| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the |
| /// specified members. |
| static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) { |
| SDVTList Res = {VTs, NumVTs}; |
| return Res; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(double V) const { |
| return DoubleToBits(V) == DoubleToBits(Value); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Namespace |
| //===----------------------------------------------------------------------===// |
| |
| /// isBuildVectorAllOnes - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are ~0 or undef. |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BIT_CONVERT) |
| N = N->getOperand(0).Val; |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. |
| SDOperand NotZero = N->getOperand(i); |
| if (isa<ConstantSDNode>(NotZero)) { |
| if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue()) |
| return false; |
| } else if (isa<ConstantFPSDNode>(NotZero)) { |
| MVT::ValueType VT = NotZero.getValueType(); |
| if (VT== MVT::f64) { |
| if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) != |
| (uint64_t)-1) |
| return false; |
| } else { |
| if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) != |
| (uint32_t)-1) |
| return false; |
| } |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != NotZero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| |
| /// isBuildVectorAllZeros - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are 0 or undef. |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BIT_CONVERT) |
| N = N->getOperand(0).Val; |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. |
| SDOperand Zero = N->getOperand(i); |
| if (isa<ConstantSDNode>(Zero)) { |
| if (!cast<ConstantSDNode>(Zero)->isNullValue()) |
| return false; |
| } else if (isa<ConstantFPSDNode>(Zero)) { |
| if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0)) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != Zero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) |
| /// when given the operation for (X op Y). |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where |
| /// 'op' is a valid SetCC operation. |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { |
| unsigned Operation = Op; |
| if (isInteger) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| return ISD::CondCode(Operation); |
| } |
| |
| |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a |
| /// signed operation and 2 if the result is an unsigned comparison. Return zero |
| /// if the operation does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| /// getSetCCOrOperation - Return the result of a logical OR between different |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function |
| /// returns SETCC_INVALID if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set then the resultant comparison DOES suddenly |
| // care about orderedness, and is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the U bit if the N bit is set. |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT |
| Op = ISD::SETNE; |
| |
| return ISD::CondCode(Op); |
| } |
| |
| /// getSetCCAndOperation - Return the result of a logical AND between different |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This |
| /// function returns zero if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| ISD::CondCode Result = ISD::CondCode(Op1 & Op2); |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger) { |
| switch (Result) { |
| default: break; |
| case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT |
| case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE |
| case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE |
| case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE |
| } |
| } |
| |
| return Result; |
| } |
| |
| const TargetMachine &SelectionDAG::getTarget() const { |
| return TLI.getTargetMachine(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Profile Support |
| //===----------------------------------------------------------------------===// |
| |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data. |
| /// |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { |
| ID.AddInteger(OpC); |
| } |
| |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them |
| /// solely with their pointer. |
| void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { |
| ID.AddPointer(VTList.VTs); |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| /// |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| const SDOperand *Ops, unsigned NumOps) { |
| for (; NumOps; --NumOps, ++Ops) { |
| ID.AddPointer(Ops->Val); |
| ID.AddInteger(Ops->ResNo); |
| } |
| } |
| |
| static void AddNodeIDNode(FoldingSetNodeID &ID, |
| unsigned short OpC, SDVTList VTList, |
| const SDOperand *OpList, unsigned N) { |
| AddNodeIDOpcode(ID, OpC); |
| AddNodeIDValueTypes(ID, VTList); |
| AddNodeIDOperands(ID, OpList, N); |
| } |
| |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID |
| /// data. |
| static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) { |
| AddNodeIDOpcode(ID, N->getOpcode()); |
| // Add the return value info. |
| AddNodeIDValueTypes(ID, N->getVTList()); |
| // Add the operand info. |
| AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); |
| |
| // Handle SDNode leafs with special info. |
| switch (N->getOpcode()) { |
| default: break; // Normal nodes don't need extra info. |
| case ISD::TargetConstant: |
| case ISD::Constant: |
| ID.AddInteger(cast<ConstantSDNode>(N)->getValue()); |
| break; |
| case ISD::TargetConstantFP: |
| case ISD::ConstantFP: |
| ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue()); |
| break; |
| case ISD::TargetGlobalAddress: |
| case ISD::GlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::GlobalTLSAddress: { |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| ID.AddPointer(GA->getGlobal()); |
| ID.AddInteger(GA->getOffset()); |
| break; |
| } |
| case ISD::BasicBlock: |
| ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::Register: |
| ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); |
| break; |
| case ISD::SRCVALUE: { |
| SrcValueSDNode *SV = cast<SrcValueSDNode>(N); |
| ID.AddPointer(SV->getValue()); |
| ID.AddInteger(SV->getOffset()); |
| break; |
| } |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::JumpTable: |
| case ISD::TargetJumpTable: |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); |
| break; |
| case ISD::ConstantPool: |
| case ISD::TargetConstantPool: { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); |
| ID.AddInteger(CP->getAlignment()); |
| ID.AddInteger(CP->getOffset()); |
| if (CP->isMachineConstantPoolEntry()) |
| CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); |
| else |
| ID.AddPointer(CP->getConstVal()); |
| break; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ID.AddInteger(LD->getAddressingMode()); |
| ID.AddInteger(LD->getExtensionType()); |
| ID.AddInteger(LD->getLoadedVT()); |
| ID.AddPointer(LD->getSrcValue()); |
| ID.AddInteger(LD->getSrcValueOffset()); |
| ID.AddInteger(LD->getAlignment()); |
| ID.AddInteger(LD->isVolatile()); |
| break; |
| } |
| case ISD::STORE: { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| ID.AddInteger(ST->getAddressingMode()); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getStoredVT()); |
| ID.AddPointer(ST->getSrcValue()); |
| ID.AddInteger(ST->getSrcValueOffset()); |
| ID.AddInteger(ST->getAlignment()); |
| ID.AddInteger(ST->isVolatile()); |
| break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG. |
| void SelectionDAG::RemoveDeadNodes() { |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| HandleSDNode Dummy(getRoot()); |
| |
| SmallVector<SDNode*, 128> DeadNodes; |
| |
| // Add all obviously-dead nodes to the DeadNodes worklist. |
| for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) |
| if (I->use_empty()) |
| DeadNodes.push_back(I); |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.back(); |
| DeadNodes.pop_back(); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| SDNode *Operand = I->Val; |
| Operand->removeUser(N); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| N->OperandList = 0; |
| N->NumOperands = 0; |
| |
| // Finally, remove N itself. |
| AllNodes.erase(N); |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(Dummy.getValue()); |
| } |
| |
| void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) { |
| SmallVector<SDNode*, 16> DeadNodes; |
| DeadNodes.push_back(N); |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.back(); |
| DeadNodes.pop_back(); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| SDNode *Operand = I->Val; |
| Operand->removeUser(N); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| N->OperandList = 0; |
| N->NumOperands = 0; |
| |
| // Finally, remove N itself. |
| Deleted.push_back(N); |
| AllNodes.erase(N); |
| } |
| } |
| |
| void SelectionDAG::DeleteNode(SDNode *N) { |
| assert(N->use_empty() && "Cannot delete a node that is not dead!"); |
| |
| // First take this out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Finally, remove uses due to operands of this node, remove from the |
| // AllNodes list, and delete the node. |
| DeleteNodeNotInCSEMaps(N); |
| } |
| |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { |
| |
| // Remove it from the AllNodes list. |
| AllNodes.remove(N); |
| |
| // Drop all of the operands and decrement used nodes use counts. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) |
| I->Val->removeUser(N); |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| N->OperandList = 0; |
| N->NumOperands = 0; |
| |
| delete N; |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| bool Erased = false; |
| switch (N->getOpcode()) { |
| case ISD::HANDLENODE: return; // noop. |
| case ISD::STRING: |
| Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue()); |
| break; |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; |
| break; |
| case ISD::ExternalSymbol: |
| Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::TargetExternalSymbol: |
| Erased = |
| TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::VALUETYPE: |
| Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0; |
| ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0; |
| break; |
| default: |
| // Remove it from the CSE Map. |
| Erased = CSEMap.RemoveNode(N); |
| break; |
| } |
| #ifndef NDEBUG |
| // Verify that the node was actually in one of the CSE maps, unless it has a |
| // flag result (which cannot be CSE'd) or is one of the special cases that are |
| // not subject to CSE. |
| if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && |
| !N->isTargetOpcode()) { |
| N->dump(this); |
| cerr << "\n"; |
| assert(0 && "Node is not in map!"); |
| } |
| #endif |
| } |
| |
| /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It |
| /// has been taken out and modified in some way. If the specified node already |
| /// exists in the CSE maps, do not modify the maps, but return the existing node |
| /// instead. If it doesn't exist, add it and return null. |
| /// |
| SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { |
| assert(N->getNumOperands() && "This is a leaf node!"); |
| if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) |
| return 0; // Never add these nodes. |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDNode *New = CSEMap.GetOrInsertNode(N); |
| if (New != N) return New; // Node already existed. |
| return 0; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op, |
| void *&InsertPos) { |
| if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) |
| return 0; // Never add these nodes. |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDOperand Ops[] = { Op }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| SDOperand Op1, SDOperand Op2, |
| void *&InsertPos) { |
| if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) |
