| //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a very simple implementation of Andersen's interprocedural |
| // alias analysis. This implementation does not include any of the fancy |
| // features that make Andersen's reasonably efficient (like cycle elimination or |
| // variable substitution), but it should be useful for getting precision |
| // numbers and can be extended in the future. |
| // |
| // In pointer analysis terms, this is a subset-based, flow-insensitive, |
| // field-insensitive, and context-insensitive algorithm pointer algorithm. |
| // |
| // This algorithm is implemented as three stages: |
| // 1. Object identification. |
| // 2. Inclusion constraint identification. |
| // 3. Inclusion constraint solving. |
| // |
| // The object identification stage identifies all of the memory objects in the |
| // program, which includes globals, heap allocated objects, and stack allocated |
| // objects. |
| // |
| // The inclusion constraint identification stage finds all inclusion constraints |
| // in the program by scanning the program, looking for pointer assignments and |
| // other statements that effect the points-to graph. For a statement like "A = |
| // B", this statement is processed to indicate that A can point to anything that |
| // B can point to. Constraints can handle copies, loads, and stores. |
| // |
| // The inclusion constraint solving phase iteratively propagates the inclusion |
| // constraints until a fixed point is reached. This is an O(N^3) algorithm. |
| // |
| // In the initial pass, all indirect function calls are completely ignored. As |
| // the analysis discovers new targets of function pointers, it iteratively |
| // resolves a precise (and conservative) call graph. Also related, this |
| // analysis initially assumes that all internal functions have known incoming |
| // pointers. If we find that an internal function's address escapes outside of |
| // the program, we update this assumption. |
| // |
| // Future Improvements: |
| // This implementation of Andersen's algorithm is extremely slow. To make it |
| // scale reasonably well, the inclusion constraints could be sorted (easy), |
| // offline variable substitution would be a huge win (straight-forward), and |
| // online cycle elimination (trickier) might help as well. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "anders-aa" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| STATISTIC(NumIters , "Number of iterations to reach convergence"); |
| STATISTIC(NumConstraints , "Number of constraints"); |
| STATISTIC(NumNodes , "Number of nodes"); |
| STATISTIC(NumEscapingFunctions, "Number of internal functions that escape"); |
| STATISTIC(NumIndirectCallees , "Number of indirect callees found"); |
| |
| namespace { |
| class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis, |
| private InstVisitor<Andersens> { |
| public: |
| static const int ID; // Class identification, replacement for typeinfo |
| Andersens() : ModulePass((intptr_t)&ID) {} |
| private: |
| /// Node class - This class is used to represent a memory object in the |
| /// program, and is the primitive used to build the points-to graph. |
| class Node { |
| std::vector<Node*> Pointees; |
| Value *Val; |
| public: |
| static const unsigned ID; // Pass identifcation, replacement for typeid |
| Node() : Val(0) {} |
| Node *setValue(Value *V) { |
| assert(Val == 0 && "Value already set for this node!"); |
| Val = V; |
| return this; |
| } |
| |
| /// getValue - Return the LLVM value corresponding to this node. |
| /// |
| Value *getValue() const { return Val; } |
| |
| typedef std::vector<Node*>::const_iterator iterator; |
| iterator begin() const { return Pointees.begin(); } |
| iterator end() const { return Pointees.end(); } |
| |
| /// addPointerTo - Add a pointer to the list of pointees of this node, |
| /// returning true if this caused a new pointer to be added, or false if |
| /// we already knew about the points-to relation. |
| bool addPointerTo(Node *N) { |
| std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(), |
| Pointees.end(), |
| N); |
| if (I != Pointees.end() && *I == N) |
| return false; |
| Pointees.insert(I, N); |
| return true; |
| } |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool intersects(Node *N) const; |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool intersectsIgnoring(Node *N, Node *Ignoring) const; |
| |
| // Constraint application methods. |
| bool copyFrom(Node *N); |
| bool loadFrom(Node *N); |
| bool storeThrough(Node *N); |
| }; |
| |
| /// GraphNodes - This vector is populated as part of the object |
| /// identification stage of the analysis, which populates this vector with a |
| /// node for each memory object and fills in the ValueNodes map. |
| std::vector<Node> GraphNodes; |
| |
| /// ValueNodes - This map indicates the Node that a particular Value* is |
| /// represented by. This contains entries for all pointers. |
| std::map<Value*, unsigned> ValueNodes; |
| |
| /// ObjectNodes - This map contains entries for each memory object in the |
