| //===- Reader.cpp - Code to read bytecode files ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements the functionality defined in llvm/Bytecode/Reader.h |
| // |
| // Note that this library should be as fast as possible, reentrant, and |
| // threadsafe!! |
| // |
| // TODO: Allow passing in an option to ignore the symbol table |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Reader.h" |
| #include "llvm/Assembly/AutoUpgrade.h" |
| #include "llvm/Bytecode/BytecodeHandler.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Bytecode/Format.h" |
| #include "llvm/Config/alloca.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/Compressor.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <sstream> |
| #include <algorithm> |
| using namespace llvm; |
| |
| namespace { |
| /// @brief A class for maintaining the slot number definition |
| /// as a placeholder for the actual definition for forward constants defs. |
| class ConstantPlaceHolder : public ConstantExpr { |
| ConstantPlaceHolder(); // DO NOT IMPLEMENT |
| void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT |
| public: |
| Use Op; |
| ConstantPlaceHolder(const Type *Ty) |
| : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1), |
| Op(UndefValue::get(Type::IntTy), this) { |
| } |
| }; |
| } |
| |
| // Provide some details on error |
| inline void BytecodeReader::error(const std::string& err) { |
| ErrorMsg = err + " (Vers=" + itostr(RevisionNum) + ", Pos=" |
| + itostr(At-MemStart) + ")"; |
| longjmp(context,1); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bytecode Reading Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// Determine if the current block being read contains any more data. |
| inline bool BytecodeReader::moreInBlock() { |
| return At < BlockEnd; |
| } |
| |
| /// Throw an error if we've read past the end of the current block |
| inline void BytecodeReader::checkPastBlockEnd(const char * block_name) { |
| if (At > BlockEnd) |
| error(std::string("Attempt to read past the end of ") + block_name + |
| " block."); |
| } |
| |
| /// Align the buffer position to a 32 bit boundary |
| inline void BytecodeReader::align32() { |
| if (hasAlignment) { |
| BufPtr Save = At; |
| At = (const unsigned char *)((intptr_t)(At+3) & (~3UL)); |
| if (At > Save) |
| if (Handler) Handler->handleAlignment(At - Save); |
| if (At > BlockEnd) |
| error("Ran out of data while aligning!"); |
| } |
| } |
| |
| /// Read a whole unsigned integer |
| inline unsigned BytecodeReader::read_uint() { |
| if (At+4 > BlockEnd) |
| error("Ran out of data reading uint!"); |
| At += 4; |
| return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24); |
| } |
| |
| /// Read a variable-bit-rate encoded unsigned integer |
| inline unsigned BytecodeReader::read_vbr_uint() { |
| unsigned Shift = 0; |
| unsigned Result = 0; |
| BufPtr Save = At; |
| |
| do { |
| if (At == BlockEnd) |
| error("Ran out of data reading vbr_uint!"); |
| Result |= (unsigned)((*At++) & 0x7F) << Shift; |
| Shift += 7; |
| } while (At[-1] & 0x80); |
| if (Handler) Handler->handleVBR32(At-Save); |
| return Result; |
| } |
| |
| /// Read a variable-bit-rate encoded unsigned 64-bit integer. |
| inline uint64_t BytecodeReader::read_vbr_uint64() { |
| unsigned Shift = 0; |
| uint64_t Result = 0; |
| BufPtr Save = At; |
| |
| do { |
| if (At == BlockEnd) |
| error("Ran out of data reading vbr_uint64!"); |
| Result |= (uint64_t)((*At++) & 0x7F) << Shift; |
| Shift += 7; |
| } while (At[-1] & 0x80); |
| if (Handler) Handler->handleVBR64(At-Save); |
| return Result; |
| } |
| |
| /// Read a variable-bit-rate encoded signed 64-bit integer. |
| inline int64_t BytecodeReader::read_vbr_int64() { |
| uint64_t R = read_vbr_uint64(); |
| if (R & 1) { |
| if (R != 1) |
| return -(int64_t)(R >> 1); |
| else // There is no such thing as -0 with integers. "-0" really means |
| // 0x8000000000000000. |
| return 1LL << 63; |
| } else |
| return (int64_t)(R >> 1); |
| } |
| |
| /// Read a pascal-style string (length followed by text) |
| inline std::string BytecodeReader::read_str() { |
| unsigned Size = read_vbr_uint(); |
| const unsigned char *OldAt = At; |
| At += Size; |
| if (At > BlockEnd) // Size invalid? |
| error("Ran out of data reading a string!"); |
| return std::string((char*)OldAt, Size); |
| } |
| |
| /// Read an arbitrary block of data |
| inline void BytecodeReader::read_data(void *Ptr, void *End) { |
| unsigned char *Start = (unsigned char *)Ptr; |
| unsigned Amount = (unsigned char *)End - Start; |
| if (At+Amount > BlockEnd) |
| error("Ran out of data!"); |
| std::copy(At, At+Amount, Start); |
| At += Amount; |
| } |
| |
| /// Read a float value in little-endian order |
| inline void BytecodeReader::read_float(float& FloatVal) { |
| /// FIXME: This isn't optimal, it has size problems on some platforms |
| /// where FP is not IEEE. |
| FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24)); |
| At+=sizeof(uint32_t); |
| } |
| |
| /// Read a double value in little-endian order |
| inline void BytecodeReader::read_double(double& DoubleVal) { |
| /// FIXME: This isn't optimal, it has size problems on some platforms |
| /// where FP is not IEEE. |
| DoubleVal = BitsToDouble((uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) | |
| (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) | |
| (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) | |
| (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56)); |
| At+=sizeof(uint64_t); |
| } |
| |
| /// Read a block header and obtain its type and size |
| inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) { |
| if ( hasLongBlockHeaders ) { |
| Type = read_uint(); |
| Size = read_uint(); |
| switch (Type) { |
| case BytecodeFormat::Reserved_DoNotUse : |
| error("Reserved_DoNotUse used as Module Type?"); |
| Type = BytecodeFormat::ModuleBlockID; break; |
| case BytecodeFormat::Module: |
| Type = BytecodeFormat::ModuleBlockID; break; |
| case BytecodeFormat::Function: |
| Type = BytecodeFormat::FunctionBlockID; break; |
| case BytecodeFormat::ConstantPool: |
| Type = BytecodeFormat::ConstantPoolBlockID; break; |
| case BytecodeFormat::SymbolTable: |
| Type = BytecodeFormat::SymbolTableBlockID; break; |
| case BytecodeFormat::ModuleGlobalInfo: |
| Type = BytecodeFormat::ModuleGlobalInfoBlockID; break; |
| case BytecodeFormat::GlobalTypePlane: |
| Type = BytecodeFormat::GlobalTypePlaneBlockID; break; |
| case BytecodeFormat::InstructionList: |
| Type = BytecodeFormat::InstructionListBlockID; break; |
| case BytecodeFormat::CompactionTable: |
| Type = BytecodeFormat::CompactionTableBlockID; break; |
| case BytecodeFormat::BasicBlock: |
| /// This block type isn't used after version 1.1. However, we have to |
| /// still allow the value in case this is an old bc format file. |
| /// We just let its value creep thru. |
| break; |
| default: |
| error("Invalid block id found: " + utostr(Type)); |
| break; |
| } |
| } else { |
| Size = read_uint(); |
| Type = Size & 0x1F; // mask low order five bits |
| Size >>= 5; // get rid of five low order bits, leaving high 27 |
| } |
| BlockStart = At; |
| if (At + Size > BlockEnd) |
| error("Attempt to size a block past end of memory"); |
| BlockEnd = At + Size; |
| if (Handler) Handler->handleBlock(Type, BlockStart, Size); |
| } |
| |
| |
| /// In LLVM 1.2 and before, Types were derived from Value and so they were |
| /// written as part of the type planes along with any other Value. In LLVM |
| /// 1.3 this changed so that Type does not derive from Value. Consequently, |
| /// the BytecodeReader's containers for Values can't contain Types because |
| /// there's no inheritance relationship. This means that the "Type Type" |
| /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3 |
| /// whenever a bytecode construct must have both types and values together, |
| /// the types are always read/written first and then the Values. Furthermore |
| /// since Type::TypeTyID no longer exists, its value (12) now corresponds to |
| /// Type::LabelTyID. In order to overcome this we must "sanitize" all the |
| /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change. |
| /// For LLVM 1.2 and before, this function will decrement the type id by |
| /// one to account for the missing Type::TypeTyID enumerator if the value is |
| /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this |
| /// function returns true, otherwise false. This helps detect situations |
| /// where the pre 1.3 bytecode is indicating that what follows is a type. |
| /// @returns true iff type id corresponds to pre 1.3 "type type" |
| inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) { |
| if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later |
| if (TypeId == Type::LabelTyID) { |
| TypeId = Type::VoidTyID; // sanitize it |
| return true; // indicate we got TypeTyID in pre 1.3 bytecode |
| } else if (TypeId > Type::LabelTyID) |
| --TypeId; // shift all planes down because type type plane is missing |
| } |
| return false; |
| } |
| |
| /// Reads a vbr uint to read in a type id and does the necessary |
| /// conversion on it by calling sanitizeTypeId. |
| /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type" |
| /// @see sanitizeTypeId |
| inline bool BytecodeReader::read_typeid(unsigned &TypeId) { |
| TypeId = read_vbr_uint(); |
| if ( !has32BitTypes ) |
| if ( TypeId == 0x00FFFFFF ) |
| TypeId = read_vbr_uint(); |
| return sanitizeTypeId(TypeId); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IR Lookup Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// Determine if a type id has an implicit null value |
| inline bool BytecodeReader::hasImplicitNull(unsigned TyID) { |
| if (!hasExplicitPrimitiveZeros) |
| return TyID != Type::LabelTyID && TyID != Type::VoidTyID; |
| return TyID >= Type::FirstDerivedTyID; |
| } |
| |
| /// Obtain a type given a typeid and account for things like compaction tables, |
| /// function level vs module level, and the offsetting for the primitive types. |
| const Type *BytecodeReader::getType(unsigned ID) { |
| if (ID < Type::FirstDerivedTyID) |
| if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID)) |
| return T; // Asked for a primitive type... |
| |
| // Otherwise, derived types need offset... |
| ID -= Type::FirstDerivedTyID; |
| |
| if (!CompactionTypes.empty()) { |
| if (ID >= CompactionTypes.size()) |
| error("Type ID out of range for compaction table!"); |
| return CompactionTypes[ID].first; |
| } |
| |
| // Is it a module-level type? |
| if (ID < ModuleTypes.size()) |
| return ModuleTypes[ID].get(); |
| |
| // Nope, is it a function-level type? |
| ID -= ModuleTypes.size(); |
| if (ID < FunctionTypes.size()) |
| return FunctionTypes[ID].get(); |
| |
| error("Illegal type reference!"); |
| return Type::VoidTy; |
| } |
| |
| /// Get a sanitized type id. This just makes sure that the \p ID |
| /// is both sanitized and not the "type type" of pre-1.3 bytecode. |
| /// @see sanitizeTypeId |
| inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) { |
| if (sanitizeTypeId(ID)) |
| error("Invalid type id encountered"); |
| return getType(ID); |
| } |
| |
| /// This method just saves some coding. It uses read_typeid to read |
| /// in a sanitized type id, errors that its not the type type, and |
| /// then calls getType to return the type value. |
| inline const Type* BytecodeReader::readSanitizedType() { |
| unsigned ID; |
| if (read_typeid(ID)) |
| error("Invalid type id encountered"); |
| return getType(ID); |
| } |
| |
| /// Get the slot number associated with a type accounting for primitive |
| /// types, compaction tables, and function level vs module level. |
| unsigned BytecodeReader::getTypeSlot(const Type *Ty) { |
| if (Ty->isPrimitiveType()) |
| return Ty->getTypeID(); |
| |
| // Scan the compaction table for the type if needed. |
| if (!CompactionTypes.empty()) { |
| for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i) |
| if (CompactionTypes[i].first == Ty) |
| return Type::FirstDerivedTyID + i; |
| |
| error("Couldn't find type specified in compaction table!"); |
| } |
| |
| // Check the function level types first... |
| TypeListTy::iterator I = std::find(FunctionTypes.begin(), |
| FunctionTypes.end(), Ty); |
| |
| if (I != FunctionTypes.end()) |
| return Type::FirstDerivedTyID + ModuleTypes.size() + |
| (&*I - &FunctionTypes[0]); |
| |
| // If we don't have our cache yet, build it now. |