| return 0; // Never add these nodes. |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDOperand Ops[] = { Op1, Op2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| const SDOperand *Ops,unsigned NumOps, |
| void *&InsertPos) { |
| if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) |
| return 0; // Never add these nodes. |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| ID.AddInteger(LD->getAddressingMode()); |
| ID.AddInteger(LD->getExtensionType()); |
| ID.AddInteger(LD->getLoadedVT()); |
| ID.AddPointer(LD->getSrcValue()); |
| ID.AddInteger(LD->getSrcValueOffset()); |
| ID.AddInteger(LD->getAlignment()); |
| ID.AddInteger(LD->isVolatile()); |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| ID.AddInteger(ST->getAddressingMode()); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getStoredVT()); |
| ID.AddPointer(ST->getSrcValue()); |
| ID.AddInteger(ST->getSrcValueOffset()); |
| ID.AddInteger(ST->getAlignment()); |
| ID.AddInteger(ST->isVolatile()); |
| } |
| |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| |
| SelectionDAG::~SelectionDAG() { |
| while (!AllNodes.empty()) { |
| SDNode *N = AllNodes.begin(); |
| N->SetNextInBucket(0); |
| if (N->OperandsNeedDelete) |
| delete [] N->OperandList; |
| N->OperandList = 0; |
| N->NumOperands = 0; |
| AllNodes.pop_front(); |
| } |
| } |
| |
| SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { |
| if (Op.getValueType() == VT) return Op; |
| int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); |
| return getNode(ISD::AND, Op.getValueType(), Op, |
| getConstant(Imm, Op.getValueType())); |
| } |
| |
| SDOperand SelectionDAG::getString(const std::string &Val) { |
| StringSDNode *&N = StringNodes[Val]; |
| if (!N) { |
| N = new StringSDNode(Val); |
| AllNodes.push_back(N); |
| } |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) { |
| assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); |
| assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!"); |
| |
| // Mask out any bits that are not valid for this constant. |
| Val &= MVT::getIntVTBitMask(VT); |
| |
| unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Val); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new ConstantSDNode(isT, Val, VT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT, |
| bool isTarget) { |
| assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); |
| MVT::ValueType EltVT = |
| MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; |
| if (EltVT == MVT::f32) |
| Val = (float)Val; // Mask out extra precision. |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); |
| ID.AddDouble(Val); |
| void *IP = 0; |
| SDNode *N = NULL; |
| if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) |
| if (!MVT::isVector(VT)) |
| return SDOperand(N, 0); |
| if (!N) { |
| N = new ConstantFPSDNode(isTarget, Val, EltVT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| } |
| |
| SDOperand Result(N, 0); |
| if (MVT::isVector(VT)) { |
| SmallVector<SDOperand, 8> Ops; |
| Ops.assign(MVT::getVectorNumElements(VT), Result); |
| Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| return Result; |
| } |
| |
| SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, |
| MVT::ValueType VT, int Offset, |
| bool isTargetGA) { |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| unsigned Opc; |
| if (GVar && GVar->isThreadLocal()) |
| Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; |
| else |
| Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddPointer(GV); |
| ID.AddInteger(Offset); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT, |
| bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(FI); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new FrameIndexSDNode(FI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){ |
| unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(JTI); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new JumpTableSDNode(JTI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, |
| unsigned Alignment, int Offset, |
| bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| ID.AddPointer(C); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, |
| MVT::ValueType VT, |
| unsigned Alignment, int Offset, |
| bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| C->AddSelectionDAGCSEId(ID); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(MBB); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new BasicBlockSDNode(MBB); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { |
| if ((unsigned)VT >= ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT+1); |
| if (ValueTypeNodes[VT] == 0) { |
| ValueTypeNodes[VT] = new VTSDNode(VT); |
| AllNodes.push_back(ValueTypeNodes[VT]); |
| } |
| |
| return SDOperand(ValueTypeNodes[VT], 0); |
| } |
| |
| SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDOperand(N, 0); |
| N = new ExternalSymbolSDNode(false, Sym, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, |
| MVT::ValueType VT) { |
| SDNode *&N = TargetExternalSymbols[Sym]; |
| if (N) return SDOperand(N, 0); |
| N = new ExternalSymbolSDNode(true, Sym, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (CondCodeNodes[Cond] == 0) { |
| CondCodeNodes[Cond] = new CondCodeSDNode(Cond); |
| AllNodes.push_back(CondCodeNodes[Cond]); |
| } |
| return SDOperand(CondCodeNodes[Cond], 0); |
| } |
| |
| SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); |
| ID.AddInteger(RegNo); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new RegisterSDNode(RegNo, VT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { |
| assert((!V || isa<PointerType>(V->getType())) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(V); |
| ID.AddInteger(Offset); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new SrcValueSDNode(V, Offset); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1, |
| SDOperand N2, ISD::CondCode Cond) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getConstant(1, VT); |
| |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETO: |
| case ISD::SETUO: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!"); |
| break; |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) { |
| uint64_t C2 = N2C->getValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { |
| uint64_t C1 = N1C->getValue(); |
| |
| // Sign extend the operands if required |
| if (ISD::isSignedIntSetCC(Cond)) { |
| C1 = N1C->getSignExtended(); |
| C2 = N2C->getSignExtended(); |
| } |
| |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETULT: return getConstant(C1 < C2, VT); |
| case ISD::SETUGT: return getConstant(C1 > C2, VT); |
| case ISD::SETULE: return getConstant(C1 <= C2, VT); |
| case ISD::SETUGE: return getConstant(C1 >= C2, VT); |
| case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); |
| case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); |
| case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); |
| case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); |
| } |
| } |
| } |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) |
| if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) { |
| double C1 = N1C->getValue(), C2 = N2C->getValue(); |
| |
| switch (Cond) { |
| default: break; // FIXME: Implement the rest of these! |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETLT: return getConstant(C1 < C2, VT); |
| case ISD::SETGT: return getConstant(C1 > C2, VT); |
| case ISD::SETLE: return getConstant(C1 <= C2, VT); |
| case ISD::SETGE: return getConstant(C1 >= C2, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| // Could not fold it. |
| return SDOperand(); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be zero |
| /// for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| unsigned Depth) const { |
| // The masks are not wide enough to represent this type! Should use APInt. |
| if (Op.getValueType() == MVT::i128) |
| return false; |
| |
| uint64_t KnownZero, KnownOne; |
| ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| return (KnownZero & Mask) == Mask; |
| } |
| |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| /// known to be either zero or one and return them in the KnownZero/KnownOne |
| /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| /// processing. |
| void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| uint64_t &KnownZero, uint64_t &KnownOne, |
| unsigned Depth) const { |
| KnownZero = KnownOne = 0; // Don't know anything. |
| if (Depth == 6 || Mask == 0) |
| return; // Limit search depth. |
| |
| // The masks are not wide enough to represent this type! Should use APInt. |
| if (Op.getValueType() == MVT::i128) |
| return; |
| |
| uint64_t KnownZero2, KnownOne2; |
| |
| switch (Op.getOpcode()) { |
| case ISD::Constant: |
| // We know all of the bits for a constant! |
| KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| KnownZero = ~KnownOne & Mask; |
| return; |
| case ISD::AND: |
| // If either the LHS or the RHS are Zero, the result is zero. |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| Mask &= ~KnownZero; |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| KnownOne &= KnownOne2; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| KnownZero |= KnownZero2; |
| return; |
| case ISD::OR: |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| Mask &= ~KnownOne; |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| KnownZero &= KnownZero2; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| KnownOne |= KnownOne2; |
| return; |
| case ISD::XOR: { |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| KnownZero = KnownZeroOut; |
| return; |
| } |
| case ISD::SELECT: |
| ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SELECT_CC: |
| ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SETCC: |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| return; |
| case ISD::SHL: |
| // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero <<= SA->getValue(); |
| KnownOne <<= SA->getValue(); |
| KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
| } |
| return; |
| case ISD::SRL: |
| // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned ShAmt = SA->getValue(); |
| |
| uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero &= TypeMask; |
| KnownOne &= TypeMask; |
| KnownZero >>= ShAmt; |
| KnownOne >>= ShAmt; |
| |
| uint64_t HighBits = (1ULL << ShAmt)-1; |
| HighBits <<= MVT::getSizeInBits(VT)-ShAmt; |
| KnownZero |= HighBits; // High bits known zero. |
| } |
| return; |
| case ISD::SRA: |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned ShAmt = SA->getValue(); |
| |
| // Compute the new bits that are at the top now. |
| uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| |
| uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; |
| // If any of the demanded bits are produced by the sign extension, we also |
| // demand the input sign bit. |
| uint64_t HighBits = (1ULL << ShAmt)-1; |
| HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| if (HighBits & Mask) |
| InDemandedMask |= MVT::getIntVTSignBit(VT); |
| |
| ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, |
| Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero &= TypeMask; |
| KnownOne &= TypeMask; |
| KnownZero >>= ShAmt; |
| KnownOne >>= ShAmt; |
| |
| // Handle the sign bits. |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
| |
| if (KnownZero & SignBit) { |
| KnownZero |= HighBits; // New bits are known zero. |
| } else if (KnownOne & SignBit) { |
| KnownOne |= HighBits; // New bits are known one. |
| } |
| } |
| return; |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| |
| // Sign extension. Compute the demanded bits in the result that are not |
| // present in the input. |
| uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| |
| uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| |
| // If the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| if (NewBits) |
