| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the CodeGenDAGPatterns class, which is used to read and | 
 | // represent the patterns present in a .td file for instructions. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenDAGPatterns.h" | 
 | #include "Record.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include <set> | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  EEVT::TypeSet Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline bool isInteger(MVT::SimpleValueType VT) { | 
 |   return EVT(VT).isInteger(); | 
 | } | 
 | static inline bool isFloatingPoint(MVT::SimpleValueType VT) { | 
 |   return EVT(VT).isFloatingPoint(); | 
 | } | 
 | static inline bool isVector(MVT::SimpleValueType VT) { | 
 |   return EVT(VT).isVector(); | 
 | } | 
 | static inline bool isScalar(MVT::SimpleValueType VT) { | 
 |   return !EVT(VT).isVector(); | 
 | } | 
 |  | 
 | EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { | 
 |   if (VT == MVT::iAny) | 
 |     EnforceInteger(TP); | 
 |   else if (VT == MVT::fAny) | 
 |     EnforceFloatingPoint(TP); | 
 |   else if (VT == MVT::vAny) | 
 |     EnforceVector(TP); | 
 |   else { | 
 |     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || | 
 |             VT == MVT::iPTRAny) && "Not a concrete type!"); | 
 |     TypeVec.push_back(VT); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { | 
 |   assert(!VTList.empty() && "empty list?"); | 
 |   TypeVec.append(VTList.begin(), VTList.end()); | 
 |  | 
 |   if (!VTList.empty()) | 
 |     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && | 
 |            VTList[0] != MVT::fAny); | 
 |  | 
 |   // Verify no duplicates. | 
 |   array_pod_sort(TypeVec.begin(), TypeVec.end()); | 
 |   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); | 
 | } | 
 |  | 
 | /// FillWithPossibleTypes - Set to all legal types and return true, only valid | 
 | /// on completely unknown type sets. | 
 | bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, | 
 |                                           bool (*Pred)(MVT::SimpleValueType), | 
 |                                           const char *PredicateName) { | 
 |   assert(isCompletelyUnknown()); | 
 |   const std::vector<MVT::SimpleValueType> &LegalTypes = | 
 |     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); | 
 |  | 
 |   for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) | 
 |     if (Pred == 0 || Pred(LegalTypes[i])) | 
 |       TypeVec.push_back(LegalTypes[i]); | 
 |  | 
 |   // If we have nothing that matches the predicate, bail out. | 
 |   if (TypeVec.empty()) | 
 |     TP.error("Type inference contradiction found, no " + | 
 |              std::string(PredicateName) + " types found"); | 
 |   // No need to sort with one element. | 
 |   if (TypeVec.size() == 1) return true; | 
 |  | 
 |   // Remove duplicates. | 
 |   array_pod_sort(TypeVec.begin(), TypeVec.end()); | 
 |   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// hasIntegerTypes - Return true if this TypeSet contains iAny or an | 
 | /// integer value type. | 
 | bool EEVT::TypeSet::hasIntegerTypes() const { | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) | 
 |     if (isInteger(TypeVec[i])) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or | 
 | /// a floating point value type. | 
 | bool EEVT::TypeSet::hasFloatingPointTypes() const { | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) | 
 |     if (isFloatingPoint(TypeVec[i])) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector | 
 | /// value type. | 
 | bool EEVT::TypeSet::hasVectorTypes() const { | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) | 
 |     if (isVector(TypeVec[i])) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | std::string EEVT::TypeSet::getName() const { | 
 |   if (TypeVec.empty()) return "<empty>"; | 
 |  | 
 |   std::string Result; | 
 |  | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { | 
 |     std::string VTName = llvm::getEnumName(TypeVec[i]); | 
 |     // Strip off MVT:: prefix if present. | 
 |     if (VTName.substr(0,5) == "MVT::") | 
 |       VTName = VTName.substr(5); | 
 |     if (i) Result += ':'; | 
 |     Result += VTName; | 
 |   } | 
 |  | 
 |   if (TypeVec.size() == 1) | 
 |     return Result; | 
 |   return "{" + Result + "}"; | 
 | } | 
 |  | 
 | /// MergeInTypeInfo - This merges in type information from the specified | 
 | /// argument.  If 'this' changes, it returns true.  If the two types are | 
 | /// contradictory (e.g. merge f32 into i32) then this throws an exception. | 
 | bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ | 
 |   if (InVT.isCompletelyUnknown() || *this == InVT) | 
 |     return false; | 
 |  | 
 |   if (isCompletelyUnknown()) { | 
 |     *this = InVT; | 
 |     return true; | 
 |   } | 
 |  | 