| if (ModuleTypeIDCache.empty()) { |
| unsigned N = 0; |
| ModuleTypeIDCache.reserve(ModuleTypes.size()); |
| for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end(); |
| I != E; ++I, ++N) |
| ModuleTypeIDCache.push_back(std::make_pair(*I, N)); |
| |
| std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end()); |
| } |
| |
| // Binary search the cache for the entry. |
| std::vector<std::pair<const Type*, unsigned> >::iterator IT = |
| std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(), |
| std::make_pair(Ty, 0U)); |
| if (IT == ModuleTypeIDCache.end() || IT->first != Ty) |
| error("Didn't find type in ModuleTypes."); |
| |
| return Type::FirstDerivedTyID + IT->second; |
| } |
| |
| /// This is just like getType, but when a compaction table is in use, it is |
| /// ignored. It also ignores function level types. |
| /// @see getType |
| const Type *BytecodeReader::getGlobalTableType(unsigned Slot) { |
| if (Slot < Type::FirstDerivedTyID) { |
| const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot); |
| if (!Ty) |
| error("Not a primitive type ID?"); |
| return Ty; |
| } |
| Slot -= Type::FirstDerivedTyID; |
| if (Slot >= ModuleTypes.size()) |
| error("Illegal compaction table type reference!"); |
| return ModuleTypes[Slot]; |
| } |
| |
| /// This is just like getTypeSlot, but when a compaction table is in use, it |
| /// is ignored. It also ignores function level types. |
| unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) { |
| if (Ty->isPrimitiveType()) |
| return Ty->getTypeID(); |
| |
| // If we don't have our cache yet, build it now. |
| if (ModuleTypeIDCache.empty()) { |
| unsigned N = 0; |
| ModuleTypeIDCache.reserve(ModuleTypes.size()); |
| for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end(); |
| I != E; ++I, ++N) |
| ModuleTypeIDCache.push_back(std::make_pair(*I, N)); |
| |
| std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end()); |
| } |
| |
| // Binary search the cache for the entry. |
| std::vector<std::pair<const Type*, unsigned> >::iterator IT = |
| std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(), |
| std::make_pair(Ty, 0U)); |
| if (IT == ModuleTypeIDCache.end() || IT->first != Ty) |
| error("Didn't find type in ModuleTypes."); |
| |
| return Type::FirstDerivedTyID + IT->second; |
| } |
| |
| /// Retrieve a value of a given type and slot number, possibly creating |
| /// it if it doesn't already exist. |
| Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) { |
| assert(type != Type::LabelTyID && "getValue() cannot get blocks!"); |
| unsigned Num = oNum; |
| |
| // If there is a compaction table active, it defines the low-level numbers. |
| // If not, the module values define the low-level numbers. |
| if (CompactionValues.size() > type && !CompactionValues[type].empty()) { |
| if (Num < CompactionValues[type].size()) |
| return CompactionValues[type][Num]; |
| Num -= CompactionValues[type].size(); |
| } else { |
| // By default, the global type id is the type id passed in |
| unsigned GlobalTyID = type; |
| |
| // If the type plane was compactified, figure out the global type ID by |
| // adding the derived type ids and the distance. |
| if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID) |
| GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second; |
| |
| if (hasImplicitNull(GlobalTyID)) { |
| const Type *Ty = getType(type); |
| if (!isa<OpaqueType>(Ty)) { |
| if (Num == 0) |
| return Constant::getNullValue(Ty); |
| --Num; |
| } |
| } |
| |
| if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) { |
| if (Num < ModuleValues[GlobalTyID]->size()) |
| return ModuleValues[GlobalTyID]->getOperand(Num); |
| Num -= ModuleValues[GlobalTyID]->size(); |
| } |
| } |
| |
| if (FunctionValues.size() > type && |
| FunctionValues[type] && |
| Num < FunctionValues[type]->size()) |
| return FunctionValues[type]->getOperand(Num); |
| |
| if (!Create) return 0; // Do not create a placeholder? |
| |
| // Did we already create a place holder? |
| std::pair<unsigned,unsigned> KeyValue(type, oNum); |
| ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue); |
| if (I != ForwardReferences.end() && I->first == KeyValue) |
| return I->second; // We have already created this placeholder |
| |
| // If the type exists (it should) |
| if (const Type* Ty = getType(type)) { |
| // Create the place holder |
| Value *Val = new Argument(Ty); |
| ForwardReferences.insert(I, std::make_pair(KeyValue, Val)); |
| return Val; |
| } |
| error("Can't create placeholder for value of type slot #" + utostr(type)); |
| return 0; // just silence warning, error calls longjmp |
| } |
| |
| /// This is just like getValue, but when a compaction table is in use, it |
| /// is ignored. Also, no forward references or other fancy features are |
| /// supported. |
| Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) { |
| if (SlotNo == 0) |
| return Constant::getNullValue(getType(TyID)); |
| |
| if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) { |
| TyID -= Type::FirstDerivedTyID; |
| if (TyID >= CompactionTypes.size()) |
| error("Type ID out of range for compaction table!"); |
| TyID = CompactionTypes[TyID].second; |
| } |
| |
| --SlotNo; |
| |
| if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 || |
| SlotNo >= ModuleValues[TyID]->size()) { |
| if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0) |
| error("Corrupt compaction table entry!" |
| + utostr(TyID) + ", " + utostr(SlotNo) + ": " |
| + utostr(ModuleValues.size())); |
| else |
| error("Corrupt compaction table entry!" |
| + utostr(TyID) + ", " + utostr(SlotNo) + ": " |
| + utostr(ModuleValues.size()) + ", " |
| + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID]))) |
| + ", " |
| + utostr(ModuleValues[TyID]->size())); |
| } |
| return ModuleValues[TyID]->getOperand(SlotNo); |
| } |
| |
| /// Just like getValue, except that it returns a null pointer |
| /// only on error. It always returns a constant (meaning that if the value is |
| /// defined, but is not a constant, that is an error). If the specified |
| /// constant hasn't been parsed yet, a placeholder is defined and used. |
| /// Later, after the real value is parsed, the placeholder is eliminated. |
| Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) { |
| if (Value *V = getValue(TypeSlot, Slot, false)) |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C; // If we already have the value parsed, just return it |
| else |
| error("Value for slot " + utostr(Slot) + |
| " is expected to be a constant!"); |
| |
| std::pair<unsigned, unsigned> Key(TypeSlot, Slot); |
| ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key); |
| |
| if (I != ConstantFwdRefs.end() && I->first == Key) { |
| return I->second; |
| } else { |
| // Create a placeholder for the constant reference and |
| // keep track of the fact that we have a forward ref to recycle it |
| Constant *C = new ConstantPlaceHolder(getType(TypeSlot)); |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| ConstantFwdRefs.insert(I, std::make_pair(Key, C)); |
| return C; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IR Construction Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// As values are created, they are inserted into the appropriate place |
| /// with this method. The ValueTable argument must be one of ModuleValues |
| /// or FunctionValues data members of this class. |
| unsigned BytecodeReader::insertValue(Value *Val, unsigned type, |
| ValueTable &ValueTab) { |
| if (ValueTab.size() <= type) |
| ValueTab.resize(type+1); |
| |
| if (!ValueTab[type]) ValueTab[type] = new ValueList(); |
| |
| ValueTab[type]->push_back(Val); |
| |
| bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType()); |
| return ValueTab[type]->size()-1 + HasOffset; |
| } |
| |
| /// Insert the arguments of a function as new values in the reader. |
| void BytecodeReader::insertArguments(Function* F) { |
| const FunctionType *FT = F->getFunctionType(); |
| Function::arg_iterator AI = F->arg_begin(); |
| for (FunctionType::param_iterator It = FT->param_begin(); |
| It != FT->param_end(); ++It, ++AI) |
| insertValue(AI, getTypeSlot(AI->getType()), FunctionValues); |
| } |
| |
| // Convert previous opcode values into the current value and/or construct |
| // the instruction. This function handles all *abnormal* cases for instruction |
| // generation based on obsolete opcode values. The normal cases are handled |
| // in ParseInstruction below. Generally this function just produces a new |
| // Opcode value (first argument). In a few cases (VAArg, VANext) the upgrade |
| // path requies that the instruction (sequence) be generated differently from |
| // the normal case in order to preserve the original semantics. In these |
| // cases the result of the function will be a non-zero Instruction pointer. In |
| // all other cases, zero will be returned indicating that the *normal* |
| // instruction generation should be used, but with the new Opcode value. |
| // |
| Instruction* |
| BytecodeReader::handleObsoleteOpcodes( |
| unsigned &Opcode, ///< The old opcode, possibly updated by this function |
| std::vector<unsigned> &Oprnds, ///< The operands to the instruction |
| unsigned &iType, ///< The type code from the bytecode file |
| const Type* InstTy, ///< The type of the instruction |
| BasicBlock* BB ///< The basic block to insert into, if we need to |
| ) { |
| |
| // First, short circuit this if no conversion is required. When signless |
| // instructions were implemented the entire opcode sequence was revised so |
| // we key on this first which means that the opcode value read is the one |
| // we should use. |
| if (!hasSignlessInstructions) |
| return 0; // The opcode is fine the way it is. |
| |
| // Declare the resulting instruction we might build. In general we just |
| // change the Opcode argument but in a few cases we need to generate the |
| // Instruction here because the upgrade case is significantly different from |
| // the normal case. |
| Instruction *Result = 0; |
| |
| // If this is a bytecode format that did not include the unreachable |
| // instruction, bump up the opcode number to adjust it. |
| if (hasNoUnreachableInst) |
| if (Opcode >= Instruction::Unreachable && Opcode < 62) |
| ++Opcode; |
| |
| // We're dealing with an upgrade situation. For each of the opcode values, |
| // perform the necessary conversion. |
| switch (Opcode) { |
| default: // Error |
| // This switch statement provides cases for all known opcodes prior to |
| // version 6 bytecode format. We know we're in an upgrade situation so |
| // if there isn't a match in this switch, then something is horribly |
| // wrong. |
| error("Unknown obsolete opcode encountered."); |
| break; |
| case 1: // Ret |
| Opcode = Instruction::Ret; |
| break; |
| case 2: // Br |
| Opcode = Instruction::Br; |
| break; |
| case 3: // Switch |
| Opcode = Instruction::Switch; |
| break; |
| case 4: // Invoke |
| Opcode = Instruction::Invoke; |
| break; |
| case 5: // Unwind |
| Opcode = Instruction::Unwind; |
| break; |
| case 6: // Unreachable |
| Opcode = Instruction::Unreachable; |
| break; |
| case 7: // Add |
| Opcode = Instruction::Add; |
| break; |
| case 8: // Sub |
| Opcode = Instruction::Sub; |
| break; |
| case 9: // Mul |
| Opcode = Instruction::Mul; |
| break; |
| case 10: // Div |
| // The type of the instruction is based on the operands. We need to select |
| // fdiv, udiv or sdiv based on that type. The iType values are hardcoded |
| // to the values used in bytecode version 5 (and prior) because it is |
| // likely these codes will change in future versions of LLVM. |
| if (iType == 10 || iType == 11 ) |
| Opcode = Instruction::FDiv; |
| else if (iType >= 2 && iType <= 9 && iType % 2 != 0) |
| Opcode = Instruction::SDiv; |
| else |
| Opcode = Instruction::UDiv; |
| break; |
| |
| case 11: // Rem |
| // As with "Div", make the signed/unsigned or floating point Rem |
| // instruction choice based on the type of the operands. |
| if (iType == 10 || iType == 11) |
| Opcode = Instruction::FRem; |
| else if (iType >= 2 && iType <= 9 && iType % 2 != 0) |
| Opcode = Instruction::SRem; |
| else |
| Opcode = Instruction::URem; |
| break; |
| case 12: // And |
| Opcode = Instruction::And; |
| break; |
| case 13: // Or |
| Opcode = Instruction::Or; |
| break; |
| case 14: // Xor |
| Opcode = Instruction::Xor; |
| break; |