| /// program: globals, alloca's and mallocs. |
| std::map<Value*, unsigned> ObjectNodes; |
| |
| /// ReturnNodes - This map contains an entry for each function in the |
| /// program that returns a value. |
| std::map<Function*, unsigned> ReturnNodes; |
| |
| /// VarargNodes - This map contains the entry used to represent all pointers |
| /// passed through the varargs portion of a function call for a particular |
| /// function. An entry is not present in this map for functions that do not |
| /// take variable arguments. |
| std::map<Function*, unsigned> VarargNodes; |
| |
| /// Constraint - Objects of this structure are used to represent the various |
| /// constraints identified by the algorithm. The constraints are 'copy', |
| /// for statements like "A = B", 'load' for statements like "A = *B", and |
| /// 'store' for statements like "*A = B". |
| struct Constraint { |
| enum ConstraintType { Copy, Load, Store } Type; |
| Node *Dest, *Src; |
| |
| Constraint(ConstraintType Ty, Node *D, Node *S) |
| : Type(Ty), Dest(D), Src(S) {} |
| }; |
| |
| /// Constraints - This vector contains a list of all of the constraints |
| /// identified by the program. |
| std::vector<Constraint> Constraints; |
| |
| /// EscapingInternalFunctions - This set contains all of the internal |
| /// functions that are found to escape from the program. If the address of |
| /// an internal function is passed to an external function or otherwise |
| /// escapes from the analyzed portion of the program, we must assume that |
| /// any pointer arguments can alias the universal node. This set keeps |
| /// track of those functions we are assuming to escape so far. |
| std::set<Function*> EscapingInternalFunctions; |
| |
| /// IndirectCalls - This contains a list of all of the indirect call sites |
| /// in the program. Since the call graph is iteratively discovered, we may |
| /// need to add constraints to our graph as we find new targets of function |
| /// pointers. |
| std::vector<CallSite> IndirectCalls; |
| |
| /// IndirectCallees - For each call site in the indirect calls list, keep |
| /// track of the callees that we have discovered so far. As the analysis |
| /// proceeds, more callees are discovered, until the call graph finally |
| /// stabilizes. |
| std::map<CallSite, std::vector<Function*> > IndirectCallees; |
| |
| /// This enum defines the GraphNodes indices that correspond to important |
| /// fixed sets. |
| enum { |
| UniversalSet = 0, |
| NullPtr = 1, |
| NullObject = 2 |
| }; |
| |
| public: |
| bool runOnModule(Module &M) { |
| InitializeAliasAnalysis(this); |
| IdentifyObjects(M); |
| CollectConstraints(M); |
| DEBUG(PrintConstraints()); |
| SolveConstraints(); |
| DEBUG(PrintPointsToGraph()); |
| |
| // Free the constraints list, as we don't need it to respond to alias |
| // requests. |
| ObjectNodes.clear(); |
| ReturnNodes.clear(); |
| VarargNodes.clear(); |
| EscapingInternalFunctions.clear(); |
| std::vector<Constraint>().swap(Constraints); |
| return false; |
| } |
| |
| void releaseMemory() { |
| // FIXME: Until we have transitively required passes working correctly, |
| // this cannot be enabled! Otherwise, using -count-aa with the pass |
| // causes memory to be freed too early. :( |
| #if 0 |
| // The memory objects and ValueNodes data structures at the only ones that |
| // are still live after construction. |
| std::vector<Node>().swap(GraphNodes); |
| ValueNodes.clear(); |
| #endif |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AliasAnalysis::getAnalysisUsage(AU); |
| AU.setPreservesAll(); // Does not transform code |
| } |
| |
| //------------------------------------------------ |
| // Implement the AliasAnalysis API |
| // |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); |
| virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); |
| void getMustAliases(Value *P, std::vector<Value*> &RetVals); |
| bool pointsToConstantMemory(const Value *P); |
| |
| virtual void deleteValue(Value *V) { |
| ValueNodes.erase(V); |
| getAnalysis<AliasAnalysis>().deleteValue(V); |
| } |
| |
| virtual void copyValue(Value *From, Value *To) { |
| ValueNodes[To] = ValueNodes[From]; |
| getAnalysis<AliasAnalysis>().copyValue(From, To); |
| } |
| |
| private: |
| /// getNode - Return the node corresponding to the specified pointer scalar. |
| /// |
| Node *getNode(Value *V) { |
| if (Constant *C = dyn_cast<Constant>(V)) |
| if (!isa<GlobalValue>(C)) |
| return getNodeForConstantPointer(C); |
| |
| std::map<Value*, unsigned>::iterator I = ValueNodes.find(V); |
| if (I == ValueNodes.end()) { |
| #ifndef NDEBUG |
| V->dump(); |
| #endif |
| assert(0 && "Value does not have a node in the points-to graph!"); |
| } |
| return &GraphNodes[I->second]; |
| } |
| |
| /// getObject - Return the node corresponding to the memory object for the |
| /// specified global or allocation instruction. |
| Node *getObject(Value *V) { |
| std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V); |
| assert(I != ObjectNodes.end() && |
| "Value does not have an object in the points-to graph!"); |