 |   assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); | 
 |  | 
 |   // Handle the abstract cases, seeing if we can resolve them better. | 
 |   switch (TypeVec[0]) { | 
 |   default: break; | 
 |   case MVT::iPTR: | 
 |   case MVT::iPTRAny: | 
 |     if (InVT.hasIntegerTypes()) { | 
 |       EEVT::TypeSet InCopy(InVT); | 
 |       InCopy.EnforceInteger(TP); | 
 |       InCopy.EnforceScalar(TP); | 
 |  | 
 |       if (InCopy.isConcrete()) { | 
 |         // If the RHS has one integer type, upgrade iPTR to i32. | 
 |         TypeVec[0] = InVT.TypeVec[0]; | 
 |         return true; | 
 |       } | 
 |  | 
 |       // If the input has multiple scalar integers, this doesn't add any info. | 
 |       if (!InCopy.isCompletelyUnknown()) | 
 |         return false; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   // If the input constraint is iAny/iPTR and this is an integer type list, | 
 |   // remove non-integer types from the list. | 
 |   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && | 
 |       hasIntegerTypes()) { | 
 |     bool MadeChange = EnforceInteger(TP); | 
 |  | 
 |     // If we're merging in iPTR/iPTRAny and the node currently has a list of | 
 |     // multiple different integer types, replace them with a single iPTR. | 
 |     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && | 
 |         TypeVec.size() != 1) { | 
 |       TypeVec.resize(1); | 
 |       TypeVec[0] = InVT.TypeVec[0]; | 
 |       MadeChange = true; | 
 |     } | 
 |  | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   // If this is a type list and the RHS is a typelist as well, eliminate entries | 
 |   // from this list that aren't in the other one. | 
 |   bool MadeChange = false; | 
 |   TypeSet InputSet(*this); | 
 |  | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) { | 
 |     bool InInVT = false; | 
 |     for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) | 
 |       if (TypeVec[i] == InVT.TypeVec[j]) { | 
 |         InInVT = true; | 
 |         break; | 
 |       } | 
 |  | 
 |     if (InInVT) continue; | 
 |     TypeVec.erase(TypeVec.begin()+i--); | 
 |     MadeChange = true; | 
 |   } | 
 |  | 
 |   // If we removed all of our types, we have a type contradiction. | 
 |   if (!TypeVec.empty()) | 
 |     return MadeChange; | 
 |  | 
 |   // FIXME: Really want an SMLoc here! | 
 |   TP.error("Type inference contradiction found, merging '" + | 
 |            InVT.getName() + "' into '" + InputSet.getName() + "'"); | 
 |   return true; // unreachable | 
 | } | 
 |  | 
 | /// EnforceInteger - Remove all non-integer types from this set. | 
 | bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { | 
 |   // If we know nothing, then get the full set. | 
 |   if (TypeVec.empty()) | 
 |     return FillWithPossibleTypes(TP, isInteger, "integer"); | 
 |   if (!hasFloatingPointTypes()) | 
 |     return false; | 
 |  | 
 |   TypeSet InputSet(*this); | 
 |  | 
 |   // Filter out all the fp types. | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) | 
 |     if (!isInteger(TypeVec[i])) | 
 |       TypeVec.erase(TypeVec.begin()+i--); | 
 |  | 
 |   if (TypeVec.empty()) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              InputSet.getName() + "' needs to be integer"); | 
 |   return true; | 
 | } | 
 |  | 
 | /// EnforceFloatingPoint - Remove all integer types from this set. | 
 | bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { | 
 |   // If we know nothing, then get the full set. | 
 |   if (TypeVec.empty()) | 
 |     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); | 
 |  | 
 |   if (!hasIntegerTypes()) | 
 |     return false; | 
 |  | 
 |   TypeSet InputSet(*this); | 
 |  | 
 |   // Filter out all the fp types. | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) | 
 |     if (!isFloatingPoint(TypeVec[i])) | 
 |       TypeVec.erase(TypeVec.begin()+i--); | 
 |  | 
 |   if (TypeVec.empty()) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              InputSet.getName() + "' needs to be floating point"); | 
 |   return true; | 
 | } | 
 |  | 
 | /// EnforceScalar - Remove all vector types from this. | 
 | bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { | 
 |   // If we know nothing, then get the full set. | 
 |   if (TypeVec.empty()) | 
 |     return FillWithPossibleTypes(TP, isScalar, "scalar"); | 
 |  | 
 |   if (!hasVectorTypes()) | 
 |     return false; | 
 |  | 
 |   TypeSet InputSet(*this); | 
 |  | 
 |   // Filter out all the vector types. | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) | 
 |     if (!isScalar(TypeVec[i])) | 
 |       TypeVec.erase(TypeVec.begin()+i--); | 
 |  | 
 |   if (TypeVec.empty()) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              InputSet.getName() + "' needs to be scalar"); | 
 |   return true; | 
 | } | 
 |  | 