| InputDemandedBits |= InSignBit; |
| |
| ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| if (KnownZero & InSignBit) { // Input sign bit known clear |
| KnownZero |= NewBits; |
| KnownOne &= ~NewBits; |
| } else if (KnownOne & InSignBit) { // Input sign bit known set |
| KnownOne |= NewBits; |
| KnownZero &= ~NewBits; |
| } else { // Input sign bit unknown |
| KnownZero &= ~NewBits; |
| KnownOne &= ~NewBits; |
| } |
| return; |
| } |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: { |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| KnownOne = 0; |
| return; |
| } |
| case ISD::LOAD: { |
| if (ISD::isZEXTLoad(Op.Val)) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| MVT::ValueType VT = LD->getLoadedVT(); |
| KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
| } |
| return; |
| } |
| case ISD::ZERO_EXTEND: { |
| uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| uint64_t NewBits = (~InMask) & Mask; |
| ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| KnownOne, Depth+1); |
| KnownZero |= NewBits & Mask; |
| KnownOne &= ~NewBits; |
| return; |
| } |
| case ISD::SIGN_EXTEND: { |
| MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = MVT::getSizeInBits(InVT); |
| uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| uint64_t InSignBit = 1ULL << (InBits-1); |
| uint64_t NewBits = (~InMask) & Mask; |
| uint64_t InDemandedBits = Mask & InMask; |
| |
| // If any of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| if (NewBits & Mask) |
| InDemandedBits |= InSignBit; |
| |
| ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| KnownOne, Depth+1); |
| // If the sign bit is known zero or one, the top bits match. |
| if (KnownZero & InSignBit) { |
| KnownZero |= NewBits; |
| KnownOne &= ~NewBits; |
| } else if (KnownOne & InSignBit) { |
| KnownOne |= NewBits; |
| KnownZero &= ~NewBits; |
| } else { // Otherwise, top bits aren't known. |
| KnownOne &= ~NewBits; |
| KnownZero &= ~NewBits; |
| } |
| return; |
| } |
| case ISD::ANY_EXTEND: { |
| MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| KnownZero, KnownOne, Depth+1); |
| return; |
| } |
| case ISD::TRUNCATE: { |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| KnownZero &= OutMask; |
| KnownOne &= OutMask; |
| break; |
| } |
| case ISD::AssertZext: { |
| MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| uint64_t InMask = MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| KnownOne, Depth+1); |
| KnownZero |= (~InMask) & Mask; |
| return; |
| } |
| case ISD::ADD: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are known if clear or set in both the low clear bits |
| // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| // low 3 bits clear. |
| uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| CountTrailingZeros_64(~KnownZero2)); |
| |
| KnownZero = (1ULL << KnownZeroOut) - 1; |
| KnownOne = 0; |
| return; |
| } |
| case ISD::SUB: { |
| ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| if (!CLHS) return; |
| |
| // We know that the top bits of C-X are clear if X contains less bits |
| // than C (i.e. no wrap-around can happen). For example, 20-X is |
| // positive if we can prove that X is >= 0 and < 16. |
| MVT::ValueType VT = CLHS->getValueType(0); |
| if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| |
| // If all of the MaskV bits are known to be zero, then we know the output |
| // top bits are zero, because we now know that the output is from [0-C]. |
| if ((KnownZero & MaskV) == MaskV) { |
| unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| KnownOne = 0; // No one bits known. |
| } else { |
| KnownZero = KnownOne = 0; // Otherwise, nothing known. |
| } |
| } |
| return; |
| } |
| default: |
| // Allow the target to implement this method for its nodes. |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); |
| } |
| return; |
| } |
| } |
| |
| /// ComputeNumSignBits - Return the number of times the sign bit of the |
| /// register is replicated into the other bits. We know that at least 1 bit |
| /// is always equal to the sign bit (itself), but other cases can give us |
| /// information. For example, immediately after an "SRA X, 2", we know that |
| /// the top 3 bits are all equal to each other, so we return 3. |
| unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ |
| MVT::ValueType VT = Op.getValueType(); |
| assert(MVT::isInteger(VT) && "Invalid VT!"); |
| unsigned VTBits = MVT::getSizeInBits(VT); |
| unsigned Tmp, Tmp2; |
| |
| if (Depth == 6) |
| return 1; // Limit search depth. |
| |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::AssertSext: |
| Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| return VTBits-Tmp+1; |
| case ISD::AssertZext: |
| Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| return VTBits-Tmp; |
| |
| case ISD::Constant: { |
| uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); |
| // If negative, invert the bits, then look at it. |
| if (Val & MVT::getIntVTSignBit(VT)) |
| Val = ~Val; |
| |
| // Shift the bits so they are the leading bits in the int64_t. |
| Val <<= 64-VTBits; |
| |
| // Return # leading zeros. We use 'min' here in case Val was zero before |
| // shifting. We don't want to return '64' as for an i32 "0". |
| return std::min(VTBits, CountLeadingZeros_64(Val)); |
| } |
| |
| case ISD::SIGN_EXTEND: |
| Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| |
| case ISD::SIGN_EXTEND_INREG: |
| // Max of the input and what this extends. |
| Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| Tmp = VTBits-Tmp+1; |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| return std::max(Tmp, Tmp2); |
| |
| case ISD::SRA: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| // SRA X, C -> adds C sign bits. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Tmp += C->getValue(); |
| if (Tmp > VTBits) Tmp = VTBits; |
| } |
| return Tmp; |
| case ISD::SHL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| // shl destroys sign bits. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (C->getValue() >= VTBits || // Bad shift. |
| C->getValue() >= Tmp) break; // Shifted all sign bits out. |
| return Tmp - C->getValue(); |
| } |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: // NOT is handled here. |
| // Logical binary ops preserve the number of sign bits. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| return std::min(Tmp, Tmp2); |
| |
| case ISD::SELECT: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| return std::min(Tmp, Tmp2); |
| |
| case ISD::SETCC: |
| // If setcc returns 0/-1, all bits are sign bits. |
| if (TLI.getSetCCResultContents() == |
| TargetLowering::ZeroOrNegativeOneSetCCResult) |
| return VTBits; |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned RotAmt = C->getValue() & (VTBits-1); |
| |
| // Handle rotate right by N like a rotate left by 32-N. |
| if (Op.getOpcode() == ISD::ROTR) |
| RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| |
| // If we aren't rotating out all of the known-in sign bits, return the |
| // number that are left. This handles rotl(sext(x), 1) for example. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| } |
| break; |
| case ISD::ADD: |
| // Add can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| |
| // Special case decrementing a value (ADD X, -1): |
| if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| if (CRHS->isAllOnesValue()) { |
| uint64_t KnownZero, KnownOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero|1) == Mask) |
| return VTBits; |
| |
| // If we are subtracting one from a positive number, there is no carry |
| // out of the result. |
| if (KnownZero & MVT::getIntVTSignBit(VT)) |
| return Tmp; |
| } |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| return std::min(Tmp, Tmp2)-1; |
| break; |
| |
| case ISD::SUB: |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| |
| // Handle NEG. |
| if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| if (CLHS->getValue() == 0) { |
| uint64_t KnownZero, KnownOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero|1) == Mask) |
| return VTBits; |
| |
| // If the input is known to be positive (the sign bit is known clear), |
| // the output of the NEG has the same number of sign bits as the input. |
| if (KnownZero & MVT::getIntVTSignBit(VT)) |
| return Tmp2; |
| |
| // Otherwise, we treat this like a SUB. |
| } |
| |
| // Sub can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| return std::min(Tmp, Tmp2)-1; |
| break; |
| case ISD::TRUNCATE: |
| // FIXME: it's tricky to do anything useful for this, but it is an important |
| // case for targets like X86. |
| break; |
| } |
| |
| // Handle LOADX separately here. EXTLOAD case will fallthrough. |
| if (Op.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| unsigned ExtType = LD->getExtensionType(); |
| switch (ExtType) { |
| default: break; |
| case ISD::SEXTLOAD: // '17' bits known |
| Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
| return VTBits-Tmp+1; |
| case ISD::ZEXTLOAD: // '16' bits known |
| Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
| return VTBits-Tmp; |
| } |
| } |
| |
| // Allow the target to implement this method for its nodes. |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); |
| if (NumBits > 1) return NumBits; |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| uint64_t KnownZero, KnownOne; |
| uint64_t Mask = MVT::getIntVTBitMask(VT); |
| ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| |
| uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| if (KnownZero & SignBit) { // SignBit is 0 |
| Mask = KnownZero; |
| } else if (KnownOne & SignBit) { // SignBit is 1; |
| Mask = KnownOne; |
| } else { |
| // Nothing known. |
| return 1; |
| } |
| |
| // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| // the number of identical bits in the top of the input value. |
| Mask ^= ~0ULL; |
| Mask <<= 64-VTBits; |
| // Return # leading zeros. We use 'min' here in case Val was zero before |
| // shifting. We don't want to return '64' as for an i32 "0". |
| return std::min(VTBits, CountLeadingZeros_64(Mask)); |
| } |
| |
| |
| /// getNode - Gets or creates the specified node. |
| /// |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT)); |
| CSEMap.InsertNode(N, IP); |
| |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Operand) { |
| unsigned Tmp1; |
| // Constant fold unary operations with an integer constant operand. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) { |
| uint64_t Val = C->getValue(); |
| switch (Opcode) { |
| default: break; |
| case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: return getConstant(Val, VT); |
| case ISD::TRUNCATE: return getConstant(Val, VT); |
| case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); |
| case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); |
| case ISD::BIT_CONVERT: |
| if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) |
| return getConstantFP(BitsToFloat(Val), VT); |
| else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) |
| return getConstantFP(BitsToDouble(Val), VT); |
| break; |
| case ISD::BSWAP: |
| switch(VT) { |
| default: assert(0 && "Invalid bswap!"); break; |
| case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); |
| case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); |
| case MVT::i64: return getConstant(ByteSwap_64(Val), VT); |
| } |
| break; |
| case ISD::CTPOP: |
| switch(VT) { |
| default: assert(0 && "Invalid ctpop!"); break; |
| case MVT::i1: return getConstant(Val != 0, VT); |
| case MVT::i8: |
| Tmp1 = (unsigned)Val & 0xFF; |
| return getConstant(CountPopulation_32(Tmp1), VT); |
| case MVT::i16: |
| Tmp1 = (unsigned)Val & 0xFFFF; |
| return getConstant(CountPopulation_32(Tmp1), VT); |
| case MVT::i32: |
| return getConstant(CountPopulation_32((unsigned)Val), VT); |