| return &GraphNodes[I->second]; |
| } |
| |
| /// getReturnNode - Return the node representing the return value for the |
| /// specified function. |
| Node *getReturnNode(Function *F) { |
| std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F); |
| assert(I != ReturnNodes.end() && "Function does not return a value!"); |
| return &GraphNodes[I->second]; |
| } |
| |
| /// getVarargNode - Return the node representing the variable arguments |
| /// formal for the specified function. |
| Node *getVarargNode(Function *F) { |
| std::map<Function*, unsigned>::iterator I = VarargNodes.find(F); |
| assert(I != VarargNodes.end() && "Function does not take var args!"); |
| return &GraphNodes[I->second]; |
| } |
| |
| /// getNodeValue - Get the node for the specified LLVM value and set the |
| /// value for it to be the specified value. |
| Node *getNodeValue(Value &V) { |
| return getNode(&V)->setValue(&V); |
| } |
| |
| void IdentifyObjects(Module &M); |
| void CollectConstraints(Module &M); |
| void SolveConstraints(); |
| |
| Node *getNodeForConstantPointer(Constant *C); |
| Node *getNodeForConstantPointerTarget(Constant *C); |
| void AddGlobalInitializerConstraints(Node *N, Constant *C); |
| |
| void AddConstraintsForNonInternalLinkage(Function *F); |
| void AddConstraintsForCall(CallSite CS, Function *F); |
| bool AddConstraintsForExternalCall(CallSite CS, Function *F); |
| |
| |
| void PrintNode(Node *N); |
| void PrintConstraints(); |
| void PrintPointsToGraph(); |
| |
| //===------------------------------------------------------------------===// |
| // Instruction visitation methods for adding constraints |
| // |
| friend class InstVisitor<Andersens>; |
| void visitReturnInst(ReturnInst &RI); |
| void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } |
| void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } |
| void visitCallSite(CallSite CS); |
| void visitAllocationInst(AllocationInst &AI); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitPHINode(PHINode &PN); |
| void visitCastInst(CastInst &CI); |
| void visitICmpInst(ICmpInst &ICI) {} // NOOP! |
| void visitFCmpInst(FCmpInst &ICI) {} // NOOP! |
| void visitSelectInst(SelectInst &SI); |
| void visitVAArg(VAArgInst &I); |
| void visitInstruction(Instruction &I); |
| }; |
| |
| const int Andersens::ID = 0; |
| RegisterPass<Andersens> X("anders-aa", |
| "Andersen's Interprocedural Alias Analysis"); |
| RegisterAnalysisGroup<AliasAnalysis> Y(X); |
| } |
| |
| ModulePass *llvm::createAndersensPass() { return new Andersens(); } |
| |
| //===----------------------------------------------------------------------===// |
| // AliasAnalysis Interface Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| Node *N1 = getNode(const_cast<Value*>(V1)); |
| Node *N2 = getNode(const_cast<Value*>(V2)); |
| |
| // Check to see if the two pointers are known to not alias. They don't alias |
| // if their points-to sets do not intersect. |
| if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject])) |
| return NoAlias; |
| |
| return AliasAnalysis::alias(V1, V1Size, V2, V2Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) { |
| // The only thing useful that we can contribute for mod/ref information is |
| // when calling external function calls: if we know that memory never escapes |
| // from the program, it cannot be modified by an external call. |
| // |
| // NOTE: This is not really safe, at least not when the entire program is not |
| // available. The deal is that the external function could call back into the |
| // program and modify stuff. We ignore this technical niggle for now. This |
| // is, after all, a "research quality" implementation of Andersen's analysis. |
| if (Function *F = CS.getCalledFunction()) |
| if (F->isDeclaration()) { |
| Node *N1 = getNode(P); |
| |
| if (N1->begin() == N1->end()) |
| return NoModRef; // P doesn't point to anything. |
| |
| // Get the first pointee. |
| Node *FirstPointee = *N1->begin(); |
| if (FirstPointee != &GraphNodes[UniversalSet]) |
| return NoModRef; // P doesn't point to the universal set. |
| } |
| |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| } |
| |
| AliasAnalysis::ModRefResult |
| Andersens::getModRefInfo(CallSite CS1, CallSite CS2) { |
| return AliasAnalysis::getModRefInfo(CS1,CS2); |
| } |
| |
| /// getMustAlias - We can provide must alias information if we know that a |
| /// pointer can only point to a specific function or the null pointer. |
| /// Unfortunately we cannot determine must-alias information for global |
| /// variables or any other memory memory objects because we do not track whether |
| /// a pointer points to the beginning of an object or a field of it. |
| void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) { |
| Node *N = getNode(P); |
| Node::iterator I = N->begin(); |
| if (I != N->end()) { |
| // If there is exactly one element in the points-to set for the object... |
| ++I; |
| if (I == N->end()) { |
| Node *Pointee = *N->begin(); |
| |
| // If a function is the only object in the points-to set, then it must be |