 | /// EnforceVector - Remove all vector types from this. | 
 | bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { | 
 |   // If we know nothing, then get the full set. | 
 |   if (TypeVec.empty()) | 
 |     return FillWithPossibleTypes(TP, isVector, "vector"); | 
 |  | 
 |   TypeSet InputSet(*this); | 
 |   bool MadeChange = false; | 
 |  | 
 |   // Filter out all the scalar types. | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) | 
 |     if (!isVector(TypeVec[i])) { | 
 |       TypeVec.erase(TypeVec.begin()+i--); | 
 |       MadeChange = true; | 
 |     } | 
 |  | 
 |   if (TypeVec.empty()) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              InputSet.getName() + "' needs to be a vector"); | 
 |   return MadeChange; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update | 
 | /// this an other based on this information. | 
 | bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { | 
 |   // Both operands must be integer or FP, but we don't care which. | 
 |   bool MadeChange = false; | 
 |  | 
 |   if (isCompletelyUnknown()) | 
 |     MadeChange = FillWithPossibleTypes(TP); | 
 |  | 
 |   if (Other.isCompletelyUnknown()) | 
 |     MadeChange = Other.FillWithPossibleTypes(TP); | 
 |  | 
 |   // If one side is known to be integer or known to be FP but the other side has | 
 |   // no information, get at least the type integrality info in there. | 
 |   if (!hasFloatingPointTypes()) | 
 |     MadeChange |= Other.EnforceInteger(TP); | 
 |   else if (!hasIntegerTypes()) | 
 |     MadeChange |= Other.EnforceFloatingPoint(TP); | 
 |   if (!Other.hasFloatingPointTypes()) | 
 |     MadeChange |= EnforceInteger(TP); | 
 |   else if (!Other.hasIntegerTypes()) | 
 |     MadeChange |= EnforceFloatingPoint(TP); | 
 |  | 
 |   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && | 
 |          "Should have a type list now"); | 
 |  | 
 |   // If one contains vectors but the other doesn't pull vectors out. | 
 |   if (!hasVectorTypes()) | 
 |     MadeChange |= Other.EnforceScalar(TP); | 
 |   if (!hasVectorTypes()) | 
 |     MadeChange |= EnforceScalar(TP); | 
 |  | 
 |   if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { | 
 |     // If we are down to concrete types, this code does not currently | 
 |     // handle nodes which have multiple types, where some types are | 
 |     // integer, and some are fp.  Assert that this is not the case. | 
 |     assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && | 
 |            !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && | 
 |            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); | 
 |  | 
 |     // Otherwise, if these are both vector types, either this vector | 
 |     // must have a larger bitsize than the other, or this element type | 
 |     // must be larger than the other. | 
 |     EVT Type(TypeVec[0]); | 
 |     EVT OtherType(Other.TypeVec[0]); | 
 |  | 
 |     if (hasVectorTypes() && Other.hasVectorTypes()) { | 
 |       if (Type.getSizeInBits() >= OtherType.getSizeInBits()) | 
 |         if (Type.getVectorElementType().getSizeInBits() | 
 |             >= OtherType.getVectorElementType().getSizeInBits()) | 
 |           TP.error("Type inference contradiction found, '" + | 
 |                    getName() + "' element type not smaller than '" + | 
 |                    Other.getName() +"'!"); | 
 |     } | 
 |     else | 
 |       // For scalar types, the bitsize of this type must be larger | 
 |       // than that of the other. | 
 |       if (Type.getSizeInBits() >= OtherType.getSizeInBits()) | 
 |         TP.error("Type inference contradiction found, '" + | 
 |                  getName() + "' is not smaller than '" + | 
 |                  Other.getName() +"'!"); | 
 |  | 
 |   } | 
 |    | 
 |  | 
 |   // Handle int and fp as disjoint sets.  This won't work for patterns | 
 |   // that have mixed fp/int types but those are likely rare and would | 
 |   // not have been accepted by this code previously. | 
 |  | 
 |   // Okay, find the smallest type from the current set and remove it from the | 
 |   // largest set. | 
 |   MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) | 
 |     if (isInteger(TypeVec[i])) { | 
 |       SmallestInt = TypeVec[i]; | 
 |       break; | 
 |     } | 
 |   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) | 
 |     if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) | 
 |       SmallestInt = TypeVec[i]; | 
 |  | 
 |   MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; | 
 |   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) | 
 |     if (isFloatingPoint(TypeVec[i])) { | 
 |       SmallestFP = TypeVec[i]; | 
 |       break; | 
 |     } | 
 |   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) | 
 |     if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) | 