| case 15: // SetEQ |
| Opcode = Instruction::SetEQ; |
| break; |
| case 16: // SetNE |
| Opcode = Instruction::SetNE; |
| break; |
| case 17: // SetLE |
| Opcode = Instruction::SetLE; |
| break; |
| case 18: // SetGE |
| Opcode = Instruction::SetGE; |
| break; |
| case 19: // SetLT |
| Opcode = Instruction::SetLT; |
| break; |
| case 20: // SetGT |
| Opcode = Instruction::SetGT; |
| break; |
| case 21: // Malloc |
| Opcode = Instruction::Malloc; |
| break; |
| case 22: // Free |
| Opcode = Instruction::Free; |
| break; |
| case 23: // Alloca |
| Opcode = Instruction::Alloca; |
| break; |
| case 24: // Load |
| Opcode = Instruction::Load; |
| break; |
| case 25: // Store |
| Opcode = Instruction::Store; |
| break; |
| case 26: // GetElementPtr |
| Opcode = Instruction::GetElementPtr; |
| break; |
| case 27: // PHI |
| Opcode = Instruction::PHI; |
| break; |
| case 28: // Cast |
| Opcode = Instruction::Cast; |
| break; |
| case 29: // Call |
| Opcode = Instruction::Call; |
| break; |
| case 30: // Shl |
| Opcode = Instruction::Shl; |
| break; |
| case 31: // Shr |
| Opcode = Instruction::Shr; |
| break; |
| case 32: { //VANext_old ( <= llvm 1.5 ) |
| const Type* ArgTy = getValue(iType, Oprnds[0])->getType(); |
| Function* NF = TheModule->getOrInsertFunction( |
| "llvm.va_copy", ArgTy, ArgTy, (Type *)0); |
| |
| // In llvm 1.6 the VANext instruction was dropped because it was only |
| // necessary to have a VAArg instruction. The code below transforms an |
| // old vanext instruction into the equivalent code given only the |
| // availability of the new vaarg instruction. Essentially, the transform |
| // is as follows: |
| // b = vanext a, t -> |
| // foo = alloca 1 of t |
| // bar = vacopy a |
| // store bar -> foo |
| // tmp = vaarg foo, t |
| // b = load foo |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix"); |
| BB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0])); |
| BB->getInstList().push_back(bar); |
| BB->getInstList().push_back(new StoreInst(bar, foo)); |
| Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1])); |
| BB->getInstList().push_back(tmp); |
| Result = new LoadInst(foo); |
| break; |
| } |
| case 33: { //VAArg_old |
| const Type* ArgTy = getValue(iType, Oprnds[0])->getType(); |
| Function* NF = TheModule->getOrInsertFunction( |
| "llvm.va_copy", ArgTy, ArgTy, (Type *)0); |
| |
| // In llvm 1.6 the VAArg's instruction semantics were changed. The code |
| // below transforms an old vaarg instruction into the equivalent code |
| // given only the availability of the new vaarg instruction. Essentially, |
| // the transform is as follows: |
| // b = vaarg a, t -> |
| // foo = alloca 1 of t |
| // bar = vacopy a |
| // store bar -> foo |
| // b = vaarg foo, t |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix"); |
| BB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0])); |
| BB->getInstList().push_back(bar); |
| BB->getInstList().push_back(new StoreInst(bar, foo)); |
| Result = new VAArgInst(foo, getSanitizedType(Oprnds[1])); |
| break; |
| } |
| case 34: // Select |
| Opcode = Instruction::Select; |
| break; |
| case 35: // UserOp1 |
| Opcode = Instruction::UserOp1; |
| break; |
| case 36: // UserOp2 |
| Opcode = Instruction::UserOp2; |
| break; |
| case 37: // VAArg |
| Opcode = Instruction::VAArg; |
| break; |
| case 38: // ExtractElement |
| Opcode = Instruction::ExtractElement; |
| break; |
| case 39: // InsertElement |
| Opcode = Instruction::InsertElement; |
| break; |
| case 40: // ShuffleVector |
| Opcode = Instruction::ShuffleVector; |
| break; |
| case 56: // Invoke with encoded CC |
| case 57: // Invoke Fast CC |
| case 58: // Call with extra operand for calling conv |
| case 59: // tail call, Fast CC |
| case 60: // normal call, Fast CC |
| case 61: // tail call, C Calling Conv |
| case 62: // volatile load |
| case 63: // volatile store |
| // In all these cases, we pass the opcode through. The new version uses |
| // the same code (for now, this might change in 2.0). These are listed |
| // here to document the opcodes in use in vers 5 bytecode and to make it |
| // easier to migrate these opcodes in the future. |
| break; |
| } |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bytecode Parsing Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// This method parses a single instruction. The instruction is |
| /// inserted at the end of the \p BB provided. The arguments of |
| /// the instruction are provided in the \p Oprnds vector. |
| void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds, |
| BasicBlock* BB) { |
| BufPtr SaveAt = At; |
| |
| // Clear instruction data |
| Oprnds.clear(); |
| unsigned iType = 0; |
| unsigned Opcode = 0; |
| unsigned Op = read_uint(); |
| |
| // bits Instruction format: Common to all formats |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| Opcode = (Op >> 2) & 63; |
| Oprnds.resize((Op >> 0) & 03); |
| |
| // Extract the operands |
| switch (Oprnds.size()) { |
| case 1: |
| // bits Instruction format: |
| // -------------------------- |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| iType = (Op >> 8) & 4095; |
| Oprnds[0] = (Op >> 20) & 4095; |
| if (Oprnds[0] == 4095) // Handle special encoding for 0 operands... |
| Oprnds.resize(0); |
| break; |
| case 2: |
| // bits Instruction format: |
| // -------------------------- |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| iType = (Op >> 8) & 255; |
| Oprnds[0] = (Op >> 16) & 255; |
| Oprnds[1] = (Op >> 24) & 255; |
| break; |
| case 3: |
| // bits Instruction format: |
| // -------------------------- |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| iType = (Op >> 8) & 63; |
| Oprnds[0] = (Op >> 14) & 63; |
| Oprnds[1] = (Op >> 20) & 63; |
| Oprnds[2] = (Op >> 26) & 63; |
| break; |
| case 0: |
| At -= 4; // Hrm, try this again... |
| Opcode = read_vbr_uint(); |
| Opcode >>= 2; |
| iType = read_vbr_uint(); |
| |
| unsigned NumOprnds = read_vbr_uint(); |
| Oprnds.resize(NumOprnds); |
| |
| if (NumOprnds == 0) |
| error("Zero-argument instruction found; this is invalid."); |
| |
| for (unsigned i = 0; i != NumOprnds; ++i) |
| Oprnds[i] = read_vbr_uint(); |
| align32(); |
| break; |
| } |
| |
| const Type *InstTy = getSanitizedType(iType); |
| |
| // Make the necessary adjustments for dealing with backwards compatibility |
| // of opcodes. |
| Instruction* Result = |
| handleObsoleteOpcodes(Opcode, Oprnds, iType, InstTy, BB); |
| |
| // We have enough info to inform the handler now. |
| if (Handler) |
| Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt); |
| |
| // If the backwards compatibility code didn't produce an instruction then |
| // we do the *normal* thing .. |
| if (!Result) { |
| // First, handle the easy binary operators case |
| if (Opcode >= Instruction::BinaryOpsBegin && |
| Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2) |
| Result = BinaryOperator::create(Instruction::BinaryOps(Opcode), |
| getValue(iType, Oprnds[0]), |
| getValue(iType, Oprnds[1])); |
| |
| // Indicate that we don't think this is a call instruction (yet). |
| // Process based on the Opcode read |
| switch (Opcode) { |
| default: // There was an error, this shouldn't happen. |
| if (Result == 0) |
| error("Illegal instruction read!"); |
| break; |
| case Instruction::VAArg: |
| if (Oprnds.size() != 2) |
| error("Invalid VAArg instruction!"); |
| Result = new VAArgInst(getValue(iType, Oprnds[0]), |
| getSanitizedType(Oprnds[1])); |
| break; |
| case Instruction::ExtractElement: { |
| if (Oprnds.size() != 2) |
| error("Invalid extractelement instruction!"); |
| Value *V1 = getValue(iType, Oprnds[0]); |
| Value *V2 = getValue(Type::UIntTyID, Oprnds[1]); |
| |
| if (!ExtractElementInst::isValidOperands(V1, V2)) |
| error("Invalid extractelement instruction!"); |
| |
| Result = new ExtractElementInst(V1, V2); |
| break; |
| } |
| case Instruction::InsertElement: { |
| const PackedType *PackedTy = dyn_cast<PackedType>(InstTy); |
| if (!PackedTy || Oprnds.size() != 3) |
| error("Invalid insertelement instruction!"); |
| |
| Value *V1 = getValue(iType, Oprnds[0]); |
| Value *V2 = getValue(getTypeSlot(PackedTy->getElementType()),Oprnds[1]); |
| Value *V3 = getValue(Type::UIntTyID, Oprnds[2]); |
| |
| if (!InsertElementInst::isValidOperands(V1, V2, V3)) |
| error("Invalid insertelement instruction!"); |
| Result = new InsertElementInst(V1, V2, V3); |
| break; |
| } |
| case Instruction::ShuffleVector: { |
| const PackedType *PackedTy = dyn_cast<PackedType>(InstTy); |
| if (!PackedTy || Oprnds.size() != 3) |
| error("Invalid shufflevector instruction!"); |
| Value *V1 = getValue(iType, Oprnds[0]); |
| Value *V2 = getValue(iType, Oprnds[1]); |
| const PackedType *EltTy = |
| PackedType::get(Type::UIntTy, PackedTy->getNumElements()); |
| Value *V3 = getValue(getTypeSlot(EltTy), Oprnds[2]); |
| if (!ShuffleVectorInst::isValidOperands(V1, V2, V3)) |
| error("Invalid shufflevector instruction!"); |
| Result = new ShuffleVectorInst(V1, V2, V3); |
| break; |
| } |
| case Instruction::Cast: |
| if (Oprnds.size() != 2) |
| error("Invalid Cast instruction!"); |
| Result = new CastInst(getValue(iType, Oprnds[0]), |
| getSanitizedType(Oprnds[1])); |
| break; |
| case Instruction::Select: |
| if (Oprnds.size() != 3) |
| error("Invalid Select instruction!"); |
| Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]), |
| getValue(iType, Oprnds[1]), |
| getValue(iType, Oprnds[2])); |
| break; |
| case Instruction::PHI: { |
| if (Oprnds.size() == 0 || (Oprnds.size() & 1)) |
| error("Invalid phi node encountered!"); |
| |
| PHINode *PN = new PHINode(InstTy); |
| PN->reserveOperandSpace(Oprnds.size()); |
| for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2) |
| PN->addIncoming( |
| getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1])); |
| Result = PN; |
| break; |
| } |
| |
| case Instruction::Shl: |
| case Instruction::Shr: |
| Result = new ShiftInst(Instruction::OtherOps(Opcode), |
| getValue(iType, Oprnds[0]), |
| getValue(Type::UByteTyID, Oprnds[1])); |
| break; |
| case Instruction::Ret: |
| if (Oprnds.size() == 0) |
| Result = new ReturnInst(); |
| else if (Oprnds.size() == 1) |
| Result = new ReturnInst(getValue(iType, Oprnds[0])); |
| else |
| error("Unrecognized instruction!"); |
| break; |
| |
| case Instruction::Br: |
| if (Oprnds.size() == 1) |
| Result = new BranchInst(getBasicBlock(Oprnds[0])); |
| else if (Oprnds.size() == 3) |
| Result = new BranchInst(getBasicBlock(Oprnds[0]), |
| getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2])); |
| else |
| error("Invalid number of operands for a 'br' instruction!"); |
| break; |
| case Instruction::Switch: { |
| if (Oprnds.size() & 1) |
| error("Switch statement with odd number of arguments!"); |
| |
| SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]), |
| getBasicBlock(Oprnds[1]), |
| Oprnds.size()/2-1); |
| for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2) |
| I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])), |
| getBasicBlock(Oprnds[i+1])); |
| Result = I; |
| break; |
| } |
| case 58: // Call with extra operand for calling conv |
| case 59: // tail call, Fast CC |
| case 60: // normal call, Fast CC |
| case 61: // tail call, C Calling Conv |
| case Instruction::Call: { // Normal Call, C Calling Convention |
| if (Oprnds.size() == 0) |
| error("Invalid call instruction encountered!"); |
| |
| Value *F = getValue(iType, Oprnds[0]); |
| |
| unsigned CallingConv = CallingConv::C; |
| bool isTailCall = false; |
| |
| if (Opcode == 61 || Opcode == 59) |
| isTailCall = true; |
| |
| if (Opcode == 58) { |
| isTailCall = Oprnds.back() & 1; |
| CallingConv = Oprnds.back() >> 1; |
| Oprnds.pop_back(); |
| } else if (Opcode == 59 || Opcode == 60) { |
| CallingConv = CallingConv::Fast; |
| } |
| |
| // Check to make sure we have a pointer to function type |
| const PointerType *PTy = dyn_cast<PointerType>(F->getType()); |
| if (PTy == 0) error("Call to non function pointer value!"); |
| const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); |
| if (FTy == 0) error("Call to non function pointer value!"); |
| |
| std::vector<Value *> Params; |
| if (!FTy->isVarArg()) { |
| FunctionType::param_iterator It = FTy->param_begin(); |
| |
| for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { |
| if (It == FTy->param_end()) |
| error("Invalid call instruction!"); |
| Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); |