| case MVT::i64: |
| return getConstant(CountPopulation_64(Val), VT); |
| } |
| case ISD::CTLZ: |
| switch(VT) { |
| default: assert(0 && "Invalid ctlz!"); break; |
| case MVT::i1: return getConstant(Val == 0, VT); |
| case MVT::i8: |
| Tmp1 = (unsigned)Val & 0xFF; |
| return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); |
| case MVT::i16: |
| Tmp1 = (unsigned)Val & 0xFFFF; |
| return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); |
| case MVT::i32: |
| return getConstant(CountLeadingZeros_32((unsigned)Val), VT); |
| case MVT::i64: |
| return getConstant(CountLeadingZeros_64(Val), VT); |
| } |
| case ISD::CTTZ: |
| switch(VT) { |
| default: assert(0 && "Invalid cttz!"); break; |
| case MVT::i1: return getConstant(Val == 0, VT); |
| case MVT::i8: |
| Tmp1 = (unsigned)Val | 0x100; |
| return getConstant(CountTrailingZeros_32(Tmp1), VT); |
| case MVT::i16: |
| Tmp1 = (unsigned)Val | 0x10000; |
| return getConstant(CountTrailingZeros_32(Tmp1), VT); |
| case MVT::i32: |
| return getConstant(CountTrailingZeros_32((unsigned)Val), VT); |
| case MVT::i64: |
| return getConstant(CountTrailingZeros_64(Val), VT); |
| } |
| } |
| } |
| |
| // Constant fold unary operations with an floating point constant operand. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) |
| switch (Opcode) { |
| case ISD::FNEG: |
| return getConstantFP(-C->getValue(), VT); |
| case ISD::FABS: |
| return getConstantFP(fabs(C->getValue()), VT); |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| return getConstantFP(C->getValue(), VT); |
| case ISD::FP_TO_SINT: |
| return getConstant((int64_t)C->getValue(), VT); |
| case ISD::FP_TO_UINT: |
| return getConstant((uint64_t)C->getValue(), VT); |
| case ISD::BIT_CONVERT: |
| if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) |
| return getConstant(FloatToBits(C->getValue()), VT); |
| else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) |
| return getConstant(DoubleToBits(C->getValue()), VT); |
| break; |
| } |
| |
| unsigned OpOpcode = Operand.Val->getOpcode(); |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| return Operand; // Factor of one node? No factor. |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| assert(MVT::isFloatingPoint(VT) && |
| MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!"); |
| break; |
| case ISD::SIGN_EXTEND: |
| assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && |
| "Invalid SIGN_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!"); |
| if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) |
| return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); |
| break; |
| case ISD::ZERO_EXTEND: |
| assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && |
| "Invalid ZERO_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!"); |
| if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) |
| return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); |
| break; |
| case ISD::ANY_EXTEND: |
| assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && |
| "Invalid ANY_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!"); |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) |
| // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) |
| return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); |
| break; |
| case ISD::TRUNCATE: |
| assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && |
| "Invalid TRUNCATE!"); |
| if (Operand.getValueType() == VT) return Operand; // noop truncate |
| assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!"); |
| if (OpOpcode == ISD::TRUNCATE) |
| return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); |
| else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) { |
| // If the source is smaller than the dest, we still need an extend. |
| if (Operand.Val->getOperand(0).getValueType() < VT) |
| return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); |
| else if (Operand.Val->getOperand(0).getValueType() > VT) |
| return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); |
| else |
| return Operand.Val->getOperand(0); |
| } |
| break; |
| case ISD::BIT_CONVERT: |
| // Basic sanity checking. |
| assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) |
| && "Cannot BIT_CONVERT between types of different sizes!"); |
| if (VT == Operand.getValueType()) return Operand; // noop conversion. |
| if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) |
| return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); |
| if (OpOpcode == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT); |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && |
| MVT::getVectorElementType(VT) == Operand.getValueType() && |
| "Illegal SCALAR_TO_VECTOR node!"); |
| break; |
| case ISD::FNEG: |
| if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) |
| return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), |
| Operand.Val->getOperand(0)); |
| if (OpOpcode == ISD::FNEG) // --X -> X |
| return Operand.Val->getOperand(0); |
| break; |
| case ISD::FABS: |
| if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) |
| return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); |
| break; |
| } |
| |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { // Don't CSE flag producing nodes |
| FoldingSetNodeID ID; |
| SDOperand Ops[1] = { Operand }; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 1); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| N = new UnarySDNode(Opcode, VTs, Operand); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new UnarySDNode(Opcode, VTs, Operand); |
| } |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2) { |
| #ifndef NDEBUG |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| assert(VT == MVT::Other && N1.getValueType() == MVT::Other && |
| N2.getValueType() == MVT::Other && "Invalid token factor!"); |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::MULHU: |
| case ISD::MULHS: |
| assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); |
| // fall through |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); |
| // fall through. |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. |
| assert(N1.getValueType() == VT && |
| MVT::isFloatingPoint(N1.getValueType()) && |
| MVT::isFloatingPoint(N2.getValueType()) && |
| "Invalid FCOPYSIGN!"); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| assert(VT == N1.getValueType() && |
| "Shift operators return type must be the same as their first arg"); |
| assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && |
| VT != MVT::i1 && "Shifts only work on integers"); |
| break; |
| case ISD::FP_ROUND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg round!"); |
| assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && |
| "Cannot FP_ROUND_INREG integer types"); |
| assert(EVT <= VT && "Not rounding down!"); |
| break; |
| } |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT <= VT && "Not extending!"); |
| } |
| |
| default: break; |
| } |
| #endif |
| |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| if (N1C) { |
| if (Opcode == ISD::SIGN_EXTEND_INREG) { |
| int64_t Val = N1C->getValue(); |
| unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT()); |
| Val <<= 64-FromBits; |
| Val >>= 64-FromBits; |
| return getConstant(Val, VT); |
| } |
| |
| if (N2C) { |
| uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); |
| switch (Opcode) { |
| case ISD::ADD: return getConstant(C1 + C2, VT); |
| case ISD::SUB: return getConstant(C1 - C2, VT); |
| case ISD::MUL: return getConstant(C1 * C2, VT); |
| case ISD::UDIV: |
| if (C2) return getConstant(C1 / C2, VT); |
| break; |
| case ISD::UREM : |
| if (C2) return getConstant(C1 % C2, VT); |
| break; |
| case ISD::SDIV : |
| if (C2) return getConstant(N1C->getSignExtended() / |
| N2C->getSignExtended(), VT); |
| break; |
| case ISD::SREM : |
| if (C2) return getConstant(N1C->getSignExtended() % |
| N2C->getSignExtended(), VT); |
| break; |
| case ISD::AND : return getConstant(C1 & C2, VT); |
| case ISD::OR : return getConstant(C1 | C2, VT); |
| case ISD::XOR : return getConstant(C1 ^ C2, VT); |
| case ISD::SHL : return getConstant(C1 << C2, VT); |
| case ISD::SRL : return getConstant(C1 >> C2, VT); |
| case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); |
| case ISD::ROTL : |
| return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), |
| VT); |
| case ISD::ROTR : |
| return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)), |
| VT); |
| default: break; |
| } |
| } else { // Cannonicalize constant to RHS if commutative |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1C, N2C); |
| std::swap(N1, N2); |
| } |
| } |
| } |
| |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val); |
| if (N1CFP) { |
| if (N2CFP) { |
| double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); |
| switch (Opcode) { |
| case ISD::FADD: return getConstantFP(C1 + C2, VT); |
| case ISD::FSUB: return getConstantFP(C1 - C2, VT); |
| case ISD::FMUL: return getConstantFP(C1 * C2, VT); |
| case ISD::FDIV: |
| if (C2) return getConstantFP(C1 / C2, VT); |
| break; |
| case ISD::FREM : |
| if (C2) return getConstantFP(fmod(C1, C2), VT); |
| break; |
| case ISD::FCOPYSIGN: { |
| union { |
| double F; |
| uint64_t I; |
| } u1; |
| u1.F = C1; |
| if (int64_t(DoubleToBits(C2)) < 0) // Sign bit of RHS set? |
| u1.I |= 1ULL << 63; // Set the sign bit of the LHS. |
| else |
| u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS. |
| return getConstantFP(u1.F, VT); |
| } |
| default: break; |
| } |
| } else { // Cannonicalize constant to RHS if commutative |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1CFP, N2CFP); |
| std::swap(N1, N2); |
| } |
| } |
| } |
| |
| // Canonicalize an UNDEF to the RHS, even over a constant. |
| if (N1.getOpcode() == ISD::UNDEF) { |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1, N2); |
| } else { |
| switch (Opcode) { |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::SUB: |
| case ISD::FSUB: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::SRA: |
| return N1; // fold op(undef, arg2) -> undef |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!MVT::isVector(VT)) |
| return getConstant(0, VT); // fold op(undef, arg2) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N2; |
| } |
| } |
| } |
| |
| // Fold a bunch of operators when the RHS is undef. |
| if (N2.getOpcode() == ISD::UNDEF) { |
| switch (Opcode) { |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUB: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::XOR: |
| return N2; // fold op(arg1, undef) -> undef |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!MVT::isVector(VT)) |
| return getConstant(0, VT); // fold op(arg1, undef) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N1; |
| case ISD::OR: |
| if (!MVT::isVector(VT)) |
| return getConstant(MVT::getIntVTBitMask(VT), VT); |
| // For vectors, we can't easily build an all one vector, just return |
| // the LHS. |
| return N1; |
| case ISD::SRA: |
| return N1; |
| } |
| } |
| |
| // Fold operations. |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| // Fold trivial token factors. |
| if (N1.getOpcode() == ISD::EntryToken) return N2; |
| if (N2.getOpcode() == ISD::EntryToken) return N1; |
| break; |
| |
| case ISD::AND: |
| // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's |
| // worth handling here. |
| if (N2C && N2C->getValue() == 0) |
| return N2; |
| break; |
| case ISD::OR: |
| case ISD::XOR: |
| // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's |
| // worth handling here. |
| if (N2C && N2C->getValue() == 0) |
| return N1; |
| break; |
| case ISD::FP_ROUND_INREG: |
| if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| if (EVT == VT) return N1; // Not actually extending |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| assert(N2C && "Bad EXTRACT_VECTOR_ELT!"); |