 |       SmallestFP = TypeVec[i]; | 
 |  | 
 |   int OtherIntSize = 0; | 
 |   int OtherFPSize = 0; | 
 |   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = | 
 |          Other.TypeVec.begin(); | 
 |        TVI != Other.TypeVec.end(); | 
 |        /* NULL */) { | 
 |     if (isInteger(*TVI)) { | 
 |       ++OtherIntSize; | 
 |       if (*TVI == SmallestInt) { | 
 |         TVI = Other.TypeVec.erase(TVI); | 
 |         --OtherIntSize; | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |     else if (isFloatingPoint(*TVI)) { | 
 |       ++OtherFPSize; | 
 |       if (*TVI == SmallestFP) { | 
 |         TVI = Other.TypeVec.erase(TVI); | 
 |         --OtherFPSize; | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |     ++TVI; | 
 |   } | 
 |  | 
 |   // If this is the only type in the large set, the constraint can never be | 
 |   // satisfied. | 
 |   if ((Other.hasIntegerTypes() && OtherIntSize == 0) | 
 |       || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              Other.getName() + "' has nothing larger than '" + getName() +"'!"); | 
 |  | 
 |   // Okay, find the largest type in the Other set and remove it from the | 
 |   // current set. | 
 |   MVT::SimpleValueType LargestInt = MVT::Other; | 
 |   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) | 
 |     if (isInteger(Other.TypeVec[i])) { | 
 |       LargestInt = Other.TypeVec[i]; | 
 |       break; | 
 |     } | 
 |   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) | 
 |     if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) | 
 |       LargestInt = Other.TypeVec[i]; | 
 |  | 
 |   MVT::SimpleValueType LargestFP = MVT::Other; | 
 |   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) | 
 |     if (isFloatingPoint(Other.TypeVec[i])) { | 
 |       LargestFP = Other.TypeVec[i]; | 
 |       break; | 
 |     } | 
 |   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) | 
 |     if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) | 
 |       LargestFP = Other.TypeVec[i]; | 
 |  | 
 |   int IntSize = 0; | 
 |   int FPSize = 0; | 
 |   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = | 
 |          TypeVec.begin(); | 
 |        TVI != TypeVec.end(); | 
 |        /* NULL */) { | 
 |     if (isInteger(*TVI)) { | 
 |       ++IntSize; | 
 |       if (*TVI == LargestInt) { | 
 |         TVI = TypeVec.erase(TVI); | 
 |         --IntSize; | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |     else if (isFloatingPoint(*TVI)) { | 
 |       ++FPSize; | 
 |       if (*TVI == LargestFP) { | 
 |         TVI = TypeVec.erase(TVI); | 
 |         --FPSize; | 
 |         MadeChange = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |     ++TVI; | 
 |   } | 
 |  | 
 |   // If this is the only type in the small set, the constraint can never be | 
 |   // satisfied. | 
 |   if ((hasIntegerTypes() && IntSize == 0) | 
 |       || (hasFloatingPointTypes() && FPSize == 0)) | 
 |     TP.error("Type inference contradiction found, '" + | 
 |              getName() + "' has nothing smaller than '" + Other.getName()+"'!"); | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type | 
 | /// whose element is specified by VTOperand. | 
 | bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, | 
 |                                            TreePattern &TP) { | 
 |   // "This" must be a vector and "VTOperand" must be a scalar. | 
 |   bool MadeChange = false; | 
 |   MadeChange |= EnforceVector(TP); | 
 |   MadeChange |= VTOperand.EnforceScalar(TP); | 
 |  | 
 |   // If we know the vector type, it forces the scalar to agree. | 
 |   if (isConcrete()) { | 
 |     EVT IVT = getConcrete(); | 
 |     IVT = IVT.getVectorElementType(); | 
 |     return MadeChange | | 
 |       VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); | 
 |   } | 
 |  | 
 |   // If the scalar type is known, filter out vector types whose element types | 
 |   // disagree. | 
 |   if (!VTOperand.isConcrete()) | 
 |     return MadeChange; | 
 |  | 
 |   MVT::SimpleValueType VT = VTOperand.getConcrete(); | 
 |  | 
 |   TypeSet InputSet(*this); | 
 |  | 
 |   // Filter out all the types which don't have the right element type. | 
 |   for (unsigned i = 0; i != TypeVec.size(); ++i) { | 
 |     assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); | 
 |     if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { | 
 |       TypeVec.erase(TypeVec.begin()+i--); | 
 |       MadeChange = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (TypeVec.empty())  // FIXME: Really want an SMLoc here! | 
 |     TP.error("Type inference contradiction found, forcing '" + | 
 |              InputSet.getName() + "' to have a vector element"); | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a | 
 | /// vector type specified by VTOperand. | 
 | bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, | 