| // the destination. Note that we can't handle global variables here, |
| // because we don't know if the pointer is actually pointing to a field of |
| // the global or to the beginning of it. |
| if (Value *V = Pointee->getValue()) { |
| if (Function *F = dyn_cast<Function>(V)) |
| RetVals.push_back(F); |
| } else { |
| // If the object in the points-to set is the null object, then the null |
| // pointer is a must alias. |
| if (Pointee == &GraphNodes[NullObject]) |
| RetVals.push_back(Constant::getNullValue(P->getType())); |
| } |
| } |
| } |
| |
| AliasAnalysis::getMustAliases(P, RetVals); |
| } |
| |
| /// pointsToConstantMemory - If we can determine that this pointer only points |
| /// to constant memory, return true. In practice, this means that if the |
| /// pointer can only point to constant globals, functions, or the null pointer, |
| /// return true. |
| /// |
| bool Andersens::pointsToConstantMemory(const Value *P) { |
| Node *N = getNode((Value*)P); |
| for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) { |
| if (Value *V = (*I)->getValue()) { |
| if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) && |
| !cast<GlobalVariable>(V)->isConstant())) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } else { |
| if (*I != &GraphNodes[NullObject]) |
| return AliasAnalysis::pointsToConstantMemory(P); |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Object Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// IdentifyObjects - This stage scans the program, adding an entry to the |
| /// GraphNodes list for each memory object in the program (global stack or |
| /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. |
| /// |
| void Andersens::IdentifyObjects(Module &M) { |
| unsigned NumObjects = 0; |
| |
| // Object #0 is always the universal set: the object that we don't know |
| // anything about. |
| assert(NumObjects == UniversalSet && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #1 always represents the null pointer. |
| assert(NumObjects == NullPtr && "Something changed!"); |
| ++NumObjects; |
| |
| // Object #2 always represents the null object (the object pointed to by null) |
| assert(NumObjects == NullObject && "Something changed!"); |
| ++NumObjects; |
| |
| // Add all the globals first. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| ObjectNodes[I] = NumObjects++; |
| ValueNodes[I] = NumObjects++; |
| } |
| |
| // Add nodes for all of the functions and the instructions inside of them. |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // The function itself is a memory object. |
| ValueNodes[F] = NumObjects++; |
| ObjectNodes[F] = NumObjects++; |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| ReturnNodes[F] = NumObjects++; |
| if (F->getFunctionType()->isVarArg()) |
| VarargNodes[F] = NumObjects++; |
| |
| // Add nodes for all of the incoming pointer arguments. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| ValueNodes[I] = NumObjects++; |
| |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| // If this is an heap or stack allocation, create a node for the memory |
| // object. |
| if (isa<PointerType>(II->getType())) { |
| ValueNodes[&*II] = NumObjects++; |
| if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II)) |
| ObjectNodes[AI] = NumObjects++; |
| } |
| } |
| } |
| |
| // Now that we know how many objects to create, make them all now! |
| GraphNodes.resize(NumObjects); |
| NumNodes += NumObjects; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Identification Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// getNodeForConstantPointer - Return the node corresponding to the constant |
| /// pointer itself. |
| Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C)) |
| return &GraphNodes[NullPtr]; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getNode(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return &GraphNodes[UniversalSet]; |
| case Instruction::BitCast: |
| return getNodeForConstantPointer(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// getNodeForConstantPointerTarget - Return the node POINTED TO by the |
| /// specified constant pointer. |
| Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) { |
| assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| |
| if (isa<ConstantPointerNull>(C)) |
| return &GraphNodes[NullObject]; |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return getObject(GV); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| case Instruction::IntToPtr: |
| return &GraphNodes[UniversalSet]; |
| case Instruction::BitCast: |
| return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| default: |
| cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| assert(0); |
| } |
| } else { |
| assert(0 && "Unknown constant pointer!"); |
| } |
| return 0; |
| } |
| |
| /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory |
| /// object N, which contains values indicated by C. |
| void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) { |
| if (C->getType()->isFirstClassType()) { |
| if (isa<PointerType>(C->getType())) |
| N->copyFrom(getNodeForConstantPointer(C)); |