| } |
| if (It != FTy->param_end()) |
| error("Invalid call instruction!"); |
| } else { |
| Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); |
| |
| unsigned FirstVariableOperand; |
| if (Oprnds.size() < FTy->getNumParams()) |
| error("Call instruction missing operands!"); |
| |
| // Read all of the fixed arguments |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Params.push_back( |
| getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i])); |
| |
| FirstVariableOperand = FTy->getNumParams(); |
| |
| if ((Oprnds.size()-FirstVariableOperand) & 1) |
| error("Invalid call instruction!"); // Must be pairs of type/value |
| |
| for (unsigned i = FirstVariableOperand, e = Oprnds.size(); |
| i != e; i += 2) |
| Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); |
| } |
| |
| Result = new CallInst(F, Params); |
| if (isTailCall) cast<CallInst>(Result)->setTailCall(); |
| if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv); |
| break; |
| } |
| case 56: // Invoke with encoded CC |
| case 57: // Invoke Fast CC |
| case Instruction::Invoke: { // Invoke C CC |
| if (Oprnds.size() < 3) |
| error("Invalid invoke instruction!"); |
| Value *F = getValue(iType, Oprnds[0]); |
| |
| // Check to make sure we have a pointer to function type |
| const PointerType *PTy = dyn_cast<PointerType>(F->getType()); |
| if (PTy == 0) |
| error("Invoke to non function pointer value!"); |
| const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); |
| if (FTy == 0) |
| error("Invoke to non function pointer value!"); |
| |
| std::vector<Value *> Params; |
| BasicBlock *Normal, *Except; |
| unsigned CallingConv = CallingConv::C; |
| |
| if (Opcode == 57) |
| CallingConv = CallingConv::Fast; |
| else if (Opcode == 56) { |
| CallingConv = Oprnds.back(); |
| Oprnds.pop_back(); |
| } |
| |
| if (!FTy->isVarArg()) { |
| Normal = getBasicBlock(Oprnds[1]); |
| Except = getBasicBlock(Oprnds[2]); |
| |
| FunctionType::param_iterator It = FTy->param_begin(); |
| for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) { |
| if (It == FTy->param_end()) |
| error("Invalid invoke instruction!"); |
| Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); |
| } |
| if (It != FTy->param_end()) |
| error("Invalid invoke instruction!"); |
| } else { |
| Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); |
| |
| Normal = getBasicBlock(Oprnds[0]); |
| Except = getBasicBlock(Oprnds[1]); |
| |
| unsigned FirstVariableArgument = FTy->getNumParams()+2; |
| for (unsigned i = 2; i != FirstVariableArgument; ++i) |
| Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)), |
| Oprnds[i])); |
| |
| // Must be type/value pairs. If not, error out. |
| if (Oprnds.size()-FirstVariableArgument & 1) |
| error("Invalid invoke instruction!"); |
| |
| for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2) |
| Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); |
| } |
| |
| Result = new InvokeInst(F, Normal, Except, Params); |
| if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv); |
| break; |
| } |
| case Instruction::Malloc: { |
| unsigned Align = 0; |
| if (Oprnds.size() == 2) |
| Align = (1 << Oprnds[1]) >> 1; |
| else if (Oprnds.size() > 2) |
| error("Invalid malloc instruction!"); |
| if (!isa<PointerType>(InstTy)) |
| error("Invalid malloc instruction!"); |
| |
| Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(), |
| getValue(Type::UIntTyID, Oprnds[0]), Align); |
| break; |
| } |
| case Instruction::Alloca: { |
| unsigned Align = 0; |
| if (Oprnds.size() == 2) |
| Align = (1 << Oprnds[1]) >> 1; |
| else if (Oprnds.size() > 2) |
| error("Invalid alloca instruction!"); |
| if (!isa<PointerType>(InstTy)) |
| error("Invalid alloca instruction!"); |
| |
| Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(), |
| getValue(Type::UIntTyID, Oprnds[0]), Align); |
| break; |
| } |
| case Instruction::Free: |
| if (!isa<PointerType>(InstTy)) |
| error("Invalid free instruction!"); |
| Result = new FreeInst(getValue(iType, Oprnds[0])); |
| break; |
| case Instruction::GetElementPtr: { |
| if (Oprnds.size() == 0 || !isa<PointerType>(InstTy)) |
| error("Invalid getelementptr instruction!"); |
| |
| std::vector<Value*> Idx; |
| |
| const Type *NextTy = InstTy; |
| for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { |
| const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy); |
| if (!TopTy) |
| error("Invalid getelementptr instruction!"); |
| |
| unsigned ValIdx = Oprnds[i]; |
| unsigned IdxTy = 0; |
| if (!hasRestrictedGEPTypes) { |
| // Struct indices are always uints, sequential type indices can be |
| // any of the 32 or 64-bit integer types. The actual choice of |
| // type is encoded in the low two bits of the slot number. |
| if (isa<StructType>(TopTy)) |
| IdxTy = Type::UIntTyID; |
| else { |
| switch (ValIdx & 3) { |
| default: |
| case 0: IdxTy = Type::UIntTyID; break; |
| case 1: IdxTy = Type::IntTyID; break; |
| case 2: IdxTy = Type::ULongTyID; break; |
| case 3: IdxTy = Type::LongTyID; break; |
| } |
| ValIdx >>= 2; |
| } |
| } else { |
| IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID; |
| } |
| |
| Idx.push_back(getValue(IdxTy, ValIdx)); |
| |
| // Convert ubyte struct indices into uint struct indices. |
| if (isa<StructType>(TopTy) && hasRestrictedGEPTypes) |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Idx.back())) |
| if (C->getType() == Type::UByteTy) |
| Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy); |
| |
| NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true); |
| } |
| |
| Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx); |
| break; |
| } |
| case 62: // volatile load |
| case Instruction::Load: |
| if (Oprnds.size() != 1 || !isa<PointerType>(InstTy)) |
| error("Invalid load instruction!"); |
| Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62); |
| break; |
| case 63: // volatile store |
| case Instruction::Store: { |
| if (!isa<PointerType>(InstTy) || Oprnds.size() != 2) |
| error("Invalid store instruction!"); |
| |
| Value *Ptr = getValue(iType, Oprnds[1]); |
| const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType(); |
| Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr, |
| Opcode == 63); |
| break; |
| } |
| case Instruction::Unwind: |
| if (Oprnds.size() != 0) error("Invalid unwind instruction!"); |
| Result = new UnwindInst(); |
| break; |
| case Instruction::Unreachable: |
| if (Oprnds.size() != 0) error("Invalid unreachable instruction!"); |
| Result = new UnreachableInst(); |
| break; |
| } // end switch(Opcode) |
| } // end if *normal* |
| |
| BB->getInstList().push_back(Result); |
| |
| unsigned TypeSlot; |
| if (Result->getType() == InstTy) |
| TypeSlot = iType; |
| else |
| TypeSlot = getTypeSlot(Result->getType()); |
| |
| insertValue(Result, TypeSlot, FunctionValues); |
| } |
| |
| /// Get a particular numbered basic block, which might be a forward reference. |
| /// This works together with ParseBasicBlock to handle these forward references |
| /// in a clean manner. This function is used when constructing phi, br, switch, |
| /// and other instructions that reference basic blocks. Blocks are numbered |
| /// sequentially as they appear in the function. |
| BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) { |
| // Make sure there is room in the table... |
| if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1); |
| |
| // First check to see if this is a backwards reference, i.e., ParseBasicBlock |
| // has already created this block, or if the forward reference has already |
| // been created. |
| if (ParsedBasicBlocks[ID]) |
| return ParsedBasicBlocks[ID]; |
| |
| // Otherwise, the basic block has not yet been created. Do so and add it to |
| // the ParsedBasicBlocks list. |
| return ParsedBasicBlocks[ID] = new BasicBlock(); |
| } |
| |
| /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time. |
| /// This method reads in one of the basicblock packets. This method is not used |
| /// for bytecode files after LLVM 1.0 |
| /// @returns The basic block constructed. |
| BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) { |
| if (Handler) Handler->handleBasicBlockBegin(BlockNo); |
| |
| BasicBlock *BB = 0; |
| |
| if (ParsedBasicBlocks.size() == BlockNo) |
| ParsedBasicBlocks.push_back(BB = new BasicBlock()); |
| else if (ParsedBasicBlocks[BlockNo] == 0) |
| BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); |
| else |
| BB = ParsedBasicBlocks[BlockNo]; |
| |
| std::vector<unsigned> Operands; |
| while (moreInBlock()) |
| ParseInstruction(Operands, BB); |
| |
| if (Handler) Handler->handleBasicBlockEnd(BlockNo); |
| return BB; |
| } |
| |
| /// Parse all of the BasicBlock's & Instruction's in the body of a function. |
| /// In post 1.0 bytecode files, we no longer emit basic block individually, |
| /// in order to avoid per-basic-block overhead. |
| /// @returns Rhe number of basic blocks encountered. |
| unsigned BytecodeReader::ParseInstructionList(Function* F) { |
| unsigned BlockNo = 0; |
| std::vector<unsigned> Args; |
| |
| while (moreInBlock()) { |
| if (Handler) Handler->handleBasicBlockBegin(BlockNo); |
| BasicBlock *BB; |
| if (ParsedBasicBlocks.size() == BlockNo) |
| ParsedBasicBlocks.push_back(BB = new BasicBlock()); |
| else if (ParsedBasicBlocks[BlockNo] == 0) |
| BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); |
| else |
| BB = ParsedBasicBlocks[BlockNo]; |
| ++BlockNo; |
| F->getBasicBlockList().push_back(BB); |
| |
| // Read instructions into this basic block until we get to a terminator |
| while (moreInBlock() && !BB->getTerminator()) |
| ParseInstruction(Args, BB); |
| |
| if (!BB->getTerminator()) |
| error("Non-terminated basic block found!"); |
| |
| if (Handler) Handler->handleBasicBlockEnd(BlockNo-1); |
| } |
| |
| return BlockNo; |
| } |
| |
| /// Parse a symbol table. This works for both module level and function |
| /// level symbol tables. For function level symbol tables, the CurrentFunction |
| /// parameter must be non-zero and the ST parameter must correspond to |
| /// CurrentFunction's symbol table. For Module level symbol tables, the |
| /// CurrentFunction argument must be zero. |
| void BytecodeReader::ParseSymbolTable(Function *CurrentFunction, |
| SymbolTable *ST) { |
| if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST); |
| |
| // Allow efficient basic block lookup by number. |
| std::vector<BasicBlock*> BBMap; |
| if (CurrentFunction) |
| for (Function::iterator I = CurrentFunction->begin(), |
| E = CurrentFunction->end(); I != E; ++I) |
| BBMap.push_back(I); |
| |
| /// In LLVM 1.3 we write types separately from values so |
| /// The types are always first in the symbol table. This is |
| /// because Type no longer derives from Value. |
| if (!hasTypeDerivedFromValue) { |
| // Symtab block header: [num entries] |
| unsigned NumEntries = read_vbr_uint(); |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| // Symtab entry: [def slot #][name] |
| unsigned slot = read_vbr_uint(); |
| std::string Name = read_str(); |
| const Type* T = getType(slot); |
| ST->insert(Name, T); |
| } |
| } |
| |
| while (moreInBlock()) { |
| // Symtab block header: [num entries][type id number] |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| // Symtab entry: [def slot #][name] |
| unsigned slot = read_vbr_uint(); |
| std::string Name = read_str(); |
| |
| // if we're reading a pre 1.3 bytecode file and the type plane |
| // is the "type type", handle it here |
| if (isTypeType) { |
| const Type* T = getType(slot); |
| if (T == 0) |
| error("Failed type look-up for name '" + Name + "'"); |
| ST->insert(Name, T); |
| continue; // code below must be short circuited |
| } else { |
| Value *V = 0; |
| if (Typ == Type::LabelTyID) { |
| if (slot < BBMap.size()) |
| V = BBMap[slot]; |
| } else { |
| V = getValue(Typ, slot, false); // Find mapping... |
| } |
| if (V == 0) |
| error("Failed value look-up for name '" + Name + "'"); |
| V->setName(Name); |
| } |
| } |
| } |
| checkPastBlockEnd("Symbol Table"); |
| if (Handler) Handler->handleSymbolTableEnd(); |
| } |
| |
| /// Read in the types portion of a compaction table. |
| void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) { |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned TypeSlot = 0; |
| if (read_typeid(TypeSlot)) |
| error("Invalid type in compaction table: type type"); |
| const Type *Typ = getGlobalTableType(TypeSlot); |