 |                                                  TreePattern &TP) { | 
 |   // "This" must be a vector and "VTOperand" must be a vector. | 
 |   bool MadeChange = false; | 
 |   MadeChange |= EnforceVector(TP); | 
 |   MadeChange |= VTOperand.EnforceVector(TP); | 
 |  | 
 |   // "This" must be larger than "VTOperand." | 
 |   MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); | 
 |  | 
 |   // If we know the vector type, it forces the scalar types to agree. | 
 |   if (isConcrete()) { | 
 |     EVT IVT = getConcrete(); | 
 |     IVT = IVT.getVectorElementType(); | 
 |  | 
 |     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); | 
 |     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); | 
 |   } else if (VTOperand.isConcrete()) { | 
 |     EVT IVT = VTOperand.getConcrete(); | 
 |     IVT = IVT.getVectorElementType(); | 
 |  | 
 |     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); | 
 |     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); | 
 |   } | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Helpers for working with extended types. | 
 |  | 
 | bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { | 
 |   return LHS->getID() < RHS->getID(); | 
 | } | 
 |  | 
 | /// Dependent variable map for CodeGenDAGPattern variant generation | 
 | typedef std::map<std::string, int> DepVarMap; | 
 |  | 
 | /// Const iterator shorthand for DepVarMap | 
 | typedef DepVarMap::const_iterator DepVarMap_citer; | 
 |  | 
 | static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { | 
 |   if (N->isLeaf()) { | 
 |     if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) | 
 |       DepMap[N->getName()]++; | 
 |   } else { | 
 |     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) | 
 |       FindDepVarsOf(N->getChild(i), DepMap); | 
 |   } | 
 | } | 
 |    | 
 | /// Find dependent variables within child patterns | 
 | static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { | 
 |   DepVarMap depcounts; | 
 |   FindDepVarsOf(N, depcounts); | 
 |   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { | 
 |     if (i->second > 1)            // std::pair<std::string, int> | 
 |       DepVars.insert(i->first); | 
 |   } | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | /// Dump the dependent variable set: | 
 | static void DumpDepVars(MultipleUseVarSet &DepVars) { | 
 |   if (DepVars.empty()) { | 
 |     DEBUG(errs() << "<empty set>"); | 
 |   } else { | 
 |     DEBUG(errs() << "[ "); | 
 |     for (MultipleUseVarSet::const_iterator i = DepVars.begin(), | 
 |          e = DepVars.end(); i != e; ++i) { | 
 |       DEBUG(errs() << (*i) << " "); | 
 |     } | 
 |     DEBUG(errs() << "]"); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TreePredicateFn Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag. | 
 | TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { | 
 |   assert((getPredCode().empty() || getImmCode().empty()) && | 
 |         ".td file corrupt: can't have a node predicate *and* an imm predicate"); | 
 | } | 
 |  | 
 | std::string TreePredicateFn::getPredCode() const { | 
 |   return PatFragRec->getRecord()->getValueAsCode("PredicateCode"); | 
 | } | 
 |  | 
 | std::string TreePredicateFn::getImmCode() const { | 
 |   return PatFragRec->getRecord()->getValueAsCode("ImmediateCode"); | 
 | } | 
 |  | 
 |  | 
 | /// isAlwaysTrue - Return true if this is a noop predicate. | 
 | bool TreePredicateFn::isAlwaysTrue() const { | 
 |   return getPredCode().empty() && getImmCode().empty(); | 
 | } | 
 |  | 
 | /// Return the name to use in the generated code to reference this, this is | 
 | /// "Predicate_foo" if from a pattern fragment "foo". | 
 | std::string TreePredicateFn::getFnName() const { | 
 |   return "Predicate_" + PatFragRec->getRecord()->getName(); | 
 | } | 
 |  | 
 | /// getCodeToRunOnSDNode - Return the code for the function body that | 
 | /// evaluates this predicate.  The argument is expected to be in "Node", | 
 | /// not N.  This handles casting and conversion to a concrete node type as | 
 | /// appropriate. | 
 | std::string TreePredicateFn::getCodeToRunOnSDNode() const { | 
 |   // Handle immediate predicates first. | 
 |   std::string ImmCode = getImmCode(); | 
 |   if (!ImmCode.empty()) { | 
 |     std::string Result = | 
 |       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; | 
 |     return Result + ImmCode; | 
 |   } | 
 |    | 
 |   // Handle arbitrary node predicates. | 
 |   assert(!getPredCode().empty() && "Don't have any predicate code!"); | 
 |   std::string ClassName; | 
 |   if (PatFragRec->getOnlyTree()->isLeaf()) | 
 |     ClassName = "SDNode"; | 
 |   else { | 
 |     Record *Op = PatFragRec->getOnlyTree()->getOperator(); | 
 |     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); | 