| |
| } else if (C->isNullValue()) { |
| N->addPointerTo(&GraphNodes[NullObject]); |
| return; |
| } else if (!isa<UndefValue>(C)) { |
| // If this is an array or struct, include constraints for each element. |
| assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C)); |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i))); |
| } |
| } |
| |
| /// AddConstraintsForNonInternalLinkage - If this function does not have |
| /// internal linkage, realize that we can't trust anything passed into or |
| /// returned by this function. |
| void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| // If this is an argument of an externally accessible function, the |
| // incoming pointer might point to anything. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(I), |
| &GraphNodes[UniversalSet])); |
| } |
| |
| /// AddConstraintsForCall - If this is a call to a "known" function, add the |
| /// constraints and return true. If this is a call to an unknown function, |
| /// return false. |
| bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) { |
| assert(F->isDeclaration() && "Not an external function!"); |
| |
| // These functions don't induce any points-to constraints. |
| if (F->getName() == "atoi" || F->getName() == "atof" || |
| F->getName() == "atol" || F->getName() == "atoll" || |
| F->getName() == "remove" || F->getName() == "unlink" || |
| F->getName() == "rename" || F->getName() == "memcmp" || |
| F->getName() == "llvm.memset.i32" || |
| F->getName() == "llvm.memset.i64" || |
| F->getName() == "strcmp" || F->getName() == "strncmp" || |
| F->getName() == "execl" || F->getName() == "execlp" || |
| F->getName() == "execle" || F->getName() == "execv" || |
| F->getName() == "execvp" || F->getName() == "chmod" || |
| F->getName() == "puts" || F->getName() == "write" || |
| F->getName() == "open" || F->getName() == "create" || |
| F->getName() == "truncate" || F->getName() == "chdir" || |
| F->getName() == "mkdir" || F->getName() == "rmdir" || |
| F->getName() == "read" || F->getName() == "pipe" || |
| F->getName() == "wait" || F->getName() == "time" || |
| F->getName() == "stat" || F->getName() == "fstat" || |
| F->getName() == "lstat" || F->getName() == "strtod" || |
| F->getName() == "strtof" || F->getName() == "strtold" || |
| F->getName() == "fopen" || F->getName() == "fdopen" || |
| F->getName() == "freopen" || |
| F->getName() == "fflush" || F->getName() == "feof" || |
| F->getName() == "fileno" || F->getName() == "clearerr" || |
| F->getName() == "rewind" || F->getName() == "ftell" || |
| F->getName() == "ferror" || F->getName() == "fgetc" || |
| F->getName() == "fgetc" || F->getName() == "_IO_getc" || |
| F->getName() == "fwrite" || F->getName() == "fread" || |
| F->getName() == "fgets" || F->getName() == "ungetc" || |
| F->getName() == "fputc" || |
| F->getName() == "fputs" || F->getName() == "putc" || |
| F->getName() == "ftell" || F->getName() == "rewind" || |
| F->getName() == "_IO_putc" || F->getName() == "fseek" || |
| F->getName() == "fgetpos" || F->getName() == "fsetpos" || |
| F->getName() == "printf" || F->getName() == "fprintf" || |
| F->getName() == "sprintf" || F->getName() == "vprintf" || |
| F->getName() == "vfprintf" || F->getName() == "vsprintf" || |
| F->getName() == "scanf" || F->getName() == "fscanf" || |
| F->getName() == "sscanf" || F->getName() == "__assert_fail" || |
| F->getName() == "modf") |
| return true; |
| |
| |
| // These functions do induce points-to edges. |
| if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" || |
| F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" || |
| F->getName() == "memmove") { |
| // Note: this is a poor approximation, this says Dest = Src, instead of |
| // *Dest = *Src. |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(CS.getArgument(0)), |
| getNode(CS.getArgument(1)))); |
| return true; |
| } |
| |
| // Result = Arg0 |
| if (F->getName() == "realloc" || F->getName() == "strchr" || |
| F->getName() == "strrchr" || F->getName() == "strstr" || |
| F->getName() == "strtok") { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getNode(CS.getInstruction()), |
| getNode(CS.getArgument(0)))); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| |
| /// CollectConstraints - This stage scans the program, adding a constraint to |
| /// the Constraints list for each instruction in the program that induces a |
| /// constraint, and setting up the initial points-to graph. |
| /// |
| void Andersens::CollectConstraints(Module &M) { |
| // First, the universal set points to itself. |
| GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]); |
| //Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet], |
| // &GraphNodes[UniversalSet])); |
| Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet], |
| &GraphNodes[UniversalSet])); |
| |
| // Next, the null pointer points to the null object. |
| GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]); |
| |
| // Next, add any constraints on global variables and their initializers. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| // Associate the address of the global object as pointing to the memory for |
