards |
| unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); |
| unsigned int spillAreaSize = mcInfo.getRegSpillsSize(); |
| int offset = autoVarsSize + spillAreaSize; |
| if (int mod = offset % getStackFrameSizeAlignment()) |
| offset += (getStackFrameSizeAlignment() - mod); |
| return StaticAreaOffsetFromFP - offset; |
| } |
| |
| int |
| UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo, |
| bool& pos) const |
| { |
| // dynamic stack area grows downwards starting at top of opt-args area |
| unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize(); |
| int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP; |
| assert(offset % getStackFrameSizeAlignment() == 0); |
| return offset; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class UltraSparcMachine |
| // |
| // Purpose: |
| // Primary interface to machine description for the UltraSPARC. |
| // Primarily just initializes machine-dependent parameters in |
| // class TargetMachine, and creates machine-dependent subclasses |
| // for classes such as MachineInstrInfo. |
| // |
| //--------------------------------------------------------------------------- |
| |
| UltraSparc::UltraSparc() |
| : TargetMachine("UltraSparc-Native"), |
| instrInfo(*this), |
| schedInfo(*this), |
| regInfo(*this), |
| frameInfo(*this), |
| cacheInfo(*this) |
| { |
| optSizeForSubWordData = 4; |
| minMemOpWordSize = 8; |
| maxAtomicMemOpWordSize = 8; |
| } |
| |
| |
| |
| //===---------------------------------------------------------------------===// |
| // GenerateCodeForTarget Pass |
| // |
| // Native code generation for a specified target. |
| //===---------------------------------------------------------------------===// |
| |
| class ConstructMachineCodeForMethod : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline ConstructMachineCodeForMethod(TargetMachine &T) : Target(T) {} |
| bool runOnMethod(Method *M) { |
| MachineCodeForMethod::construct(M, Target); |
| return false; |
| } |
| }; |
| |
| class InstructionSelection : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline InstructionSelection(TargetMachine &T) : Target(T) {} |
| bool runOnMethod(Method *M) { |
| if (SelectInstructionsForMethod(M, Target)) |
| cerr << "Instr selection failed for method " << M->getName() << "\n"; |
| return false; |
| } |
| }; |
| |
| class InstructionScheduling : public MethodPass { |
| TargetMachine &Target; |
| public: |
| inline InstructionScheduling(TargetMachine &T) : Target(T) {} |
| bool runOnMethod(Method *M) { |
| if (ScheduleInstructionsWithSSA(M, Target)) |
| cerr << "Instr scheduling failed for method " << M->getName() << "\n\n"; |
| return false; |
| } |
| }; |
| |
| struct FreeMachineCodeForMethod : public MethodPass { |
| static void freeMachineCode(Instruction *I) { |
| MachineCodeForInstruction::destroy(I); |
| } |
| |
| bool runOnMethod(Method *M) { |
| for_each(M->inst_begin(), M->inst_end(), freeMachineCode); |
| // Don't destruct MachineCodeForMethod - The global printer needs it |
| //MachineCodeForMethod::destruct(M); |
| return false; |
| } |
| }; |
| |
| |
| void UltraSparc::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { |
| // Construct and initialize the MachineCodeForMethod object for this method. |
| PM.add(new ConstructMachineCodeForMethod(*this)); |
| |
| PM.add(new InstructionSelection(*this)); |
| |
| //PM.add(new InstructionScheduling(*this)); |
| |
| PM.add(new RegisterAllocation(*this)); |
| |
| //PM.add(new OptimizeLeafProcedures()); |
| //PM.add(new DeleteFallThroughBranches()); |
| //PM.add(new RemoveChainedBranches()); // should be folded with previous |
| //PM.add(new RemoveRedundantOps()); // operations with %g0, NOP, etc. |
| |
| PM.add(new InsertPrologEpilogCode(*this)); |
| |
| // Output assembly language to the .s file. Assembly emission is split into |
| // two parts: Method output and Global value output. This is because method |
| // output is pipelined with all of the rest of code generation stuff, |
| // allowing machine code representations for methods to be free'd after the |
| // method has been emitted. |
| // |
| PM.add(getMethodAsmPrinterPass(PM, Out)); |
| PM.add(new FreeMachineCodeForMethod()); // Free stuff no longer needed |
| |
| // Emit Module level assembly after all of the methods have been processed. |
| PM.add(getModuleAsmPrinterPass(PM, Out)); |
| } |