 |   } | 
 |   std::string Result; | 
 |   if (ClassName == "SDNode") | 
 |     Result = "    SDNode *N = Node;\n"; | 
 |   else | 
 |     Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; | 
 |    | 
 |   return Result + getPredCode(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // PatternToMatch implementation | 
 | // | 
 |  | 
 |  | 
 | /// getPatternSize - Return the 'size' of this pattern.  We want to match large | 
 | /// patterns before small ones.  This is used to determine the size of a | 
 | /// pattern. | 
 | static unsigned getPatternSize(const TreePatternNode *P, | 
 |                                const CodeGenDAGPatterns &CGP) { | 
 |   unsigned Size = 3;  // The node itself. | 
 |   // If the root node is a ConstantSDNode, increases its size. | 
 |   // e.g. (set R32:$dst, 0). | 
 |   if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) | 
 |     Size += 2; | 
 |  | 
 |   // FIXME: This is a hack to statically increase the priority of patterns | 
 |   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. | 
 |   // Later we can allow complexity / cost for each pattern to be (optionally) | 
 |   // specified. To get best possible pattern match we'll need to dynamically | 
 |   // calculate the complexity of all patterns a dag can potentially map to. | 
 |   const ComplexPattern *AM = P->getComplexPatternInfo(CGP); | 
 |   if (AM) | 
 |     Size += AM->getNumOperands() * 3; | 
 |  | 
 |   // If this node has some predicate function that must match, it adds to the | 
 |   // complexity of this node. | 
 |   if (!P->getPredicateFns().empty()) | 
 |     ++Size; | 
 |  | 
 |   // Count children in the count if they are also nodes. | 
 |   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { | 
 |     TreePatternNode *Child = P->getChild(i); | 
 |     if (!Child->isLeaf() && Child->getNumTypes() && | 
 |         Child->getType(0) != MVT::Other) | 
 |       Size += getPatternSize(Child, CGP); | 
 |     else if (Child->isLeaf()) { | 
 |       if (dynamic_cast<IntInit*>(Child->getLeafValue())) | 
 |         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2). | 
 |       else if (Child->getComplexPatternInfo(CGP)) | 
 |         Size += getPatternSize(Child, CGP); | 
 |       else if (!Child->getPredicateFns().empty()) | 
 |         ++Size; | 
 |     } | 
 |   } | 
 |  | 
 |   return Size; | 
 | } | 
 |  | 
 | /// Compute the complexity metric for the input pattern.  This roughly | 
 | /// corresponds to the number of nodes that are covered. | 
 | unsigned PatternToMatch:: | 
 | getPatternComplexity(const CodeGenDAGPatterns &CGP) const { | 
 |   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); | 
 | } | 
 |  | 
 |  | 
 | /// getPredicateCheck - Return a single string containing all of this | 
 | /// pattern's predicates concatenated with "&&" operators. | 
 | /// | 
 | std::string PatternToMatch::getPredicateCheck() const { | 
 |   std::string PredicateCheck; | 
 |   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { | 
 |     if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { | 
 |       Record *Def = Pred->getDef(); | 
 |       if (!Def->isSubClassOf("Predicate")) { | 
 | #ifndef NDEBUG | 
 |         Def->dump(); | 
 | #endif | 
 |         assert(0 && "Unknown predicate type!"); | 
 |       } | 
 |       if (!PredicateCheck.empty()) | 
 |         PredicateCheck += " && "; | 
 |       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; | 
 |     } | 
 |   } | 
 |  | 
 |   return PredicateCheck; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SDTypeConstraint implementation | 
 | // | 
 |  | 
 | SDTypeConstraint::SDTypeConstraint(Record *R) { | 
 |   OperandNo = R->getValueAsInt("OperandNum"); | 
 |  | 
 |   if (R->isSubClassOf("SDTCisVT")) { | 
 |     ConstraintType = SDTCisVT; | 
 |     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); | 
 |     if (x.SDTCisVT_Info.VT == MVT::isVoid) | 
 |       throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); | 
 |  | 
 |   } else if (R->isSubClassOf("SDTCisPtrTy")) { | 
 |     ConstraintType = SDTCisPtrTy; | 
 |   } else if (R->isSubClassOf("SDTCisInt")) { | 
 |     ConstraintType = SDTCisInt; | 
 |   } else if (R->isSubClassOf("SDTCisFP")) { | 
 |     ConstraintType = SDTCisFP; | 
 |   } else if (R->isSubClassOf("SDTCisVec")) { | 
 |     ConstraintType = SDTCisVec; | 
 |   } else if (R->isSubClassOf("SDTCisSameAs")) { | 
 |     ConstraintType = SDTCisSameAs; | 
 |     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); | 
 |   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { | 
 |     ConstraintType = SDTCisVTSmallerThanOp; | 
 |     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = | 
 |       R->getValueAsInt("OtherOperandNum"); | 
 |   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { | 