| // the global: &G = <G memory> |
| Node *Object = getObject(I); |
| Object->setValue(I); |
| getNodeValue(*I)->addPointerTo(Object); |
| |
| if (I->hasInitializer()) { |
| AddGlobalInitializerConstraints(Object, I->getInitializer()); |
| } else { |
| // If it doesn't have an initializer (i.e. it's defined in another |
| // translation unit), it points to the universal set. |
| Constraints.push_back(Constraint(Constraint::Copy, Object, |
| &GraphNodes[UniversalSet])); |
| } |
| } |
| |
| for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| // Make the function address point to the function object. |
| getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F)); |
| |
| // Set up the return value node. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| getReturnNode(F)->setValue(F); |
| if (F->getFunctionType()->isVarArg()) |
| getVarargNode(F)->setValue(F); |
| |
| // Set up incoming argument nodes. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| getNodeValue(*I); |
| |
| if (!F->hasInternalLinkage()) |
| AddConstraintsForNonInternalLinkage(F); |
| |
| if (!F->isDeclaration()) { |
| // Scan the function body, creating a memory object for each heap/stack |
| // allocation in the body of the function and a node to represent all |
| // pointer values defined by instructions and used as operands. |
| visit(F); |
| } else { |
| // External functions that return pointers return the universal set. |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(F), |
| &GraphNodes[UniversalSet])); |
| |
| // Any pointers that are passed into the function have the universal set |
| // stored into them. |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (isa<PointerType>(I->getType())) { |
| // Pointers passed into external functions could have anything stored |
| // through them. |
| Constraints.push_back(Constraint(Constraint::Store, getNode(I), |
| &GraphNodes[UniversalSet])); |
| // Memory objects passed into external function calls can have the |
| // universal set point to them. |
| Constraints.push_back(Constraint(Constraint::Copy, |
| &GraphNodes[UniversalSet], |
| getNode(I))); |
| } |
| |
| // If this is an external varargs function, it can also store pointers |
| // into any pointers passed through the varargs section. |
| if (F->getFunctionType()->isVarArg()) |
| Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), |
| &GraphNodes[UniversalSet])); |
| } |
| } |
| NumConstraints += Constraints.size(); |
| } |
| |
| |
| void Andersens::visitInstruction(Instruction &I) { |
| #ifdef NDEBUG |
| return; // This function is just a big assert. |
| #endif |
| if (isa<BinaryOperator>(I)) |
| return; |
| // Most instructions don't have any effect on pointer values. |
| switch (I.getOpcode()) { |
| case Instruction::Br: |
| case Instruction::Switch: |
| case Instruction::Unwind: |
| case Instruction::Unreachable: |
| case Instruction::Free: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return; |
| default: |
| // Is this something we aren't handling yet? |
| cerr << "Unknown instruction: " << I; |
| abort(); |
| } |
| } |
| |
| void Andersens::visitAllocationInst(AllocationInst &AI) { |
| getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI)); |
| } |
| |
| void Andersens::visitReturnInst(ReturnInst &RI) { |
| if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) |
| // return V --> <Copy/retval{F}/v> |
| Constraints.push_back(Constraint(Constraint::Copy, |
| getReturnNode(RI.getParent()->getParent()), |
| getNode(RI.getOperand(0)))); |
| } |
| |
| void Andersens::visitLoadInst(LoadInst &LI) { |
| if (isa<PointerType>(LI.getType())) |
| // P1 = load P2 --> <Load/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), |
| getNode(LI.getOperand(0)))); |
| } |
| |
| void Andersens::visitStoreInst(StoreInst &SI) { |
| if (isa<PointerType>(SI.getOperand(0)->getType())) |
| // store P1, P2 --> <Store/P2/P1> |
| Constraints.push_back(Constraint(Constraint::Store, |
| getNode(SI.getOperand(1)), |
| getNode(SI.getOperand(0)))); |
| } |
| |
| void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| // P1 = getelementptr P2, ... --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), |
| getNode(GEP.getOperand(0)))); |
| } |
| |
| void Andersens::visitPHINode(PHINode &PN) { |
| if (isa<PointerType>(PN.getType())) { |
| Node *PNN = getNodeValue(PN); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ... |
| Constraints.push_back(Constraint(Constraint::Copy, PNN, |
| getNode(PN.getIncomingValue(i)))); |
| } |
| } |
| |
| void Andersens::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| if (isa<PointerType>(CI.getType())) { |
| if (isa<PointerType>(Op->getType())) { |
| // P1 = cast P2 --> <Copy/P1/P2> |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| getNode(CI.getOperand(0)))); |
| } else { |
| // P1 = cast int --> <Copy/P1/Univ> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| &GraphNodes[UniversalSet])); |
| #else |
| getNodeValue(CI); |
| #endif |
| } |
| } else if (isa<PointerType>(Op->getType())) { |