| |
| // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is |
| // expanding copies of large vectors from registers. |
| if (N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N1.getNumOperands() > 0) { |
| unsigned Factor = |
| MVT::getVectorNumElements(N1.getOperand(0).getValueType()); |
| return getNode(ISD::EXTRACT_VECTOR_ELT, VT, |
| N1.getOperand(N2C->getValue() / Factor), |
| getConstant(N2C->getValue() % Factor, N2.getValueType())); |
| } |
| |
| // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is |
| // expanding large vector constants. |
| if (N1.getOpcode() == ISD::BUILD_VECTOR) |
| return N1.getOperand(N2C->getValue()); |
| |
| // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector |
| // operations are lowered to scalars. |
| if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) |
| if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) { |
| if (IEC == N2C) |
| return N1.getOperand(1); |
| else |
| return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); |
| } |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!"); |
| |
| // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding |
| // 64-bit integers into 32-bit parts. Instead of building the extract of |
| // the BUILD_PAIR, only to have legalize rip it apart, just do it now. |
| if (N1.getOpcode() == ISD::BUILD_PAIR) |
| return N1.getOperand(N2C->getValue()); |
| |
| // EXTRACT_ELEMENT of a constant int is also very common. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue(); |
| return getConstant(C->getValue() >> Shift, VT); |
| } |
| break; |
| |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| #if 0 |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, VT, N1, N2.getOperand(0)); |
| else if (N2.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = MVT::getSizeInBits(VT); |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, VT, N1, N2.getOperand(0)); |
| } |
| break; |
| #endif |
| } |
| |
| // Memoize this node if possible. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| SDOperand Ops[] = { N1, N2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 2); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| N = new BinarySDNode(Opcode, VTs, N1, N2); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new BinarySDNode(Opcode, VTs, N1, N2); |
| } |
| |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3) { |
| // Perform various simplifications. |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| switch (Opcode) { |
| case ISD::SETCC: { |
| // Use FoldSetCC to simplify SETCC's. |
| SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); |
| if (Simp.Val) return Simp; |
| break; |
| } |
| case ISD::SELECT: |
| if (N1C) |
| if (N1C->getValue()) |
| return N2; // select true, X, Y -> X |
| else |
| return N3; // select false, X, Y -> Y |
| |
| if (N2 == N3) return N2; // select C, X, X -> X |
| break; |
| case ISD::BRCOND: |
| if (N2C) |
| if (N2C->getValue()) // Unconditional branch |
| return getNode(ISD::BR, MVT::Other, N1, N3); |
| else |
| return N1; // Never-taken branch |
| break; |
| case ISD::VECTOR_SHUFFLE: |
| assert(VT == N1.getValueType() && VT == N2.getValueType() && |
| MVT::isVector(VT) && MVT::isVector(N3.getValueType()) && |
| N3.getOpcode() == ISD::BUILD_VECTOR && |
| MVT::getVectorNumElements(VT) == N3.getNumOperands() && |
| "Illegal VECTOR_SHUFFLE node!"); |
| break; |
| case ISD::BIT_CONVERT: |
| // Fold bit_convert nodes from a type to themselves. |
| if (N1.getValueType() == VT) |
| return N1; |
| break; |
| } |
| |
| // Memoize node if it doesn't produce a flag. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| SDOperand Ops[] = { N1, N2, N3 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 3); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| N = new TernarySDNode(Opcode, VTs, N1, N2, N3); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new TernarySDNode(Opcode, VTs, N1, N2, N3); |
| } |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3, |
| SDOperand N4) { |
| SDOperand Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, VT, Ops, 4); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3, |
| SDOperand N4, SDOperand N5) { |
| SDOperand Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, VT, Ops, 5); |
| } |
| |
| SDOperand SelectionDAG::getLoad(MVT::ValueType VT, |
| SDOperand Chain, SDOperand Ptr, |
| const Value *SV, int SVOffset, |
| bool isVolatile, unsigned Alignment) { |
| if (Alignment == 0) { // Ensure that codegen never sees alignment 0 |
| const Type *Ty = 0; |
| if (VT != MVT::iPTR) { |
| Ty = MVT::getTypeForValueType(VT); |
| } else if (SV) { |
| const PointerType *PT = dyn_cast<PointerType>(SV->getType()); |
| assert(PT && "Value for load must be a pointer"); |
| Ty = PT->getElementType(); |
| } |
| assert(Ty && "Could not get type information for load"); |
| Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); |
| } |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDOperand Ops[] = { Chain, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(ISD::NON_EXTLOAD); |
| ID.AddInteger(VT); |
| ID.AddPointer(SV); |
| ID.AddInteger(SVOffset); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(isVolatile); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, |
| ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment, |
| isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT, |
| SDOperand Chain, SDOperand Ptr, |
| const Value *SV, |
| int SVOffset, MVT::ValueType EVT, |
| bool isVolatile, unsigned Alignment) { |
| // If they are asking for an extending load from/to the same thing, return a |
| // normal load. |
| if (VT == EVT) |
| ExtType = ISD::NON_EXTLOAD; |
| |
| if (MVT::isVector(VT)) |
| assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!"); |
| else |
| assert(EVT < VT && "Should only be an extending load, not truncating!"); |
| assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) && |
| "Cannot sign/zero extend a FP/Vector load!"); |
| assert(MVT::isInteger(VT) == MVT::isInteger(EVT) && |
| "Cannot convert from FP to Int or Int -> FP!"); |
| |
| if (Alignment == 0) { // Ensure that codegen never sees alignment 0 |
| const Type *Ty = 0; |
| if (VT != MVT::iPTR) { |
| Ty = MVT::getTypeForValueType(VT); |
| } else if (SV) { |
| const PointerType *PT = dyn_cast<PointerType>(SV->getType()); |
| assert(PT && "Value for load must be a pointer"); |
| Ty = PT->getElementType(); |
| } |
| assert(Ty && "Could not get type information for load"); |
| Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); |
| } |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDOperand Ops[] = { Chain, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(ExtType); |
| ID.AddInteger(EVT); |
| ID.AddPointer(SV); |
| ID.AddInteger(SVOffset); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(isVolatile); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT, |
| SV, SVOffset, Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand |
| SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base, |
| SDOperand Offset, ISD::MemIndexedMode AM) { |
| LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); |
| assert(LD->getOffset().getOpcode() == ISD::UNDEF && |
| "Load is already a indexed load!"); |
| MVT::ValueType VT = OrigLoad.getValueType(); |
| SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other); |
| SDOperand Ops[] = { LD->getChain(), Base, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); |
| ID.AddInteger(AM); |
| ID.AddInteger(LD->getExtensionType()); |
| ID.AddInteger(LD->getLoadedVT()); |
| ID.AddPointer(LD->getSrcValue()); |
| ID.AddInteger(LD->getSrcValueOffset()); |
| ID.AddInteger(LD->getAlignment()); |
| ID.AddInteger(LD->isVolatile()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new LoadSDNode(Ops, VTs, AM, |
| LD->getExtensionType(), LD->getLoadedVT(), |
| LD->getSrcValue(), LD->getSrcValueOffset(), |
| LD->getAlignment(), LD->isVolatile()); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val, |
| SDOperand Ptr, const Value *SV, int SVOffset, |
| bool isVolatile, unsigned Alignment) { |
| MVT::ValueType VT = Val.getValueType(); |
| |
| if (Alignment == 0) { // Ensure that codegen never sees alignment 0 |
| const Type *Ty = 0; |
| if (VT != MVT::iPTR) { |
| Ty = MVT::getTypeForValueType(VT); |
| } else if (SV) { |
| const PointerType *PT = dyn_cast<PointerType>(SV->getType()); |
| assert(PT && "Value for store must be a pointer"); |
| Ty = PT->getElementType(); |
| } |
| assert(Ty && "Could not get type information for store"); |
| Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); |
| } |
| SDVTList VTs = getVTList(MVT::Other); |
| SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDOperand Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(false); |
| ID.AddInteger(VT); |
| ID.AddPointer(SV); |
| ID.AddInteger(SVOffset); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(isVolatile); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, |
| VT, SV, SVOffset, Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val, |
| SDOperand Ptr, const Value *SV, |
| int SVOffset, MVT::ValueType SVT, |
| bool isVolatile, unsigned Alignment) { |
| MVT::ValueType VT = Val.getValueType(); |
| bool isTrunc = VT != SVT; |
| |
| assert(VT > SVT && "Not a truncation?"); |
| assert(MVT::isInteger(VT) == MVT::isInteger(SVT) && |
| "Can't do FP-INT conversion!"); |
| |
| if (Alignment == 0) { // Ensure that codegen never sees alignment 0 |
| const Type *Ty = 0; |
| if (VT != MVT::iPTR) { |
| Ty = MVT::getTypeForValueType(VT); |
| } else if (SV) { |
| const PointerType *PT = dyn_cast<PointerType>(SV->getType()); |
| assert(PT && "Value for store must be a pointer"); |
| Ty = PT->getElementType(); |
| } |
| assert(Ty && "Could not get type information for store"); |
| Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); |
| } |
| SDVTList VTs = getVTList(MVT::Other); |
| SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDOperand Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(isTrunc); |
| ID.AddInteger(SVT); |
| ID.AddPointer(SV); |
| ID.AddInteger(SVOffset); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(isVolatile); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc, |
| SVT, SV, SVOffset, Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand |
| SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base, |
| SDOperand Offset, ISD::MemIndexedMode AM) { |
| StoreSDNode *ST = cast<StoreSDNode>(OrigStore); |
| assert(ST->getOffset().getOpcode() == ISD::UNDEF && |
| "Store is already a indexed store!"); |
| SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); |
| SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(AM); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getStoredVT()); |
| ID.AddPointer(ST->getSrcValue()); |
| ID.AddInteger(ST->getSrcValueOffset()); |
| ID.AddInteger(ST->getAlignment()); |
| ID.AddInteger(ST->isVolatile()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| SDNode *N = new StoreSDNode(Ops, VTs, AM, |
| ST->isTruncatingStore(), ST->getStoredVT(), |
| ST->getSrcValue(), ST->getSrcValueOffset(), |
| ST->getAlignment(), ST->isVolatile()); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, |
| SDOperand Chain, SDOperand Ptr, |
| SDOperand SV) { |
| SDOperand Ops[] = { Chain, Ptr, SV }; |
| return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| const SDOperand *Ops, unsigned NumOps) { |
| switch (NumOps) { |
| case 0: return getNode(Opcode, VT); |
| case 1: return getNode(Opcode, VT, Ops[0]); |
| case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::SELECT_CC: { |
| assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); |
| assert(Ops[0].getValueType() == Ops[1].getValueType() && |
| "LHS and RHS of condition must have same type!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "True and False arms of SelectCC must have same type!"); |