 |     ConstraintType = SDTCisOpSmallerThanOp; | 
 |     x.SDTCisOpSmallerThanOp_Info.BigOperandNum = | 
 |       R->getValueAsInt("BigOperandNum"); | 
 |   } else if (R->isSubClassOf("SDTCisEltOfVec")) { | 
 |     ConstraintType = SDTCisEltOfVec; | 
 |     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); | 
 |   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { | 
 |     ConstraintType = SDTCisSubVecOfVec; | 
 |     x.SDTCisSubVecOfVec_Info.OtherOperandNum = | 
 |       R->getValueAsInt("OtherOpNum"); | 
 |   } else { | 
 |     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; | 
 |     exit(1); | 
 |   } | 
 | } | 
 |  | 
 | /// getOperandNum - Return the node corresponding to operand #OpNo in tree | 
 | /// N, and the result number in ResNo. | 
 | static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, | 
 |                                       const SDNodeInfo &NodeInfo, | 
 |                                       unsigned &ResNo) { | 
 |   unsigned NumResults = NodeInfo.getNumResults(); | 
 |   if (OpNo < NumResults) { | 
 |     ResNo = OpNo; | 
 |     return N; | 
 |   } | 
 |  | 
 |   OpNo -= NumResults; | 
 |  | 
 |   if (OpNo >= N->getNumChildren()) { | 
 |     errs() << "Invalid operand number in type constraint " | 
 |            << (OpNo+NumResults) << " "; | 
 |     N->dump(); | 
 |     errs() << '\n'; | 
 |     exit(1); | 
 |   } | 
 |  | 
 |   return N->getChild(OpNo); | 
 | } | 
 |  | 
 | /// ApplyTypeConstraint - Given a node in a pattern, apply this type | 
 | /// constraint to the nodes operands.  This returns true if it makes a | 
 | /// change, false otherwise.  If a type contradiction is found, throw an | 
 | /// exception. | 
 | bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, | 
 |                                            const SDNodeInfo &NodeInfo, | 
 |                                            TreePattern &TP) const { | 
 |   unsigned ResNo = 0; // The result number being referenced. | 
 |   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); | 
 |  | 
 |   switch (ConstraintType) { | 
 |   default: assert(0 && "Unknown constraint type!"); | 
 |   case SDTCisVT: | 
 |     // Operand must be a particular type. | 
 |     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); | 
 |   case SDTCisPtrTy: | 
 |     // Operand must be same as target pointer type. | 
 |     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); | 
 |   case SDTCisInt: | 
 |     // Require it to be one of the legal integer VTs. | 
 |     return NodeToApply->getExtType(ResNo).EnforceInteger(TP); | 
 |   case SDTCisFP: | 
 |     // Require it to be one of the legal fp VTs. | 
 |     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); | 
 |   case SDTCisVec: | 
 |     // Require it to be one of the legal vector VTs. | 
 |     return NodeToApply->getExtType(ResNo).EnforceVector(TP); | 
 |   case SDTCisSameAs: { | 
 |     unsigned OResNo = 0; | 
 |     TreePatternNode *OtherNode = | 
 |       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); | 
 |     return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| | 
 |            OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); | 
 |   } | 
 |   case SDTCisVTSmallerThanOp: { | 
 |     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must | 
 |     // have an integer type that is smaller than the VT. | 
 |     if (!NodeToApply->isLeaf() || | 
 |         !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || | 
 |         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() | 
 |                ->isSubClassOf("ValueType")) | 
 |       TP.error(N->getOperator()->getName() + " expects a VT operand!"); | 
 |     MVT::SimpleValueType VT = | 
 |      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); | 
 |  | 
 |     EEVT::TypeSet TypeListTmp(VT, TP); | 
 |  | 
 |     unsigned OResNo = 0; | 
 |     TreePatternNode *OtherNode = | 
 |       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, | 
 |                     OResNo); | 
 |  | 
 |     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); | 
 |   } | 
 |   case SDTCisOpSmallerThanOp: { | 
 |     unsigned BResNo = 0; | 
 |     TreePatternNode *BigOperand = | 
 |       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, | 
 |                     BResNo); | 
 |     return NodeToApply->getExtType(ResNo). | 
 |                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); | 
 |   } | 
 |   case SDTCisEltOfVec: { | 
 |     unsigned VResNo = 0; | 
 |     TreePatternNode *VecOperand = | 
 |       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, | 
 |                     VResNo); | 
 |  | 
 |     // Filter vector types out of VecOperand that don't have the right element | 
 |     // type. | 
 |     return VecOperand->getExtType(VResNo). | 