| // int = cast P1 --> <Copy/Univ/P1> |
| #if 0 |
| Constraints.push_back(Constraint(Constraint::Copy, |
| &GraphNodes[UniversalSet], |
| getNode(CI.getOperand(0)))); |
| #else |
| getNode(CI.getOperand(0)); |
| #endif |
| } |
| } |
| |
| void Andersens::visitSelectInst(SelectInst &SI) { |
| if (isa<PointerType>(SI.getType())) { |
| Node *SIN = getNodeValue(SI); |
| // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3> |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(1)))); |
| Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| getNode(SI.getOperand(2)))); |
| } |
| } |
| |
| void Andersens::visitVAArg(VAArgInst &I) { |
| assert(0 && "vaarg not handled yet!"); |
| } |
| |
| /// AddConstraintsForCall - Add constraints for a call with actual arguments |
| /// specified by CS to the function specified by F. Note that the types of |
| /// arguments might not match up in the case where this is an indirect call and |
| /// the function pointer has been casted. If this is the case, do something |
| /// reasonable. |
| void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { |
| // If this is a call to an external function, handle it directly to get some |
| // taste of context sensitivity. |
| if (F->isDeclaration() && AddConstraintsForExternalCall(CS, F)) |
| return; |
| |
| if (isa<PointerType>(CS.getType())) { |
| Node *CSN = getNode(CS.getInstruction()); |
| if (isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| getReturnNode(F))); |
| } else { |
| // If the function returns a non-pointer value, handle this just like we |
| // treat a nonpointer cast to pointer. |
| Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| &GraphNodes[UniversalSet])); |
| } |
| } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| &GraphNodes[UniversalSet], |
| getReturnNode(F))); |
| } |
| |
| Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); |
| for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) |
| if (isa<PointerType>(AI->getType())) { |
| if (isa<PointerType>((*ArgI)->getType())) { |
| // Copy the actual argument into the formal argument. |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| getNode(*ArgI))); |
| } else { |
| Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| &GraphNodes[UniversalSet])); |
| } |
| } else if (isa<PointerType>((*ArgI)->getType())) { |
| Constraints.push_back(Constraint(Constraint::Copy, |
| &GraphNodes[UniversalSet], |
| getNode(*ArgI))); |
| } |
| |
| // Copy all pointers passed through the varargs section to the varargs node. |
| if (F->getFunctionType()->isVarArg()) |
| for (; ArgI != ArgE; ++ArgI) |
| if (isa<PointerType>((*ArgI)->getType())) |
| Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), |
| getNode(*ArgI))); |
| // If more arguments are passed in than we track, just drop them on the floor. |
| } |
| |
| void Andersens::visitCallSite(CallSite CS) { |
| if (isa<PointerType>(CS.getType())) |
| getNodeValue(*CS.getInstruction()); |
| |
| if (Function *F = CS.getCalledFunction()) { |
| AddConstraintsForCall(CS, F); |
| } else { |
| // We don't handle indirect call sites yet. Keep track of them for when we |
| // discover the call graph incrementally. |
| IndirectCalls.push_back(CS); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constraint Solving Phase |
| //===----------------------------------------------------------------------===// |
| |
| /// intersects - Return true if the points-to set of this node intersects |
| /// with the points-to set of the specified node. |
| bool Andersens::Node::intersects(Node *N) const { |
| iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end(); |
| while (I1 != E1 && I2 != E2) { |
| if (*I1 == *I2) return true; |
| if (*I1 < *I2) |
| ++I1; |
| else |
| ++I2; |
| } |
| return false; |
| } |
| |
| /// intersectsIgnoring - Return true if the points-to set of this node |
| /// intersects with the points-to set of the specified node on any nodes |
| /// except for the specified node to ignore. |
| bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const { |
| iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end(); |
| while (I1 != E1 && I2 != E2) { |
| if (*I1 == *I2) { |
| if (*I1 != Ignoring) return true; |
| ++I1; ++I2; |
| } else if (*I1 < *I2) |
| ++I1; |
| else |
| ++I2; |
| } |
| return false; |
| } |
| |
| // Copy constraint: all edges out of the source node get copied to the |
| // destination node. This returns true if a change is made. |
| bool Andersens::Node::copyFrom(Node *N) { |
| // Use a mostly linear-time merge since both of the lists are sorted. |
| bool Changed = false; |
| iterator I = N->begin(), E = N->end(); |
| unsigned i = 0; |
| while (I != E && i != Pointees.size()) { |
| if (Pointees[i] < *I) { |
| ++i; |
| } else if (Pointees[i] == *I) { |
| ++i; ++I; |
| } else { |
| // We found a new element to copy over. |
| Changed = true; |
| Pointees.insert(Pointees.begin()+i, *I); |
| ++i; ++I; |
| } |
| } |
| |
| if (I != E) { |
| Pointees.insert(Pointees.end(), I, E); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| bool Andersens::Node::loadFrom(Node *N) { |