| assert(Ops[2].getValueType() == VT && |
| "select_cc node must be of same type as true and false value!"); |
| break; |
| } |
| case ISD::BR_CC: { |
| assert(NumOps == 5 && "BR_CC takes 5 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS/RHS of comparison should match types!"); |
| break; |
| } |
| } |
| |
| // Memoize nodes. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| N = new SDNode(Opcode, VTs, Ops, NumOps); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = new SDNode(Opcode, VTs, Ops, NumOps); |
| } |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, |
| std::vector<MVT::ValueType> &ResultTys, |
| const SDOperand *Ops, unsigned NumOps) { |
| return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), |
| Ops, NumOps); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, |
| const MVT::ValueType *VTs, unsigned NumVTs, |
| const SDOperand *Ops, unsigned NumOps) { |
| if (NumVTs == 1) |
| return getNode(Opcode, VTs[0], Ops, NumOps); |
| return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| const SDOperand *Ops, unsigned NumOps) { |
| if (VTList.NumVTs == 1) |
| return getNode(Opcode, VTList.VTs[0], Ops, NumOps); |
| |
| switch (Opcode) { |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| #if 0 |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SHL_PARTS: |
| if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| else if (N3.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = MVT::getSizeInBits(VT)*2; |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| } |
| break; |
| #endif |
| } |
| |
| // Memoize the node unless it returns a flag. |
| SDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDOperand(E, 0); |
| if (NumOps == 1) |
| N = new UnarySDNode(Opcode, VTList, Ops[0]); |
| else if (NumOps == 2) |
| N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); |
| else if (NumOps == 3) |
| N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); |
| else |
| N = new SDNode(Opcode, VTList, Ops, NumOps); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| if (NumOps == 1) |
| N = new UnarySDNode(Opcode, VTList, Ops[0]); |
| else if (NumOps == 2) |
| N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); |
| else if (NumOps == 3) |
| N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); |
| else |
| N = new SDNode(Opcode, VTList, Ops, NumOps); |
| } |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT) { |
| if (!MVT::isExtendedVT(VT)) |
| return makeVTList(SDNode::getValueTypeList(VT), 1); |
| |
| for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), |
| E = VTList.end(); I != E; ++I) { |
| if (I->size() == 1 && (*I)[0] == VT) |
| return makeVTList(&(*I)[0], 1); |
| } |
| std::vector<MVT::ValueType> V; |
| V.push_back(VT); |
| VTList.push_front(V); |
| return makeVTList(&(*VTList.begin())[0], 1); |
| } |
| |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) { |
| for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), |
| E = VTList.end(); I != E; ++I) { |
| if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) |
| return makeVTList(&(*I)[0], 2); |
| } |
| std::vector<MVT::ValueType> V; |
| V.push_back(VT1); |
| V.push_back(VT2); |
| VTList.push_front(V); |
| return makeVTList(&(*VTList.begin())[0], 2); |
| } |
| SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2, |
| MVT::ValueType VT3) { |
| for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), |
| E = VTList.end(); I != E; ++I) { |
| if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 && |
| (*I)[2] == VT3) |
| return makeVTList(&(*I)[0], 3); |
| } |
| std::vector<MVT::ValueType> V; |
| V.push_back(VT1); |
| V.push_back(VT2); |
| V.push_back(VT3); |
| VTList.push_front(V); |
| return makeVTList(&(*VTList.begin())[0], 3); |
| } |
| |
| SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) { |
| switch (NumVTs) { |
| case 0: assert(0 && "Cannot have nodes without results!"); |
| case 1: return getVTList(VTs[0]); |
| case 2: return getVTList(VTs[0], VTs[1]); |
| case 3: return getVTList(VTs[0], VTs[1], VTs[2]); |
| default: break; |
| } |
| |
| for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), |
| E = VTList.end(); I != E; ++I) { |
| if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue; |
| |
| bool NoMatch = false; |
| for (unsigned i = 2; i != NumVTs; ++i) |
| if (VTs[i] != (*I)[i]) { |
| NoMatch = true; |
| break; |
| } |
| if (!NoMatch) |
| return makeVTList(&*I->begin(), NumVTs); |
| } |
| |
| VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs)); |
| return makeVTList(&*VTList.begin()->begin(), NumVTs); |
| } |
| |
| |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand InN, SDOperand Op) { |
| SDNode *N = InN.Val; |
| assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op == N->getOperand(0)) return InN; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) |
| return SDOperand(Existing, InN.ResNo); |
| |
| // Nope it doesn't. Remove the node from it's current place in the maps. |
| if (InsertPos) |
| RemoveNodeFromCSEMaps(N); |
| |
| // Now we update the operands. |
| N->OperandList[0].Val->removeUser(N); |
| Op.Val->addUser(N); |
| N->OperandList[0] = Op; |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { |
| SDNode *N = InN.Val; |
| assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) |
| return InN; // No operands changed, just return the input node. |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) |
| return SDOperand(Existing, InN.ResNo); |
| |
| // Nope it doesn't. Remove the node from it's current place in the maps. |
| if (InsertPos) |
| RemoveNodeFromCSEMaps(N); |
| |
| // Now we update the operands. |
| if (N->OperandList[0] != Op1) { |
| N->OperandList[0].Val->removeUser(N); |
| Op1.Val->addUser(N); |
| N->OperandList[0] = Op1; |
| } |
| if (N->OperandList[1] != Op2) { |
| N->OperandList[1].Val->removeUser(N); |
| Op2.Val->addUser(N); |
| N->OperandList[1] = Op2; |
| } |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { |
| SDOperand Ops[] = { Op1, Op2, Op3 }; |
| return UpdateNodeOperands(N, Ops, 3); |
| } |
| |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, |
| SDOperand Op3, SDOperand Op4) { |
| SDOperand Ops[] = { Op1, Op2, Op3, Op4 }; |
| return UpdateNodeOperands(N, Ops, 4); |
| } |
| |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, |
| SDOperand Op3, SDOperand Op4, SDOperand Op5) { |
| SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 }; |
| return UpdateNodeOperands(N, Ops, 5); |
| } |
| |
| |
| SDOperand SelectionDAG:: |
| UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) { |
| SDNode *N = InN.Val; |
| assert(N->getNumOperands() == NumOps && |
| "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| bool AnyChange = false; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (Ops[i] != N->getOperand(i)) { |
| AnyChange = true; |
| break; |
| } |
| } |
| |
| // No operands changed, just return the input node. |
| if (!AnyChange) return InN; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) |
| return SDOperand(Existing, InN.ResNo); |
| |
| // Nope it doesn't. Remove the node from it's current place in the maps. |
| if (InsertPos) |
| RemoveNodeFromCSEMaps(N); |
| |
| // Now we update the operands. |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (N->OperandList[i] != Ops[i]) { |
| N->OperandList[i].Val->removeUser(N); |
| Ops[i].Val->addUser(N); |
| N->OperandList[i] = Ops[i]; |
| } |
| } |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| |
| /// MorphNodeTo - This frees the operands of the current node, resets the |
| /// opcode, types, and operands to the specified value. This should only be |
| /// used by the SelectionDAG class. |
| void SDNode::MorphNodeTo(unsigned Opc, SDVTList L, |
| const SDOperand *Ops, unsigned NumOps) { |
| NodeType = Opc; |
| ValueList = L.VTs; |
| NumValues = L.NumVTs; |
| |
| // Clear the operands list, updating used nodes to remove this from their |
| // use list. |
| for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) |
| I->Val->removeUser(this); |
| |
| // If NumOps is larger than the # of operands we currently have, reallocate |
| // the operand list. |
| if (NumOps > NumOperands) { |
| if (OperandsNeedDelete) |
| delete [] OperandList; |
| OperandList = new SDOperand[NumOps]; |
| OperandsNeedDelete = true; |
| } |
| |
| // Assign the new operands. |
| NumOperands = NumOps; |
| |
| for (unsigned i = 0, e = NumOps; i != e; ++i) { |
| OperandList[i] = Ops[i]; |
| SDNode *N = OperandList[i].Val; |
| N->Uses.push_back(this); |
| } |
| } |
| |
| /// SelectNodeTo - These are used for target selectors to *mutate* the |
| /// specified node to have the specified return type, Target opcode, and |
| /// operands. Note that target opcodes are stored as |
| /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. |
| /// |
| /// Note that SelectNodeTo returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT) { |
| SDVTList VTs = getVTList(VT); |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); |
| |
| CSEMap.InsertNode(N, IP); |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1) { |
| // If an identical node already exists, use it. |
| SDVTList VTs = getVTList(VT); |
| SDOperand Ops[] = { Op1 }; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); |
| CSEMap.InsertNode(N, IP); |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2) { |
| // If an identical node already exists, use it. |
| SDVTList VTs = getVTList(VT); |
| SDOperand Ops[] = { Op1, Op2 }; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); |
| |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2, SDOperand Op3) { |
| // If an identical node already exists, use it. |
| SDVTList VTs = getVTList(VT); |
| SDOperand Ops[] = { Op1, Op2, Op3 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); |
| |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, const SDOperand *Ops, |
| unsigned NumOps) { |
| // If an identical node already exists, use it. |
| SDVTList VTs = getVTList(VT); |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); |
| |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT1, MVT::ValueType VT2, |
| SDOperand Op1, SDOperand Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| FoldingSetNodeID ID; |
| SDOperand Ops[] = { Op1, Op2 }; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT1, MVT::ValueType VT2, |
| SDOperand Op1, SDOperand Op2, |
| SDOperand Op3) { |
| // If an identical node already exists, use it. |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDOperand Ops[] = { Op1, Op2, Op3 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); |
| void *IP = 0; |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| |
| RemoveNodeFromCSEMaps(N); |
| |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| |
| /// getTargetNode - These are used for target selectors to create a new node |
| /// with specified return type(s), target opcode, and operands. |
| /// |
| /// Note that getTargetNode returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Op1) { |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Op1, SDOperand Op2) { |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Op1, SDOperand Op2, |
| SDOperand Op3) { |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, |
| const SDOperand *Ops, unsigned NumOps) { |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, SDOperand Op1) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, SDOperand Op1, |
| SDOperand Op2) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); |
| SDOperand Ops[] = { Op1, Op2 }; |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, SDOperand Op1, |
| SDOperand Op2, SDOperand Op3) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); |
| SDOperand Ops[] = { Op1, Op2, Op3 }; |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, |