| CompactionTypes.push_back(std::make_pair(Typ, TypeSlot)); |
| if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ); |
| } |
| } |
| |
| /// Parse a compaction table. |
| void BytecodeReader::ParseCompactionTable() { |
| |
| // Notify handler that we're beginning a compaction table. |
| if (Handler) Handler->handleCompactionTableBegin(); |
| |
| // In LLVM 1.3 Type no longer derives from Value. So, |
| // we always write them first in the compaction table |
| // because they can't occupy a "type plane" where the |
| // Values reside. |
| if (! hasTypeDerivedFromValue) { |
| unsigned NumEntries = read_vbr_uint(); |
| ParseCompactionTypes(NumEntries); |
| } |
| |
| // Compaction tables live in separate blocks so we have to loop |
| // until we've read the whole thing. |
| while (moreInBlock()) { |
| // Read the number of Value* entries in the compaction table |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Ty = 0; |
| unsigned isTypeType = false; |
| |
| // Decode the type from value read in. Most compaction table |
| // planes will have one or two entries in them. If that's the |
| // case then the length is encoded in the bottom two bits and |
| // the higher bits encode the type. This saves another VBR value. |
| if ((NumEntries & 3) == 3) { |
| // In this case, both low-order bits are set (value 3). This |
| // is a signal that the typeid follows. |
| NumEntries >>= 2; |
| isTypeType = read_typeid(Ty); |
| } else { |
| // In this case, the low-order bits specify the number of entries |
| // and the high order bits specify the type. |
| Ty = NumEntries >> 2; |
| isTypeType = sanitizeTypeId(Ty); |
| NumEntries &= 3; |
| } |
| |
| // if we're reading a pre 1.3 bytecode file and the type plane |
| // is the "type type", handle it here |
| if (isTypeType) { |
| ParseCompactionTypes(NumEntries); |
| } else { |
| // Make sure we have enough room for the plane. |
| if (Ty >= CompactionValues.size()) |
| CompactionValues.resize(Ty+1); |
| |
| // Make sure the plane is empty or we have some kind of error. |
| if (!CompactionValues[Ty].empty()) |
| error("Compaction table plane contains multiple entries!"); |
| |
| // Notify handler about the plane. |
| if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries); |
| |
| // Push the implicit zero. |
| CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty))); |
| |
| // Read in each of the entries, put them in the compaction table |
| // and notify the handler that we have a new compaction table value. |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned ValSlot = read_vbr_uint(); |
| Value *V = getGlobalTableValue(Ty, ValSlot); |
| CompactionValues[Ty].push_back(V); |
| if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot); |
| } |
| } |
| } |
| // Notify handler that the compaction table is done. |
| if (Handler) Handler->handleCompactionTableEnd(); |
| } |
| |
| // Parse a single type. The typeid is read in first. If its a primitive type |
| // then nothing else needs to be read, we know how to instantiate it. If its |
| // a derived type, then additional data is read to fill out the type |
| // definition. |
| const Type *BytecodeReader::ParseType() { |
| unsigned PrimType = 0; |
| if (read_typeid(PrimType)) |
| error("Invalid type (type type) in type constants!"); |
| |
| const Type *Result = 0; |
| if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType))) |
| return Result; |
| |
| switch (PrimType) { |
| case Type::FunctionTyID: { |
| const Type *RetType = readSanitizedType(); |
| |
| unsigned NumParams = read_vbr_uint(); |
| |
| std::vector<const Type*> Params; |
| while (NumParams--) |
| Params.push_back(readSanitizedType()); |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| Result = FunctionType::get(RetType, Params, isVarArg); |
| break; |
| } |
| case Type::ArrayTyID: { |
| const Type *ElementType = readSanitizedType(); |
| unsigned NumElements = read_vbr_uint(); |
| Result = ArrayType::get(ElementType, NumElements); |
| break; |
| } |
| case Type::PackedTyID: { |
| const Type *ElementType = readSanitizedType(); |
| unsigned NumElements = read_vbr_uint(); |
| Result = PackedType::get(ElementType, NumElements); |
| break; |
| } |
| case Type::StructTyID: { |
| std::vector<const Type*> Elements; |
| unsigned Typ = 0; |
| if (read_typeid(Typ)) |
| error("Invalid element type (type type) for structure!"); |
| |
| while (Typ) { // List is terminated by void/0 typeid |
| Elements.push_back(getType(Typ)); |
| if (read_typeid(Typ)) |
| error("Invalid element type (type type) for structure!"); |
| } |
| |
| Result = StructType::get(Elements); |
| break; |
| } |
| case Type::PointerTyID: { |
| Result = PointerType::get(readSanitizedType()); |
| break; |
| } |
| |
| case Type::OpaqueTyID: { |
| Result = OpaqueType::get(); |
| break; |
| } |
| |
| default: |
| error("Don't know how to deserialize primitive type " + utostr(PrimType)); |
| break; |
| } |
| if (Handler) Handler->handleType(Result); |
| return Result; |
| } |
| |
| // ParseTypes - We have to use this weird code to handle recursive |
| // types. We know that recursive types will only reference the current slab of |
| // values in the type plane, but they can forward reference types before they |
| // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might |
| // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix |
| // this ugly problem, we pessimistically insert an opaque type for each type we |
| // are about to read. This means that forward references will resolve to |
| // something and when we reread the type later, we can replace the opaque type |
| // with a new resolved concrete type. |
| // |
| void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){ |
| assert(Tab.size() == 0 && "should not have read type constants in before!"); |
| |
| // Insert a bunch of opaque types to be resolved later... |
| Tab.reserve(NumEntries); |
| for (unsigned i = 0; i != NumEntries; ++i) |
| Tab.push_back(OpaqueType::get()); |
| |
| if (Handler) |
| Handler->handleTypeList(NumEntries); |
| |
| // If we are about to resolve types, make sure the type cache is clear. |
| if (NumEntries) |
| ModuleTypeIDCache.clear(); |
| |
| // Loop through reading all of the types. Forward types will make use of the |
| // opaque types just inserted. |
| // |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| const Type* NewTy = ParseType(); |
| const Type* OldTy = Tab[i].get(); |
| if (NewTy == 0) |
| error("Couldn't parse type!"); |
| |
| // Don't directly push the new type on the Tab. Instead we want to replace |
| // the opaque type we previously inserted with the new concrete value. This |
| // approach helps with forward references to types. The refinement from the |
| // abstract (opaque) type to the new type causes all uses of the abstract |
| // type to use the concrete type (NewTy). This will also cause the opaque |
| // type to be deleted. |
| cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy); |
| |
| // This should have replaced the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the system. |
| // Let's just make sure it did. |
| assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); |
| } |
| } |
| |
| // Upgrade obsolete constant expression opcodes (ver. 5 and prior) to the new |
| // values used after ver 6. bytecode format. The operands are provided to the |
| // function so that decisions based on the operand type can be made when |
| // auto-upgrading obsolete opcodes to the new ones. |
| // NOTE: This code needs to be kept synchronized with handleObsoleteOpcodes. |
| // We can't use that function because of that functions argument requirements. |
| // This function only deals with the subset of opcodes that are applicable to |
| // constant expressions and is therefore simpler than handleObsoleteOpcodes. |
| inline unsigned fixCEOpcodes( |
| unsigned Opcode, const std::vector<Constant*> &ArgVec |
| ) { |
| switch (Opcode) { |
| default: // Pass Through |
| // If we don't match any of the cases here then the opcode is fine the |
| // way it is. |
| break; |
| case 7: // Add |
| Opcode = Instruction::Add; |
| break; |
| case 8: // Sub |
| Opcode = Instruction::Sub; |
| break; |
| case 9: // Mul |
| Opcode = Instruction::Mul; |
| break; |
| case 10: // Div |
| // The type of the instruction is based on the operands. We need to select |
| // either udiv or sdiv based on that type. This expression selects the |
| // cases where the type is floating point or signed in which case we |
| // generated an sdiv instruction. |
| if (ArgVec[0]->getType()->isFloatingPoint()) |
| Opcode = Instruction::FDiv; |
| else if (ArgVec[0]->getType()->isSigned()) |
| Opcode = Instruction::SDiv; |
| else |
| Opcode = Instruction::UDiv; |
| break; |
| case 11: // Rem |
| // As with "Div", make the signed/unsigned or floating point Rem |
| // instruction choice based on the type of the operands. |
| if (ArgVec[0]->getType()->isFloatingPoint()) |
| Opcode = Instruction::FRem; |
| else if (ArgVec[0]->getType()->isSigned()) |
| Opcode = Instruction::SRem; |
| else |
| Opcode = Instruction::URem; |
| break; |
| case 12: // And |
| Opcode = Instruction::And; |
| break; |
| case 13: // Or |
| Opcode = Instruction::Or; |
| break; |
| case 14: // Xor |
| Opcode = Instruction::Xor; |
| break; |
| case 15: // SetEQ |
| Opcode = Instruction::SetEQ; |
| break; |
| case 16: // SetNE |
| Opcode = Instruction::SetNE; |
| break; |
| case 17: // SetLE |
| Opcode = Instruction::SetLE; |
| break; |
| case 18: // SetGE |
| Opcode = Instruction::SetGE; |
| break; |
| case 19: // SetLT |
| Opcode = Instruction::SetLT; |
| break; |
| case 20: // SetGT |
| Opcode = Instruction::SetGT; |
| break; |
| case 26: // GetElementPtr |
| Opcode = Instruction::GetElementPtr; |
| break; |
| case 28: // Cast |
| Opcode = Instruction::Cast; |
| break; |
| case 30: // Shl |
| Opcode = Instruction::Shl; |
| break; |
| case 31: // Shr |
| Opcode = Instruction::Shr; |
| break; |
| case 34: // Select |
| Opcode = Instruction::Select; |
| break; |
| case 38: // ExtractElement |
| Opcode = Instruction::ExtractElement; |
| break; |
| case 39: // InsertElement |
| Opcode = Instruction::InsertElement; |
| break; |
| case 40: // ShuffleVector |
| Opcode = Instruction::ShuffleVector; |
| break; |
| } |
| return Opcode; |
| } |
| |
| /// Parse a single constant value |
| Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) { |
| // We must check for a ConstantExpr before switching by type because |
| // a ConstantExpr can be of any type, and has no explicit value. |
| // |
| // 0 if not expr; numArgs if is expr |
| unsigned isExprNumArgs = read_vbr_uint(); |
| |
| if (isExprNumArgs) { |
| if (!hasNoUndefValue) { |
| // 'undef' is encoded with 'exprnumargs' == 1. |
| if (isExprNumArgs == 1) |
| return UndefValue::get(getType(TypeID)); |
| |
| // Inline asm is encoded with exprnumargs == ~0U. |
| if (isExprNumArgs == ~0U) { |
| std::string AsmStr = read_str(); |
| std::string ConstraintStr = read_str(); |
| unsigned Flags = read_vbr_uint(); |
| |
| const PointerType *PTy = dyn_cast<PointerType>(getType(TypeID)); |
| const FunctionType *FTy = |
| PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; |
| |
| if (!FTy || !InlineAsm::Verify(FTy, ConstraintStr)) |
| error("Invalid constraints for inline asm"); |
| if (Flags & ~1U) |
| error("Invalid flags for inline asm"); |
| bool HasSideEffects = Flags & 1; |
| return InlineAsm::get(FTy, AsmStr, ConstraintStr, HasSideEffects); |
| } |
| |
| --isExprNumArgs; |
| } |
| |
| // FIXME: Encoding of constant exprs could be much more compact! |
| std::vector<Constant*> ArgVec; |
| ArgVec.reserve(isExprNumArgs); |
| unsigned Opcode = read_vbr_uint(); |
| |
| // Bytecode files before LLVM 1.4 need have a missing terminator inst. |
| if (hasNoUnreachableInst) Opcode++; |
| |
| // Read the slot number and types of each of the arguments |
| for (unsigned i = 0; i != isExprNumArgs; ++i) { |
| unsigned ArgValSlot = read_vbr_uint(); |
| unsigned ArgTypeSlot = 0; |
| if (read_typeid(ArgTypeSlot)) |
| error("Invalid argument type (type type) for constant value"); |
| |
| // Get the arg value from its slot if it exists, otherwise a placeholder |
| ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot)); |
| } |
| |
| // Handle backwards compatibility for the opcode numbers |
| if (hasSignlessInstructions) |
| Opcode = fixCEOpcodes(Opcode, ArgVec); |