| bool Changed = false; |
| for (iterator I = N->begin(), E = N->end(); I != E; ++I) |
| Changed |= copyFrom(*I); |
| return Changed; |
| } |
| |
| bool Andersens::Node::storeThrough(Node *N) { |
| bool Changed = false; |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| Changed |= (*I)->copyFrom(N); |
| return Changed; |
| } |
| |
| |
| /// SolveConstraints - This stage iteratively processes the constraints list |
| /// propagating constraints (adding edges to the Nodes in the points-to graph) |
| /// until a fixed point is reached. |
| /// |
| void Andersens::SolveConstraints() { |
| bool Changed = true; |
| unsigned Iteration = 0; |
| while (Changed) { |
| Changed = false; |
| ++NumIters; |
| DOUT << "Starting iteration #" << Iteration++ << "!\n"; |
| |
| // Loop over all of the constraints, applying them in turn. |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| Constraint &C = Constraints[i]; |
| switch (C.Type) { |
| case Constraint::Copy: |
| Changed |= C.Dest->copyFrom(C.Src); |
| break; |
| case Constraint::Load: |
| Changed |= C.Dest->loadFrom(C.Src); |
| break; |
| case Constraint::Store: |
| Changed |= C.Dest->storeThrough(C.Src); |
| break; |
| default: |
| assert(0 && "Unknown constraint!"); |
| } |
| } |
| |
| if (Changed) { |
| // Check to see if any internal function's addresses have been passed to |
| // external functions. If so, we have to assume that their incoming |
| // arguments could be anything. If there are any internal functions in |
| // the universal node that we don't know about, we must iterate. |
| for (Node::iterator I = GraphNodes[UniversalSet].begin(), |
| E = GraphNodes[UniversalSet].end(); I != E; ++I) |
| if (Function *F = dyn_cast_or_null<Function>((*I)->getValue())) |
| if (F->hasInternalLinkage() && |
| EscapingInternalFunctions.insert(F).second) { |
| // We found a function that is just now escaping. Mark it as if it |
| // didn't have internal linkage. |
| AddConstraintsForNonInternalLinkage(F); |
| DOUT << "Found escaping internal function: " << F->getName() <<"\n"; |
| ++NumEscapingFunctions; |
| } |
| |
| // Check to see if we have discovered any new callees of the indirect call |
| // sites. If so, add constraints to the analysis. |
| for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) { |
| CallSite CS = IndirectCalls[i]; |
| std::vector<Function*> &KnownCallees = IndirectCallees[CS]; |
| Node *CN = getNode(CS.getCalledValue()); |
| |
| for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI) |
| if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) { |
| std::vector<Function*>::iterator IP = |
| std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F); |
| if (IP == KnownCallees.end() || *IP != F) { |
| // Add the constraints for the call now. |
| AddConstraintsForCall(CS, F); |
| DOUT << "Found actual callee '" |
| << F->getName() << "' for call: " |
| << *CS.getInstruction() << "\n"; |
| ++NumIndirectCallees; |
| KnownCallees.insert(IP, F); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Debugging Output |
| //===----------------------------------------------------------------------===// |
| |
| void Andersens::PrintNode(Node *N) { |
| if (N == &GraphNodes[UniversalSet]) { |
| cerr << "<universal>"; |
| return; |
| } else if (N == &GraphNodes[NullPtr]) { |
| cerr << "<nullptr>"; |
| return; |
| } else if (N == &GraphNodes[NullObject]) { |
| cerr << "<null>"; |
| return; |
| } |
| |
| assert(N->getValue() != 0 && "Never set node label!"); |
| Value *V = N->getValue(); |
| if (Function *F = dyn_cast<Function>(V)) { |
| if (isa<PointerType>(F->getFunctionType()->getReturnType()) && |
| N == getReturnNode(F)) { |
| cerr << F->getName() << ":retval"; |
| return; |
| } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) { |
| cerr << F->getName() << ":vararg"; |
| return; |
| } |
| } |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| cerr << I->getParent()->getParent()->getName() << ":"; |
| else if (Argument *Arg = dyn_cast<Argument>(V)) |
| cerr << Arg->getParent()->getName() << ":"; |
| |
| if (V->hasName()) |
| cerr << V->getName(); |
| else |
| cerr << "(unnamed)"; |
| |
| if (isa<GlobalValue>(V) || isa<AllocationInst>(V)) |
| if (N == getObject(V)) |
| cerr << "<mem>"; |
| } |
| |
| void Andersens::PrintConstraints() { |
| cerr << "Constraints:\n"; |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| cerr << " #" << i << ": "; |
| Constraint &C = Constraints[i]; |
| if (C.Type == Constraint::Store) |
| cerr << "*"; |
| PrintNode(C.Dest); |
| cerr << " = "; |
| if (C.Type == Constraint::Load) |
| cerr << "*"; |
| PrintNode(C.Src); |
| cerr << "\n"; |
| } |
| } |
| |
| void Andersens::PrintPointsToGraph() { |
| cerr << "Points-to graph:\n"; |
| for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { |
| Node *N = &GraphNodes[i]; |
| cerr << "[" << (N->end() - N->begin()) << "] "; |
| PrintNode(N); |
| cerr << "\t--> "; |
| for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) { |
| if (I != N->begin()) cerr << ", "; |
| PrintNode(*I); |
| } |
| cerr << "\n"; |
| } |
| } |