| const SDOperand *Ops, unsigned NumOps) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, MVT::ValueType VT3, |
| SDOperand Op1, SDOperand Op2) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| SDOperand Ops[] = { Op1, Op2 }; |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, MVT::ValueType VT3, |
| SDOperand Op1, SDOperand Op2, |
| SDOperand Op3) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| SDOperand Ops[] = { Op1, Op2, Op3 }; |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val; |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, |
| MVT::ValueType VT2, MVT::ValueType VT3, |
| const SDOperand *Ops, unsigned NumOps) { |
| const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val; |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From/To have a single result value. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, |
| std::vector<SDNode*> *Deleted) { |
| SDNode *From = FromN.Val, *To = ToN.Val; |
| assert(From->getNumValues() == 1 && To->getNumValues() == 1 && |
| "Cannot replace with this method!"); |
| assert(From != To && "Cannot replace uses of with self"); |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; |
| I != E; ++I) |
| if (I->Val == From) { |
| From->removeUser(U); |
| I->Val = To; |
| To->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, Deleted); |
| // U is now dead. |
| if (Deleted) Deleted->push_back(U); |
| DeleteNodeNotInCSEMaps(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From/To have matching types and numbers of result |
| /// values. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, |
| std::vector<SDNode*> *Deleted) { |
| assert(From != To && "Cannot replace uses of with self"); |
| assert(From->getNumValues() == To->getNumValues() && |
| "Cannot use this version of ReplaceAllUsesWith!"); |
| if (From->getNumValues() == 1) { // If possible, use the faster version. |
| ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); |
| return; |
| } |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; |
| I != E; ++I) |
| if (I->Val == From) { |
| From->removeUser(U); |
| I->Val = To; |
| To->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, Deleted); |
| // U is now dead. |
| if (Deleted) Deleted->push_back(U); |
| DeleteNodeNotInCSEMaps(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version can replace From with any result values. To must match the |
| /// number and types of values returned by From. |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, |
| const SDOperand *To, |
| std::vector<SDNode*> *Deleted) { |
| if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) { |
| // Degenerate case handled above. |
| ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); |
| return; |
| } |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; |
| I != E; ++I) |
| if (I->Val == From) { |
| const SDOperand &ToOp = To[I->ResNo]; |
| From->removeUser(U); |
| *I = ToOp; |
| ToOp.Val->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, Deleted); |
| // U is now dead. |
| if (Deleted) Deleted->push_back(U); |
| DeleteNodeNotInCSEMaps(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.Val alone. The Deleted vector is |
| /// handled the same was as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, |
| std::vector<SDNode*> &Deleted) { |
| assert(From != To && "Cannot replace a value with itself"); |
| // Handle the simple, trivial, case efficiently. |
| if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { |
| ReplaceAllUsesWith(From, To, &Deleted); |
| return; |
| } |
| |
| // Get all of the users of From.Val. We want these in a nice, |
| // deterministically ordered and uniqued set, so we use a SmallSetVector. |
| SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end()); |
| |
| while (!Users.empty()) { |
| // We know that this user uses some value of From. If it is the right |
| // value, update it. |
| SDNode *User = Users.back(); |
| Users.pop_back(); |
| |
| for (SDOperand *Op = User->OperandList, |
| *E = User->OperandList+User->NumOperands; Op != E; ++Op) { |
| if (*Op == From) { |
| // Okay, we know this user needs to be updated. Remove its old self |
| // from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // Update all operands that match "From". |
| for (; Op != E; ++Op) { |
| if (*Op == From) { |
| From.Val->removeUser(User); |
| *Op = To; |
| To.Val->addUser(User); |
| } |
| } |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) { |
| unsigned NumDeleted = Deleted.size(); |
| ReplaceAllUsesWith(User, Existing, &Deleted); |
| |
| // User is now dead. |
| Deleted.push_back(User); |
| DeleteNodeNotInCSEMaps(User); |
| |
| // We have to be careful here, because ReplaceAllUsesWith could have |
| // deleted a user of From, which means there may be dangling pointers |
| // in the "Users" setvector. Scan over the deleted node pointers and |
| // remove them from the setvector. |
| for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i) |
| Users.remove(Deleted[i]); |
| } |
| break; // Exit the operand scanning loop. |
| } |
| } |
| } |
| } |
| |
| |
| /// AssignNodeIds - Assign a unique node id for each node in the DAG based on |
| /// their allnodes order. It returns the maximum id. |
| unsigned SelectionDAG::AssignNodeIds() { |
| unsigned Id = 0; |
| for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){ |
| SDNode *N = I; |
| N->setNodeId(Id++); |
| } |
| return Id; |
| } |
| |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG |
| /// based on their topological order. It returns the maximum id and a vector |
| /// of the SDNodes* in assigned order by reference. |
| unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) { |
| unsigned DAGSize = AllNodes.size(); |
| std::vector<unsigned> InDegree(DAGSize); |
| std::vector<SDNode*> Sources; |
| |
| // Use a two pass approach to avoid using a std::map which is slow. |
| unsigned Id = 0; |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){ |
| SDNode *N = I; |
| N->setNodeId(Id++); |
| unsigned Degree = N->use_size(); |
| InDegree[N->getNodeId()] = Degree; |
| if (Degree == 0) |
| Sources.push_back(N); |
| } |
| |
| TopOrder.clear(); |
| while (!Sources.empty()) { |
| SDNode *N = Sources.back(); |
| Sources.pop_back(); |
| TopOrder.push_back(N); |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| SDNode *P = I->Val; |
| unsigned Degree = --InDegree[P->getNodeId()]; |
| if (Degree == 0) |
| Sources.push_back(P); |
| } |
| } |
| |
| // Second pass, assign the actual topological order as node ids. |
| Id = 0; |
| for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end(); |
| TI != TE; ++TI) |
| (*TI)->setNodeId(Id++); |
| |
| return Id; |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out-of-line virtual method to give class a home. |
| void SDNode::ANCHOR() {} |
| void UnarySDNode::ANCHOR() {} |
| void BinarySDNode::ANCHOR() {} |
| void TernarySDNode::ANCHOR() {} |
| void HandleSDNode::ANCHOR() {} |
| void StringSDNode::ANCHOR() {} |
| void ConstantSDNode::ANCHOR() {} |
| void ConstantFPSDNode::ANCHOR() {} |
| void GlobalAddressSDNode::ANCHOR() {} |
| void FrameIndexSDNode::ANCHOR() {} |
| void JumpTableSDNode::ANCHOR() {} |
| void ConstantPoolSDNode::ANCHOR() {} |
| void BasicBlockSDNode::ANCHOR() {} |
| void SrcValueSDNode::ANCHOR() {} |
| void RegisterSDNode::ANCHOR() {} |
| void ExternalSymbolSDNode::ANCHOR() {} |
| void CondCodeSDNode::ANCHOR() {} |
| void VTSDNode::ANCHOR() {} |
| void LoadSDNode::ANCHOR() {} |
| void StoreSDNode::ANCHOR() {} |
| |
| HandleSDNode::~HandleSDNode() { |
| SDVTList VTs = { 0, 0 }; |
| MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses. |
| } |
| |
| GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, |
| MVT::ValueType VT, int o) |
| : SDNode(isa<GlobalVariable>(GA) && |
| dyn_cast<GlobalVariable>(GA)->isThreadLocal() ? |
| // Thread Local |
| (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : |
| // Non Thread Local |
| (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), |
| getSDVTList(VT)), Offset(o) { |
| TheGlobal = const_cast<GlobalValue*>(GA); |
| } |
| |
| /// Profile - Gather unique data for the node. |
| /// |
| void SDNode::Profile(FoldingSetNodeID &ID) { |
| AddNodeIDNode(ID, this); |
| } |
| |
| /// getValueTypeList - Return a pointer to the specified value type. |
| /// |
| MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { |
| static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; |
| VTs[VT] = VT; |
| return &VTs[VT]; |
| } |
| |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the |
| /// indicated value. This method ignores uses of other values defined by this |
| /// operation. |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| // If there is only one value, this is easy. |
| if (getNumValues() == 1) |
| return use_size() == NUses; |
| if (Uses.size() < NUses) return false; |
| |
| SDOperand TheValue(const_cast<SDNode *>(this), Value); |
| |
| SmallPtrSet<SDNode*, 32> UsersHandled; |
| |
| for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { |
| SDNode *User = *UI; |
| if (User->getNumOperands() == 1 || |
| UsersHandled.insert(User)) // First time we've seen this? |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) |
| if (User->getOperand(i) == TheValue) { |
| if (NUses == 0) |
| return false; // too many uses |
| --NUses; |
| } |
| } |
| |
| // Found exactly the right number of uses? |
| return NUses == 0; |
| } |
| |
| |
| /// isOnlyUse - Return true if this node is the only use of N. |
| /// |
| bool SDNode::isOnlyUse(SDNode *N) const { |
| bool Seen = false; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *User = *I; |
| if (User == this) |
| Seen = true; |
| else |
| return false; |
| } |
| |
| return Seen; |
| } |
| |
| /// isOperand - Return true if this node is an operand of N. |
| /// |
| bool SDOperand::isOperand(SDNode *N) const { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (*this == N->getOperand(i)) |
| return true; |
| return false; |
| } |
| |
| bool SDNode::isOperand(SDNode *N) const { |
| for (unsigned i = 0, e = N->NumOperands; i != e; ++i) |
| if (this == N->OperandList[i].Val) |
| return true; |
| return false; |
| } |
| |
| static void findPredecessor(SDNode *N, const SDNode *P, bool &found, |
| SmallPtrSet<SDNode *, 32> &Visited) { |
| if (found || !Visited.insert(N)) |
| return; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { |
| SDNode *Op = N->getOperand(i).Val; |
| if (Op == P) { |
| found = true; |
| return; |
| } |
| findPredecessor(Op, P, found, Visited); |
| } |
| } |
| |
| /// isPredecessor - Return true if this node is a predecessor of N. This node |
| /// is either an operand of N or it can be reached by recursively traversing |
| /// up the operands. |
| /// NOTE: this is an expensive method. Use it carefully. |
| bool SDNode::isPredecessor(SDNode *N) const { |
| SmallPtrSet<SDNode *, 32> Visited; |
| bool found = false; |
| findPredecessor(N, this, found, Visited); |
| return found; |
| } |
| |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const { |
| assert(Num < NumOperands && "Invalid child # of SDNode!"); |
| return cast<ConstantSDNode>(OperandList[Num])->getValue(); |
| } |
| |
| std::string SDNode::getOperationName(const SelectionDAG *G) const { |
| switch (getOpcode()) { |
| default: |
| if (getOpcode() < ISD::BUILTIN_OP_END) |
| return "<<Unknown DAG Node>>"; |
| else { |
| if (G) { |
| if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) |
| if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) |
| return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); |
| |
| TargetLowering &TLI = G->getTargetLoweringInfo(); |
| const char *Name = |
| TLI.getTargetNodeName(getOpcode()); |
| if (Name) return Name; |
| } |
| |
| return "<<Unknown Target Node>>"; |
| } |
| |
| case ISD::PCMARKER: return "PCMarker"; |