| |
| // Construct a ConstantExpr of the appropriate kind |
| if (isExprNumArgs == 1) { // All one-operand expressions |
| if (Opcode != Instruction::Cast) |
| error("Only cast instruction has one argument for ConstantExpr"); |
| |
| Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID)); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr |
| std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end()); |
| |
| if (hasRestrictedGEPTypes) { |
| const Type *BaseTy = ArgVec[0]->getType(); |
| generic_gep_type_iterator<std::vector<Constant*>::iterator> |
| GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()), |
| E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end()); |
| for (unsigned i = 0; GTI != E; ++GTI, ++i) |
| if (isa<StructType>(*GTI)) { |
| if (IdxList[i]->getType() != Type::UByteTy) |
| error("Invalid index for getelementptr!"); |
| IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy); |
| } |
| } |
| |
| Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::Select) { |
| if (ArgVec.size() != 3) |
| error("Select instruction must have three arguments."); |
| Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1], |
| ArgVec[2]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::ExtractElement) { |
| if (ArgVec.size() != 2 || |
| !ExtractElementInst::isValidOperands(ArgVec[0], ArgVec[1])) |
| error("Invalid extractelement constand expr arguments"); |
| Constant* Result = ConstantExpr::getExtractElement(ArgVec[0], ArgVec[1]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::InsertElement) { |
| if (ArgVec.size() != 3 || |
| !InsertElementInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2])) |
| error("Invalid insertelement constand expr arguments"); |
| |
| Constant *Result = |
| ConstantExpr::getInsertElement(ArgVec[0], ArgVec[1], ArgVec[2]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::ShuffleVector) { |
| if (ArgVec.size() != 3 || |
| !ShuffleVectorInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2])) |
| error("Invalid shufflevector constant expr arguments."); |
| Constant *Result = |
| ConstantExpr::getShuffleVector(ArgVec[0], ArgVec[1], ArgVec[2]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else { // All other 2-operand expressions |
| Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } |
| } |
| |
| // Ok, not an ConstantExpr. We now know how to read the given type... |
| const Type *Ty = getType(TypeID); |
| Constant *Result = 0; |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: { |
| unsigned Val = read_vbr_uint(); |
| if (Val != 0 && Val != 1) |
| error("Invalid boolean value read."); |
| Result = ConstantBool::get(Val == 1); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| } |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: { |
| unsigned Val = read_vbr_uint(); |
| if (!ConstantInt::isValueValidForType(Ty, uint64_t(Val))) |
| error("Invalid unsigned byte/short/int read."); |
| Result = ConstantInt::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| } |
| |
| case Type::ULongTyID: |
| Result = ConstantInt::get(Ty, read_vbr_uint64()); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| |
| case Type::SByteTyID: // Signed integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: |
| case Type::LongTyID: { |
| int64_t Val = read_vbr_int64(); |
| if (!ConstantInt::isValueValidForType(Ty, Val)) |
| error("Invalid signed byte/short/int/long read."); |
| Result = ConstantInt::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| } |
| |
| case Type::FloatTyID: { |
| float Val; |
| read_float(Val); |
| Result = ConstantFP::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| } |
| |
| case Type::DoubleTyID: { |
| double Val; |
| read_double(Val); |
| Result = ConstantFP::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| break; |
| } |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(Ty); |
| unsigned NumElements = AT->getNumElements(); |
| unsigned TypeSlot = getTypeSlot(AT->getElementType()); |
| std::vector<Constant*> Elements; |
| Elements.reserve(NumElements); |
| while (NumElements--) // Read all of the elements of the constant. |
| Elements.push_back(getConstantValue(TypeSlot, |
| read_vbr_uint())); |
| Result = ConstantArray::get(AT, Elements); |
| if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result); |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(Ty); |
| |
| std::vector<Constant *> Elements; |
| Elements.reserve(ST->getNumElements()); |
| for (unsigned i = 0; i != ST->getNumElements(); ++i) |
| Elements.push_back(getConstantValue(ST->getElementType(i), |
| read_vbr_uint())); |
| |
| Result = ConstantStruct::get(ST, Elements); |
| if (Handler) Handler->handleConstantStruct(ST, Elements, Result); |
| break; |
| } |
| |
| case Type::PackedTyID: { |
| const PackedType *PT = cast<PackedType>(Ty); |
| unsigned NumElements = PT->getNumElements(); |
| unsigned TypeSlot = getTypeSlot(PT->getElementType()); |
| std::vector<Constant*> Elements; |
| Elements.reserve(NumElements); |
| while (NumElements--) // Read all of the elements of the constant. |
| Elements.push_back(getConstantValue(TypeSlot, |
| read_vbr_uint())); |
| Result = ConstantPacked::get(PT, Elements); |
| if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result); |
| break; |
| } |
| |
| case Type::PointerTyID: { // ConstantPointerRef value (backwards compat). |
| const PointerType *PT = cast<PointerType>(Ty); |
| unsigned Slot = read_vbr_uint(); |
| |
| // Check to see if we have already read this global variable... |
| Value *Val = getValue(TypeID, Slot, false); |
| if (Val) { |
| GlobalValue *GV = dyn_cast<GlobalValue>(Val); |
| if (!GV) error("GlobalValue not in ValueTable!"); |
| if (Handler) Handler->handleConstantPointer(PT, Slot, GV); |
| return GV; |
| } else { |
| error("Forward references are not allowed here."); |
| } |
| } |
| |
| default: |
| error("Don't know how to deserialize constant value of type '" + |
| Ty->getDescription()); |
| break; |
| } |
| |
| // Check that we didn't read a null constant if they are implicit for this |
| // type plane. Do not do this check for constantexprs, as they may be folded |
| // to a null value in a way that isn't predicted when a .bc file is initially |
| // produced. |
| assert((!isa<Constant>(Result) || !cast<Constant>(Result)->isNullValue()) || |
| !hasImplicitNull(TypeID) && |
| "Cannot read null values from bytecode!"); |
| return Result; |
| } |
| |
| /// Resolve references for constants. This function resolves the forward |
| /// referenced constants in the ConstantFwdRefs map. It uses the |
| /// replaceAllUsesWith method of Value class to substitute the placeholder |
| /// instance with the actual instance. |
| void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ, |
| unsigned Slot) { |
| ConstantRefsType::iterator I = |
| ConstantFwdRefs.find(std::make_pair(Typ, Slot)); |
| if (I == ConstantFwdRefs.end()) return; // Never forward referenced? |
| |
| Value *PH = I->second; // Get the placeholder... |
| PH->replaceAllUsesWith(NewV); |
| delete PH; // Delete the old placeholder |
| ConstantFwdRefs.erase(I); // Remove the map entry for it |
| } |
| |
| /// Parse the constant strings section. |
| void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){ |
| for (; NumEntries; --NumEntries) { |
| unsigned Typ = 0; |
| if (read_typeid(Typ)) |
| error("Invalid type (type type) for string constant"); |
| const Type *Ty = getType(Typ); |
| if (!isa<ArrayType>(Ty)) |
| error("String constant data invalid!"); |
| |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| if (ATy->getElementType() != Type::SByteTy && |
| ATy->getElementType() != Type::UByteTy) |
| error("String constant data invalid!"); |
| |
| // Read character data. The type tells us how long the string is. |
| char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements())); |
| read_data(Data, Data+ATy->getNumElements()); |
| |
| std::vector<Constant*> Elements(ATy->getNumElements()); |
| const Type* ElemType = ATy->getElementType(); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| Elements[i] = ConstantInt::get(ElemType, (unsigned char)Data[i]); |
| |
| // Create the constant, inserting it as needed. |
| Constant *C = ConstantArray::get(ATy, Elements); |
| unsigned Slot = insertValue(C, Typ, Tab); |
| ResolveReferencesToConstant(C, Typ, Slot); |
| if (Handler) Handler->handleConstantString(cast<ConstantArray>(C)); |
| } |
| } |
| |
| /// Parse the constant pool. |
| void BytecodeReader::ParseConstantPool(ValueTable &Tab, |
| TypeListTy &TypeTab, |
| bool isFunction) { |
| if (Handler) Handler->handleGlobalConstantsBegin(); |
| |
| /// In LLVM 1.3 Type does not derive from Value so the types |
| /// do not occupy a plane. Consequently, we read the types |
| /// first in the constant pool. |
| if (isFunction && !hasTypeDerivedFromValue) { |
| unsigned NumEntries = read_vbr_uint(); |
| ParseTypes(TypeTab, NumEntries); |
| } |
| |
| while (moreInBlock()) { |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| |
| /// In LLVM 1.2 and before, Types were written to the |
| /// bytecode file in the "Type Type" plane (#12). |
| /// In 1.3 plane 12 is now the label plane. Handle this here. |
| if (isTypeType) { |
| ParseTypes(TypeTab, NumEntries); |
| } else if (Typ == Type::VoidTyID) { |
| /// Use of Type::VoidTyID is a misnomer. It actually means |
| /// that the following plane is constant strings |
| assert(&Tab == &ModuleValues && "Cannot read strings in functions!"); |
| ParseStringConstants(NumEntries, Tab); |
| } else { |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| Value *V = ParseConstantPoolValue(Typ); |
| assert(V && "ParseConstantPoolValue returned NULL!"); |
| unsigned Slot = insertValue(V, Typ, Tab); |
| |
| // If we are reading a function constant table, make sure that we adjust |
| // the slot number to be the real global constant number. |
| // |
| if (&Tab != &ModuleValues && Typ < ModuleValues.size() && |
| ModuleValues[Typ]) |
| Slot += ModuleValues[Typ]->size(); |
| if (Constant *C = dyn_cast<Constant>(V)) |
| ResolveReferencesToConstant(C, Typ, Slot); |
| } |
| } |
| } |
| |
| // After we have finished parsing the constant pool, we had better not have |
| // any dangling references left. |
| if (!ConstantFwdRefs.empty()) { |
| ConstantRefsType::const_iterator I = ConstantFwdRefs.begin(); |
| Constant* missingConst = I->second; |
| error(utostr(ConstantFwdRefs.size()) + |
| " unresolved constant reference exist. First one is '" + |
| missingConst->getName() + "' of type '" + |
| missingConst->getType()->getDescription() + "'."); |
| } |
| |
| checkPastBlockEnd("Constant Pool"); |
| if (Handler) Handler->handleGlobalConstantsEnd(); |
| } |
| |
| /// Parse the contents of a function. Note that this function can be |
| /// called lazily by materializeFunction |
| /// @see materializeFunction |
| void BytecodeReader::ParseFunctionBody(Function* F) { |
| |
| unsigned FuncSize = BlockEnd - At; |
| GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; |
| |
| unsigned LinkageType = read_vbr_uint(); |
| switch (LinkageType) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| case 5: Linkage = GlobalValue::DLLImportLinkage; break; |
| case 6: Linkage = GlobalValue::DLLExportLinkage; break; |
| case 7: Linkage = GlobalValue::ExternalWeakLinkage; break; |
| default: |
| error("Invalid linkage type for Function."); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| F->setLinkage(Linkage); |
| if (Handler) Handler->handleFunctionBegin(F,FuncSize); |
| |
| // Keep track of how many basic blocks we have read in... |
| unsigned BlockNum = 0; |
| bool InsertedArguments = false; |
| |
| BufPtr MyEnd = BlockEnd; |
| while (At < MyEnd) { |
| unsigned Type, Size; |
| BufPtr OldAt = At; |
| read_block(Type, Size); |
| |
| switch (Type) { |
| case BytecodeFormat::ConstantPoolBlockID: |
| if (!InsertedArguments) { |
| // Insert arguments into the value table before we parse the first basic |
| // block in the function, but after we potentially read in the |
| // compaction table. |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| ParseConstantPool(FunctionValues, FunctionTypes, true); |
| break; |
| |
| case BytecodeFormat::CompactionTableBlockID: |
| ParseCompactionTable(); |
| break; |
| |
| case BytecodeFormat::BasicBlock: { |
| if (!InsertedArguments) { |
| // Insert arguments into the value table before we parse the first basic |