| case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; |
| case ISD::SRCVALUE: return "SrcValue"; |
| case ISD::EntryToken: return "EntryToken"; |
| case ISD::TokenFactor: return "TokenFactor"; |
| case ISD::AssertSext: return "AssertSext"; |
| case ISD::AssertZext: return "AssertZext"; |
| |
| case ISD::STRING: return "String"; |
| case ISD::BasicBlock: return "BasicBlock"; |
| case ISD::VALUETYPE: return "ValueType"; |
| case ISD::Register: return "Register"; |
| |
| case ISD::Constant: return "Constant"; |
| case ISD::ConstantFP: return "ConstantFP"; |
| case ISD::GlobalAddress: return "GlobalAddress"; |
| case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; |
| case ISD::FrameIndex: return "FrameIndex"; |
| case ISD::JumpTable: return "JumpTable"; |
| case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; |
| case ISD::RETURNADDR: return "RETURNADDR"; |
| case ISD::FRAMEADDR: return "FRAMEADDR"; |
| case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; |
| case ISD::EHSELECTION: return "EHSELECTION"; |
| case ISD::ConstantPool: return "ConstantPool"; |
| case ISD::ExternalSymbol: return "ExternalSymbol"; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue(); |
| return Intrinsic::getName((Intrinsic::ID)IID); |
| } |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue(); |
| return Intrinsic::getName((Intrinsic::ID)IID); |
| } |
| |
| case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; |
| case ISD::TargetConstant: return "TargetConstant"; |
| case ISD::TargetConstantFP:return "TargetConstantFP"; |
| case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; |
| case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; |
| case ISD::TargetFrameIndex: return "TargetFrameIndex"; |
| case ISD::TargetJumpTable: return "TargetJumpTable"; |
| case ISD::TargetConstantPool: return "TargetConstantPool"; |
| case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; |
| |
| case ISD::CopyToReg: return "CopyToReg"; |
| case ISD::CopyFromReg: return "CopyFromReg"; |
| case ISD::UNDEF: return "undef"; |
| case ISD::MERGE_VALUES: return "merge_values"; |
| case ISD::INLINEASM: return "inlineasm"; |
| case ISD::LABEL: return "label"; |
| case ISD::HANDLENODE: return "handlenode"; |
| case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; |
| case ISD::CALL: return "call"; |
| |
| // Unary operators |
| case ISD::FABS: return "fabs"; |
| case ISD::FNEG: return "fneg"; |
| case ISD::FSQRT: return "fsqrt"; |
| case ISD::FSIN: return "fsin"; |
| case ISD::FCOS: return "fcos"; |
| case ISD::FPOWI: return "fpowi"; |
| |
| // Binary operators |
| case ISD::ADD: return "add"; |
| case ISD::SUB: return "sub"; |
| case ISD::MUL: return "mul"; |
| case ISD::MULHU: return "mulhu"; |
| case ISD::MULHS: return "mulhs"; |
| case ISD::SDIV: return "sdiv"; |
| case ISD::UDIV: return "udiv"; |
| case ISD::SREM: return "srem"; |
| case ISD::UREM: return "urem"; |
| case ISD::AND: return "and"; |
| case ISD::OR: return "or"; |
| case ISD::XOR: return "xor"; |
| case ISD::SHL: return "shl"; |
| case ISD::SRA: return "sra"; |
| case ISD::SRL: return "srl"; |
| case ISD::ROTL: return "rotl"; |
| case ISD::ROTR: return "rotr"; |
| case ISD::FADD: return "fadd"; |
| case ISD::FSUB: return "fsub"; |
| case ISD::FMUL: return "fmul"; |
| case ISD::FDIV: return "fdiv"; |
| case ISD::FREM: return "frem"; |
| case ISD::FCOPYSIGN: return "fcopysign"; |
| |
| case ISD::SETCC: return "setcc"; |
| case ISD::SELECT: return "select"; |
| case ISD::SELECT_CC: return "select_cc"; |
| case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; |
| case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; |
| case ISD::CONCAT_VECTORS: return "concat_vectors"; |
| case ISD::EXTRACT_SUBVECTOR: return "extract_subvector"; |
| case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; |
| case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; |
| case ISD::CARRY_FALSE: return "carry_false"; |
| case ISD::ADDC: return "addc"; |
| case ISD::ADDE: return "adde"; |
| case ISD::SUBC: return "subc"; |
| case ISD::SUBE: return "sube"; |
| case ISD::SHL_PARTS: return "shl_parts"; |
| case ISD::SRA_PARTS: return "sra_parts"; |
| case ISD::SRL_PARTS: return "srl_parts"; |
| |
| // Conversion operators. |
| case ISD::SIGN_EXTEND: return "sign_extend"; |
| case ISD::ZERO_EXTEND: return "zero_extend"; |
| case ISD::ANY_EXTEND: return "any_extend"; |
| case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; |
| case ISD::TRUNCATE: return "truncate"; |
| case ISD::FP_ROUND: return "fp_round"; |
| case ISD::FP_ROUND_INREG: return "fp_round_inreg"; |
| case ISD::FP_EXTEND: return "fp_extend"; |
| |
| case ISD::SINT_TO_FP: return "sint_to_fp"; |
| case ISD::UINT_TO_FP: return "uint_to_fp"; |
| case ISD::FP_TO_SINT: return "fp_to_sint"; |
| case ISD::FP_TO_UINT: return "fp_to_uint"; |
| case ISD::BIT_CONVERT: return "bit_convert"; |
| |
| // Control flow instructions |
| case ISD::BR: return "br"; |
| case ISD::BRIND: return "brind"; |
| case ISD::BR_JT: return "br_jt"; |
| case ISD::BRCOND: return "brcond"; |
| case ISD::BR_CC: return "br_cc"; |
| case ISD::RET: return "ret"; |
| case ISD::CALLSEQ_START: return "callseq_start"; |
| case ISD::CALLSEQ_END: return "callseq_end"; |
| |
| // Other operators |
| case ISD::LOAD: return "load"; |
| case ISD::STORE: return "store"; |
| case ISD::VAARG: return "vaarg"; |
| case ISD::VACOPY: return "vacopy"; |
| case ISD::VAEND: return "vaend"; |
| case ISD::VASTART: return "vastart"; |
| case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; |
| case ISD::EXTRACT_ELEMENT: return "extract_element"; |
| case ISD::BUILD_PAIR: return "build_pair"; |
| case ISD::STACKSAVE: return "stacksave"; |
| case ISD::STACKRESTORE: return "stackrestore"; |
| |
| // Block memory operations. |
| case ISD::MEMSET: return "memset"; |
| case ISD::MEMCPY: return "memcpy"; |
| case ISD::MEMMOVE: return "memmove"; |
| |
| // Bit manipulation |
| case ISD::BSWAP: return "bswap"; |
| case ISD::CTPOP: return "ctpop"; |
| case ISD::CTTZ: return "cttz"; |
| case ISD::CTLZ: return "ctlz"; |
| |
| // Debug info |
| case ISD::LOCATION: return "location"; |
| case ISD::DEBUG_LOC: return "debug_loc"; |
| |
| case ISD::CONDCODE: |
| switch (cast<CondCodeSDNode>(this)->get()) { |
| default: assert(0 && "Unknown setcc condition!"); |
| case ISD::SETOEQ: return "setoeq"; |
| case ISD::SETOGT: return "setogt"; |
| case ISD::SETOGE: return "setoge"; |
| case ISD::SETOLT: return "setolt"; |
| case ISD::SETOLE: return "setole"; |
| case ISD::SETONE: return "setone"; |
| |
| case ISD::SETO: return "seto"; |
| case ISD::SETUO: return "setuo"; |
| case ISD::SETUEQ: return "setue"; |
| case ISD::SETUGT: return "setugt"; |
| case ISD::SETUGE: return "setuge"; |
| case ISD::SETULT: return "setult"; |
| case ISD::SETULE: return "setule"; |
| case ISD::SETUNE: return "setune"; |
| |
| case ISD::SETEQ: return "seteq"; |
| case ISD::SETGT: return "setgt"; |
| case ISD::SETGE: return "setge"; |
| case ISD::SETLT: return "setlt"; |
| case ISD::SETLE: return "setle"; |
| case ISD::SETNE: return "setne"; |
| } |
| } |
| } |
| |
| const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { |
| switch (AM) { |
| default: |
| return ""; |
| case ISD::PRE_INC: |
| return "<pre-inc>"; |
| case ISD::PRE_DEC: |
| return "<pre-dec>"; |
| case ISD::POST_INC: |
| return "<post-inc>"; |
| case ISD::POST_DEC: |
| return "<post-dec>"; |
| } |
| } |
| |
| void SDNode::dump() const { dump(0); } |
| void SDNode::dump(const SelectionDAG *G) const { |
| cerr << (void*)this << ": "; |
| |
| for (unsigned i = 0, e = getNumValues(); i != e; ++i) { |
| if (i) cerr << ","; |
| if (getValueType(i) == MVT::Other) |
| cerr << "ch"; |
| else |
| cerr << MVT::getValueTypeString(getValueType(i)); |
| } |
| cerr << " = " << getOperationName(G); |
| |
| cerr << " "; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| if (i) cerr << ", "; |
| cerr << (void*)getOperand(i).Val; |
| if (unsigned RN = getOperand(i).ResNo) |
| cerr << ":" << RN; |
| } |
| |
| if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { |
| cerr << "<" << CSDN->getValue() << ">"; |
| } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { |
| cerr << "<" << CSDN->getValue() << ">"; |
| } else if (const GlobalAddressSDNode *GADN = |
| dyn_cast<GlobalAddressSDNode>(this)) { |
| int offset = GADN->getOffset(); |
| cerr << "<"; |
| WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">"; |
| if (offset > 0) |
| cerr << " + " << offset; |
| else |
| cerr << " " << offset; |
| } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { |
| cerr << "<" << FIDN->getIndex() << ">"; |
| } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) { |
| cerr << "<" << JTDN->getIndex() << ">"; |
| } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ |
| int offset = CP->getOffset(); |
| if (CP->isMachineConstantPoolEntry()) |
| cerr << "<" << *CP->getMachineCPVal() << ">"; |
| else |
| cerr << "<" << *CP->getConstVal() << ">"; |
| if (offset > 0) |
| cerr << " + " << offset; |
| else |
| cerr << " " << offset; |
| } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { |
| cerr << "<"; |
| const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); |
| if (LBB) |
| cerr << LBB->getName() << " "; |
| cerr << (const void*)BBDN->getBasicBlock() << ">"; |
| } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { |
| if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { |
| cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg()); |
| } else { |
| cerr << " #" << R->getReg(); |
| } |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(this)) { |
| cerr << "'" << ES->getSymbol() << "'"; |
| } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { |
| if (M->getValue()) |
| cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; |
| else |
| cerr << "<null:" << M->getOffset() << ">"; |
| } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { |
| cerr << ":" << MVT::getValueTypeString(N->getVT()); |
| } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) { |
| bool doExt = true; |
| switch (LD->getExtensionType()) { |
| default: doExt = false; break; |
| case ISD::EXTLOAD: |
| cerr << " <anyext "; |
| break; |
| case ISD::SEXTLOAD: |
| cerr << " <sext "; |
| break; |
| case ISD::ZEXTLOAD: |
| cerr << " <zext "; |
| break; |
| } |
| if (doExt) |
| cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">"; |
| |
| const char *AM = getIndexedModeName(LD->getAddressingMode()); |
| if (AM != "") |
| cerr << " " << AM; |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) { |
| if (ST->isTruncatingStore()) |
| cerr << " <trunc " |
| << MVT::getValueTypeString(ST->getStoredVT()) << ">"; |
| |
| const char *AM = getIndexedModeName(ST->getAddressingMode()); |
| if (AM != "") |
| cerr << " " << AM; |
| } |
| } |
| |
| static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).Val->hasOneUse()) |
| DumpNodes(N->getOperand(i).Val, indent+2, G); |
| else |
| cerr << "\n" << std::string(indent+2, ' ') |
| << (void*)N->getOperand(i).Val << ": <multiple use>"; |
| |
| |
| cerr << "\n" << std::string(indent, ' '); |
| N->dump(G); |
| } |
| |
| void SelectionDAG::dump() const { |
| cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; |
| std::vector<const SDNode*> Nodes; |
| for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); |
| I != E; ++I) |
| Nodes.push_back(I); |
| |
| std::sort(Nodes.begin(), Nodes.end()); |
| |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) |
| DumpNodes(Nodes[i], 2, this); |
| } |
| |
| if (getRoot().Val) DumpNodes(getRoot().Val, 2, this); |
| |
| cerr << "\n\n"; |
| } |
| |
| const Type *ConstantPoolSDNode::getType() const { |
| if (isMachineConstantPoolEntry()) |
| return Val.MachineCPVal->getType(); |
| return Val.ConstVal->getType(); |
| } |