| // block in the function, but after we potentially read in the |
| // compaction table. |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| BasicBlock *BB = ParseBasicBlock(BlockNum++); |
| F->getBasicBlockList().push_back(BB); |
| break; |
| } |
| |
| case BytecodeFormat::InstructionListBlockID: { |
| // Insert arguments into the value table before we parse the instruction |
| // list for the function, but after we potentially read in the compaction |
| // table. |
| if (!InsertedArguments) { |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| if (BlockNum) |
| error("Already parsed basic blocks!"); |
| BlockNum = ParseInstructionList(F); |
| break; |
| } |
| |
| case BytecodeFormat::SymbolTableBlockID: |
| ParseSymbolTable(F, &F->getSymbolTable()); |
| break; |
| |
| default: |
| At += Size; |
| if (OldAt > At) |
| error("Wrapped around reading bytecode."); |
| break; |
| } |
| BlockEnd = MyEnd; |
| |
| // Malformed bc file if read past end of block. |
| align32(); |
| } |
| |
| // Make sure there were no references to non-existant basic blocks. |
| if (BlockNum != ParsedBasicBlocks.size()) |
| error("Illegal basic block operand reference"); |
| |
| ParsedBasicBlocks.clear(); |
| |
| // Resolve forward references. Replace any uses of a forward reference value |
| // with the real value. |
| while (!ForwardReferences.empty()) { |
| std::map<std::pair<unsigned,unsigned>, Value*>::iterator |
| I = ForwardReferences.begin(); |
| Value *V = getValue(I->first.first, I->first.second, false); |
| Value *PlaceHolder = I->second; |
| PlaceHolder->replaceAllUsesWith(V); |
| ForwardReferences.erase(I); |
| delete PlaceHolder; |
| } |
| |
| // If upgraded intrinsic functions were detected during reading of the |
| // module information, then we need to look for instructions that need to |
| // be upgraded. This can't be done while the instructions are read in because |
| // additional instructions inserted mess up the slot numbering. |
| if (!upgradedFunctions.empty()) { |
| for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI) |
| for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); |
| II != IE;) |
| if (CallInst* CI = dyn_cast<CallInst>(II++)) { |
| std::map<Function*,Function*>::iterator FI = |
| upgradedFunctions.find(CI->getCalledFunction()); |
| if (FI != upgradedFunctions.end()) |
| UpgradeIntrinsicCall(CI, FI->second); |
| } |
| } |
| |
| // Clear out function-level types... |
| FunctionTypes.clear(); |
| CompactionTypes.clear(); |
| CompactionValues.clear(); |
| freeTable(FunctionValues); |
| |
| if (Handler) Handler->handleFunctionEnd(F); |
| } |
| |
| /// This function parses LLVM functions lazily. It obtains the type of the |
| /// function and records where the body of the function is in the bytecode |
| /// buffer. The caller can then use the ParseNextFunction and |
| /// ParseAllFunctionBodies to get handler events for the functions. |
| void BytecodeReader::ParseFunctionLazily() { |
| if (FunctionSignatureList.empty()) |
| error("FunctionSignatureList empty!"); |
| |
| Function *Func = FunctionSignatureList.back(); |
| FunctionSignatureList.pop_back(); |
| |
| // Save the information for future reading of the function |
| LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd); |
| |
| // This function has a body but it's not loaded so it appears `External'. |
| // Mark it as a `Ghost' instead to notify the users that it has a body. |
| Func->setLinkage(GlobalValue::GhostLinkage); |
| |
| // Pretend we've `parsed' this function |
| At = BlockEnd; |
| } |
| |
| /// The ParserFunction method lazily parses one function. Use this method to |
| /// casue the parser to parse a specific function in the module. Note that |
| /// this will remove the function from what is to be included by |
| /// ParseAllFunctionBodies. |
| /// @see ParseAllFunctionBodies |
| /// @see ParseBytecode |
| bool BytecodeReader::ParseFunction(Function* Func, std::string* ErrMsg) { |
| |
| if (setjmp(context)) |
| return true; |
| |
| // Find {start, end} pointers and slot in the map. If not there, we're done. |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func); |
| |
| // Make sure we found it |
| if (Fi == LazyFunctionLoadMap.end()) { |
| error("Unrecognized function of type " + Func->getType()->getDescription()); |
| return true; |
| } |
| |
| BlockStart = At = Fi->second.Buf; |
| BlockEnd = Fi->second.EndBuf; |
| assert(Fi->first == Func && "Found wrong function?"); |
| |
| LazyFunctionLoadMap.erase(Fi); |
| |
| this->ParseFunctionBody(Func); |
| return false; |
| } |
| |
| /// The ParseAllFunctionBodies method parses through all the previously |
| /// unparsed functions in the bytecode file. If you want to completely parse |
| /// a bytecode file, this method should be called after Parsebytecode because |
| /// Parsebytecode only records the locations in the bytecode file of where |
| /// the function definitions are located. This function uses that information |
| /// to materialize the functions. |
| /// @see ParseBytecode |
| bool BytecodeReader::ParseAllFunctionBodies(std::string* ErrMsg) { |
| if (setjmp(context)) |
| return true; |
| |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin(); |
| LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end(); |
| |
| while (Fi != Fe) { |
| Function* Func = Fi->first; |
| BlockStart = At = Fi->second.Buf; |
| BlockEnd = Fi->second.EndBuf; |
| ParseFunctionBody(Func); |
| ++Fi; |
| } |
| LazyFunctionLoadMap.clear(); |
| return false; |
| } |
| |
| /// Parse the global type list |
| void BytecodeReader::ParseGlobalTypes() { |
| // Read the number of types |
| unsigned NumEntries = read_vbr_uint(); |
| |
| // Ignore the type plane identifier for types if the bc file is pre 1.3 |
| if (hasTypeDerivedFromValue) |
| read_vbr_uint(); |
| |
| ParseTypes(ModuleTypes, NumEntries); |
| } |
| |
| /// Parse the Global info (types, global vars, constants) |
| void BytecodeReader::ParseModuleGlobalInfo() { |
| |
| if (Handler) Handler->handleModuleGlobalsBegin(); |
| |
| // SectionID - If a global has an explicit section specified, this map |
| // remembers the ID until we can translate it into a string. |
| std::map<GlobalValue*, unsigned> SectionID; |
| |
| // Read global variables... |
| unsigned VarType = read_vbr_uint(); |
| while (VarType != Type::VoidTyID) { // List is terminated by Void |
| // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = |
| // Linkage, bit4+ = slot# |
| unsigned SlotNo = VarType >> 5; |
| if (sanitizeTypeId(SlotNo)) |
| error("Invalid type (type type) for global var!"); |
| unsigned LinkageID = (VarType >> 2) & 7; |
| bool isConstant = VarType & 1; |
| bool hasInitializer = (VarType & 2) != 0; |
| unsigned Alignment = 0; |
| unsigned GlobalSectionID = 0; |
| |
| // An extension word is present when linkage = 3 (internal) and hasinit = 0. |
| if (LinkageID == 3 && !hasInitializer) { |
| unsigned ExtWord = read_vbr_uint(); |
| // The extension word has this format: bit 0 = has initializer, bit 1-3 = |
| // linkage, bit 4-8 = alignment (log2), bits 10+ = future use. |
| hasInitializer = ExtWord & 1; |
| LinkageID = (ExtWord >> 1) & 7; |
| Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1; |
| |
| if (ExtWord & (1 << 9)) // Has a section ID. |
| GlobalSectionID = read_vbr_uint(); |
| } |
| |
| GlobalValue::LinkageTypes Linkage; |
| switch (LinkageID) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| case 5: Linkage = GlobalValue::DLLImportLinkage; break; |
| case 6: Linkage = GlobalValue::DLLExportLinkage; break; |
| case 7: Linkage = GlobalValue::ExternalWeakLinkage; break; |
| default: |
| error("Unknown linkage type: " + utostr(LinkageID)); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| const Type *Ty = getType(SlotNo); |
| if (!Ty) |
| error("Global has no type! SlotNo=" + utostr(SlotNo)); |
| |
| if (!isa<PointerType>(Ty)) |
| error("Global not a pointer type! Ty= " + Ty->getDescription()); |
| |
| const Type *ElTy = cast<PointerType>(Ty)->getElementType(); |
| |
| // Create the global variable... |
| GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage, |
| 0, "", TheModule); |
| GV->setAlignment(Alignment); |
| insertValue(GV, SlotNo, ModuleValues); |
| |
| if (GlobalSectionID != 0) |
| SectionID[GV] = GlobalSectionID; |
| |
| unsigned initSlot = 0; |
| if (hasInitializer) { |
| initSlot = read_vbr_uint(); |
| GlobalInits.push_back(std::make_pair(GV, initSlot)); |
| } |
| |
| // Notify handler about the global value. |
| if (Handler) |
| Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot); |
| |
| // Get next item |
| VarType = read_vbr_uint(); |
| } |
| |
| // Read the function objects for all of the functions that are coming |
| unsigned FnSignature = read_vbr_uint(); |
| |
| if (hasNoFlagsForFunctions) |
| FnSignature = (FnSignature << 5) + 1; |
| |
| // List is terminated by VoidTy. |
| while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) { |
| const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5); |
| if (!isa<PointerType>(Ty) || |
| !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) { |
| error("Function not a pointer to function type! Ty = " + |
| Ty->getDescription()); |
| } |
| |
| // We create functions by passing the underlying FunctionType to create... |
| const FunctionType* FTy = |
| cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); |
| |
| // Insert the place holder. |
| Function *Func = new Function(FTy, GlobalValue::ExternalLinkage, |
| "", TheModule); |
| |
| insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues); |
| |
| // Flags are not used yet. |
| unsigned Flags = FnSignature & 31; |
| |
| // Save this for later so we know type of lazily instantiated functions. |
| // Note that known-external functions do not have FunctionInfo blocks, so we |
| // do not add them to the FunctionSignatureList. |
| if ((Flags & (1 << 4)) == 0) |
| FunctionSignatureList.push_back(Func); |
| |
| // Get the calling convention from the low bits. |
| unsigned CC = Flags & 15; |
| unsigned Alignment = 0; |
| if (FnSignature & (1 << 31)) { // Has extension word? |
| unsigned ExtWord = read_vbr_uint(); |
| Alignment = (1 << (ExtWord & 31)) >> 1; |
| CC |= ((ExtWord >> 5) & 15) << 4; |
| |
| if (ExtWord & (1 << 10)) // Has a section ID. |
| SectionID[Func] = read_vbr_uint(); |
| |
| // Parse external declaration linkage |
| switch ((ExtWord >> 11) & 3) { |
| case 0: break; |
| case 1: Func->setLinkage(Function::DLLImportLinkage); break; |
| case 2: Func->setLinkage(Function::ExternalWeakLinkage); break; |
| default: assert(0 && "Unsupported external linkage"); |
| } |
| } |
| |
| Func->setCallingConv(CC-1); |
| Func->setAlignment(Alignment); |
| |
| if (Handler) Handler->handleFunctionDeclaration(Func); |
| |
| // Get the next function signature. |
| FnSignature = read_vbr_uint(); |
| if (hasNoFlagsForFunctions) |
| FnSignature = (FnSignature << 5) + 1; |
| } |
| |
| // Now that the function signature list is set up, reverse it so that we can |
| // remove elements efficiently from the back of the vector. |
| std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); |
| |
| /// SectionNames - This contains the list of section names encoded in the |
| /// moduleinfoblock. Functions and globals with an explicit section index |
| /// into this to get their section name. |
| std::vector<std::string> SectionNames; |
| |
| if (hasInconsistentModuleGlobalInfo) { |
| align32(); |
| } else if (!hasNoDependentLibraries) { |
| // If this bytecode format has dependent library information in it, read in |
| // the number of dependent library items that follow. |
| unsigned num_dep_libs = read_vbr_uint(); |
| std::string dep_lib; |
| while (num_dep_libs--) { |
| dep_lib = read_str(); |
| TheModule->addLibrary(dep_lib); |
| if (Handler) |
| Handler->handleDependentLibrary(dep_lib); |
| } |
| |
| // Read target triple and place into the module. |
| std::string triple = read_str(); |
| TheModule->setTargetTriple(triple); |
| if (Handler) |
| Handler->handleTargetTriple(triple); |
| |
| if (!hasAlignment && At != BlockEnd) { |
| // If the file has section info in it, read the section names now. |
| unsigned NumSections = read_vbr_uint(); |
| while (NumSections--) |
| SectionNames.push_back(read_str()); |
| } |
| |
| // If the file has module-level inline asm, read it now. |
| if (!hasAlignment && At != BlockEnd) |
| TheModule->setModuleInlineAsm(read_str()); |
| } |
| |
| // If any globals are in specified sections, assign them now. |
| for (std::map<GlobalValue*, unsigned>::iterator I = SectionID.begin(), E = |
| SectionID.end(); I != E; ++I) |
| if (I->second) { |
| if (I->second > SectionID.size()) |
| error("SectionID out of range for global!"); |
| I->first->setSection(SectionNames[I->second-1]); |
| } |
| |
| // This is for future proofing... in the future extra fields may be added that |
| // we don't understand, so we transparently ignore them. |
| // |
| At = BlockEnd; |
| |
| if (Handler) Handler->handleModuleGlobalsEnd(); |
| } |
| |
| /// Parse the version information and decode it by setting flags on the |
| /// Reader that enable backward compatibility of the reader. |
| void BytecodeReader::ParseVersionInfo() { |
| unsigned Version = read_vbr_uint(); |
| |
| // Unpack version number: low four bits are for flags, top bits = version |
| Module::Endianness Endianness; |
| Module::PointerSize PointerSize; |
| Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian; |
| PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; |
| |
| bool hasNoEndianness = Version & 4; |
| bool hasNoPointerSize = Version & 8; |
| |
| RevisionNum = Version >> 4; |
| |
| // Default values for the current bytecode version |
| hasInconsistentModuleGlobalInfo = false; |
| hasExplicitPrimitiveZeros = false; |
| hasRestrictedGEPTypes = false; |
| hasTypeDerivedFromValue = false; |
| hasLongBlockHeaders = false; |
| has32BitTypes = false; |
| hasNoDependentLibraries = false; |
| hasAlignment = false; |
| hasNoUndefValue = false; |
| hasNoFlagsForFunctions = false; |
| hasNoUnreachableInst = false; |
| hasSignlessInstructions = false; |
| |
| // Determine which backwards compatibility flags to set based on the |
| // bytecode file's version number |
| switch (RevisionNum) { |
| case 0: // LLVM 1.0, 1.1 (Released) |
| // Base LLVM 1.0 bytecode format. |
| hasInconsistentModuleGlobalInfo = true; |
| hasExplicitPrimitiveZeros = true; |
| |
| // FALL THROUGH |
| |
| case 1: // LLVM 1.2 (Released) |
| // LLVM 1.2 added explicit support for emitting strings efficiently. |
| |
| // Also, it fixed the problem where the size of the ModuleGlobalInfo block |
| // included the size for the alignment at the end, where the rest of the |
| // blocks did not. |
| |
| // LLVM 1.2 and before required that GEP indices be ubyte constants for |
| // structures and longs for sequential types. |
| hasRestrictedGEPTypes = true; |
| |
| // LLVM 1.2 and before had the Type class derive from Value class. This |
| // changed in release 1.3 and consequently LLVM 1.3 bytecode files are |
| // written differently because Types can no longer be part of the |
| // type planes for Values. |
| hasTypeDerivedFromValue = true; |
| |
| // FALL THROUGH |
| |
| case 2: // 1.2.5 (Not Released) |
| |
| // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful, |
| // especially for small files where the 8 bytes per block is a large |
| // fraction of the total block size. In LLVM 1.3, the block type and length |
| // are compressed into a single 32-bit unsigned integer. 27 bits for length, |
| // 5 bits for block type. |
| hasLongBlockHeaders = true; |
| |
| // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3 |
| // this has been reduced to vbr_uint24. It shouldn't make much difference |
| // since we haven't run into a module with > 24 million types, but for |
| // safety the 24-bit restriction has been enforced in 1.3 to free some bits |
| // in various places and to ensure consistency. |
| has32BitTypes = true; |
| |
| // LLVM 1.2 and earlier did not provide a target triple nor a list of |
| // libraries on which the bytecode is dependent. LLVM 1.3 provides these |
| // features, for use in future versions of LLVM. |
| hasNoDependentLibraries = true; |
| |
| // FALL THROUGH |
| |
| case 3: // LLVM 1.3 (Released) |
| // LLVM 1.3 and earlier caused alignment bytes to be written on some block |
| // boundaries and at the end of some strings. In extreme cases (e.g. lots |
| // of GEP references to a constant array), this can increase the file size |
| // by 30% or more. In version 1.4 alignment is done away with completely. |
| hasAlignment = true; |
| |
| // FALL THROUGH |
| |
| case 4: // 1.3.1 (Not Released) |
| // In version 4, we did not support the 'undef' constant. |
| hasNoUndefValue = true; |
| |
| // In version 4 and above, we did not include space for flags for functions |
| // in the module info block. |
| hasNoFlagsForFunctions = true; |
| |
| // In version 4 and above, we did not include the 'unreachable' instruction |
| // in the opcode numbering in the bytecode file. |
| hasNoUnreachableInst = true; |
| |
| // FALL THROUGH |
| |
| case 5: // 1.4 (Released) |
| // In version 5 and prior, instructions were signless while integer types |
| // were signed. In version 6, instructions became signed and types became |
| // signless. For example in version 5 we have the DIV instruction but in |
| // version 6 we have FDIV, SDIV and UDIV to replace it. This caused a |
| // renumbering of the instruction codes in version 6 that must be dealt with |
| // when reading old bytecode files. |
| hasSignlessInstructions = true; |
| |
| // FALL THROUGH |
| |
| case 6: // SignlessTypes Implementation (1.9 release) |
| break; |
| |
| default: |
| error("Unknown bytecode version number: " + itostr(RevisionNum)); |
| } |
| |
| if (hasNoEndianness) Endianness = Module::AnyEndianness; |
| if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; |
| |
| TheModule->setEndianness(Endianness); |
| TheModule->setPointerSize(PointerSize); |
| |
| if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize); |
| } |
| |
| /// Parse a whole module. |
| void BytecodeReader::ParseModule() { |
| unsigned Type, Size; |
| |
| FunctionSignatureList.clear(); // Just in case... |
| |
| // Read into instance variables... |
| ParseVersionInfo(); |
| align32(); |
| |
| bool SeenModuleGlobalInfo = false; |
| bool SeenGlobalTypePlane = false; |
| BufPtr MyEnd = BlockEnd; |
| while (At < MyEnd) { |
| BufPtr OldAt = At; |
| read_block(Type, Size); |
| |
| switch (Type) { |
| |
| case BytecodeFormat::GlobalTypePlaneBlockID: |
| if (SeenGlobalTypePlane) |
| error("Two GlobalTypePlane Blocks Encountered!"); |
| |
| if (Size > 0) |
| ParseGlobalTypes(); |
| SeenGlobalTypePlane = true; |
| break; |
| |
| case BytecodeFormat::ModuleGlobalInfoBlockID: |
| if (SeenModuleGlobalInfo) |
| error("Two ModuleGlobalInfo Blocks Encountered!"); |
| ParseModuleGlobalInfo(); |
| SeenModuleGlobalInfo = true; |
| break; |
| |
| case BytecodeFormat::ConstantPoolBlockID: |
| ParseConstantPool(ModuleValues, ModuleTypes,false); |
| break; |
| |
| case BytecodeFormat::FunctionBlockID: |
| ParseFunctionLazily(); |
| break; |
| |
| case BytecodeFormat::SymbolTableBlockID: |
| ParseSymbolTable(0, &TheModule->getSymbolTable()); |
| break; |
| |
| default: |
| At += Size; |
| if (OldAt > At) { |
| error("Unexpected Block of Type #" + utostr(Type) + " encountered!"); |
| } |
| break; |
| } |
| BlockEnd = MyEnd; |
| align32(); |
| } |
| |
| // After the module constant pool has been read, we can safely initialize |
| // global variables... |
| while (!GlobalInits.empty()) { |
| GlobalVariable *GV = GlobalInits.back().first; |
| unsigned Slot = GlobalInits.back().second; |
| GlobalInits.pop_back(); |
| |
| // Look up the initializer value... |
| // FIXME: Preserve this type ID! |
| |
| const llvm::PointerType* GVType = GV->getType(); |
| unsigned TypeSlot = getTypeSlot(GVType->getElementType()); |
| if (Constant *CV = getConstantValue(TypeSlot, Slot)) { |
| if (GV->hasInitializer()) |
| error("Global *already* has an initializer?!"); |
| if (Handler) Handler->handleGlobalInitializer(GV,CV); |
| GV->setInitializer(CV); |
| } else |
| error("Cannot find initializer value."); |
| } |
| |
| if (!ConstantFwdRefs.empty()) |
| error("Use of undefined constants in a module"); |
| |
| /// Make sure we pulled them all out. If we didn't then there's a declaration |
| /// but a missing body. That's not allowed. |
| if (!FunctionSignatureList.empty()) |
| error("Function declared, but bytecode stream ended before definition"); |
| } |
| |
| /// This function completely parses a bytecode buffer given by the \p Buf |
| /// and \p Length parameters. |
| bool BytecodeReader::ParseBytecode(volatile BufPtr Buf, unsigned Length, |
| const std::string &ModuleID, |
| std::string* ErrMsg) { |
| |
| /// We handle errors by |
| if (setjmp(context)) { |
| // Cleanup after error |
| if (Handler) Handler->handleError(ErrorMsg); |
| freeState(); |
| delete TheModule; |
| TheModule = 0; |
| if (decompressedBlock != 0 ) { |
| ::free(decompressedBlock); |
| decompressedBlock = 0; |
| } |
| // Set caller's error message, if requested |
| if (ErrMsg) |
| *ErrMsg = ErrorMsg; |
| // Indicate an error occurred |
| return true; |
| } |
| |
| RevisionNum = 0; |
| At = MemStart = BlockStart = Buf; |
| MemEnd = BlockEnd = Buf + Length; |
| |
| // Create the module |
| TheModule = new Module(ModuleID); |
| |
| if (Handler) Handler->handleStart(TheModule, Length); |
| |
| // Read the four bytes of the signature. |
| unsigned Sig = read_uint(); |
| |
| // If this is a compressed file |
| if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) { |
| |
| // Invoke the decompression of the bytecode. Note that we have to skip the |
| // file's magic number which is not part of the compressed block. Hence, |
| // the Buf+4 and Length-4. The result goes into decompressedBlock, a data |
| // member for retention until BytecodeReader is destructed. |
| unsigned decompressedLength = Compressor::decompressToNewBuffer( |
| (char*)Buf+4,Length-4,decompressedBlock); |
| |
| // We must adjust the buffer pointers used by the bytecode reader to point |
| // into the new decompressed block. After decompression, the |
| // decompressedBlock will point to a contiguous memory area that has |
| // the decompressed data. |
| At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock; |
| MemEnd = BlockEnd = Buf + decompressedLength; |
| |
| // else if this isn't a regular (uncompressed) bytecode file, then its |
| // and error, generate that now. |
| } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) { |
| error("Invalid bytecode signature: " + utohexstr(Sig)); |
| } |
| |
| // Tell the handler we're starting a module |
| if (Handler) Handler->handleModuleBegin(ModuleID); |
| |
| // Get the module block and size and verify. This is handled specially |
| // because the module block/size is always written in long format. Other |
| // blocks are written in short format so the read_block method is used. |
| unsigned Type, Size; |
| Type = read_uint(); |
| Size = read_uint(); |
| if (Type != BytecodeFormat::ModuleBlockID) { |
| error("Expected Module Block! Type:" + utostr(Type) + ", Size:" |
| + utostr(Size)); |
| } |
| |
| // It looks like the darwin ranlib program is broken, and adds trailing |
| // garbage to the end of some bytecode files. This hack allows the bc |
| // reader to ignore trailing garbage on bytecode files. |
| if (At + Size < MemEnd) |
| MemEnd = BlockEnd = At+Size; |
| |
| if (At + Size != MemEnd) |
| error("Invalid Top Level Block Length! Type:" + utostr(Type) |
| + ", Size:" + utostr(Size)); |
| |
| // Parse the module contents |
| this->ParseModule(); |
| |
| // Check for missing functions |
| if (hasFunctions()) |
| error("Function expected, but bytecode stream ended!"); |
| |
| // Look for intrinsic functions to upgrade, upgrade them, and save the |
| // mapping from old function to new for use later when instructions are |
| // converted. |
| for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) |
| if (Function* newF = UpgradeIntrinsicFunction(FI)) { |
| upgradedFunctions.insert(std::make_pair(FI, newF)); |
| FI->setName(""); |
| } |
| |
| // Tell the handler we're done with the module |
| if (Handler) |
| Handler->handleModuleEnd(ModuleID); |
| |
| // Tell the handler we're finished the parse |
| if (Handler) Handler->handleFinish(); |
| |
| return false; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| //=== Default Implementations of Handler Methods |
| //===----------------------------------------------------------------------===// |
| |
| BytecodeHandler::~BytecodeHandler() {} |
| |