 |       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); | 
 |   } | 
 |   case SDTCisSubVecOfVec: { | 
 |     unsigned VResNo = 0; | 
 |     TreePatternNode *BigVecOperand = | 
 |       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, | 
 |                     VResNo); | 
 |  | 
 |     // Filter vector types out of BigVecOperand that don't have the | 
 |     // right subvector type. | 
 |     return BigVecOperand->getExtType(VResNo). | 
 |       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); | 
 |   } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SDNodeInfo implementation | 
 | // | 
 | SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { | 
 |   EnumName    = R->getValueAsString("Opcode"); | 
 |   SDClassName = R->getValueAsString("SDClass"); | 
 |   Record *TypeProfile = R->getValueAsDef("TypeProfile"); | 
 |   NumResults = TypeProfile->getValueAsInt("NumResults"); | 
 |   NumOperands = TypeProfile->getValueAsInt("NumOperands"); | 
 |  | 
 |   // Parse the properties. | 
 |   Properties = 0; | 
 |   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); | 
 |   for (unsigned i = 0, e = PropList.size(); i != e; ++i) { | 
 |     if (PropList[i]->getName() == "SDNPCommutative") { | 
 |       Properties |= 1 << SDNPCommutative; | 
 |     } else if (PropList[i]->getName() == "SDNPAssociative") { | 
 |       Properties |= 1 << SDNPAssociative; | 
 |     } else if (PropList[i]->getName() == "SDNPHasChain") { | 
 |       Properties |= 1 << SDNPHasChain; | 
 |     } else if (PropList[i]->getName() == "SDNPOutGlue") { | 
 |       Properties |= 1 << SDNPOutGlue; | 
 |     } else if (PropList[i]->getName() == "SDNPInGlue") { | 
 |       Properties |= 1 << SDNPInGlue; | 
 |     } else if (PropList[i]->getName() == "SDNPOptInGlue") { | 
 |       Properties |= 1 << SDNPOptInGlue; | 
 |     } else if (PropList[i]->getName() == "SDNPMayStore") { | 
 |       Properties |= 1 << SDNPMayStore; | 
 |     } else if (PropList[i]->getName() == "SDNPMayLoad") { | 
 |       Properties |= 1 << SDNPMayLoad; | 
 |     } else if (PropList[i]->getName() == "SDNPSideEffect") { | 
 |       Properties |= 1 << SDNPSideEffect; | 
 |     } else if (PropList[i]->getName() == "SDNPMemOperand") { | 
 |       Properties |= 1 << SDNPMemOperand; | 
 |     } else if (PropList[i]->getName() == "SDNPVariadic") { | 
 |       Properties |= 1 << SDNPVariadic; | 
 |     } else { | 
 |       errs() << "Unknown SD Node property '" << PropList[i]->getName() | 
 |              << "' on node '" << R->getName() << "'!\n"; | 
 |       exit(1); | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   // Parse the type constraints. | 
 |   std::vector<Record*> ConstraintList = | 
 |     TypeProfile->getValueAsListOfDefs("Constraints"); | 
 |   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); | 
 | } | 
 |  | 
 | /// getKnownType - If the type constraints on this node imply a fixed type | 
 | /// (e.g. all stores return void, etc), then return it as an | 
 | /// MVT::SimpleValueType.  Otherwise, return EEVT::Other. | 
 | MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { | 
 |   unsigned NumResults = getNumResults(); | 
 |   assert(NumResults <= 1 && | 
 |          "We only work with nodes with zero or one result so far!"); | 
 |   assert(ResNo == 0 && "Only handles single result nodes so far"); | 
 |  | 
 |   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { | 
 |     // Make sure that this applies to the correct node result. | 
 |     if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value # | 
 |       continue; | 
 |  | 
 |     switch (TypeConstraints[i].ConstraintType) { | 
 |     default: break; | 
 |     case SDTypeConstraint::SDTCisVT: | 
 |       return TypeConstraints[i].x.SDTCisVT_Info.VT; | 
 |     case SDTypeConstraint::SDTCisPtrTy: | 
 |       return MVT::iPTR; | 
 |     } | 
 |   } | 
 |   return MVT::Other; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TreePatternNode implementation | 
 | // | 
 |  | 
 | TreePatternNode::~TreePatternNode() { | 
 | #if 0 // FIXME: implement refcounted tree nodes! | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |     delete getChild(i); | 
 | #endif | 
 | } | 
 |  | 
 | static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { | 
 |   if (Operator->getName() == "set" || | 
 |       Operator->getName() == "implicit") | 
 |     return 0;  // All return nothing. | 
 |  | 
 |   if (Operator->isSubClassOf("Intrinsic")) | 
 |     return CDP.getIntrinsic(Operator).IS.RetVTs.size(); | 
 |  | 
 |   if (Operator->isSubClassOf("SDNode")) | 
 |     return CDP.getSDNodeInfo(Operator).getNumResults(); | 
 |  | 
 |   if (Operator->isSubClassOf("PatFrag")) { | 
 |     // If we've already parsed this pattern fragment, get it.  Otherwise, handle | 
 |     // the forward reference case where one pattern fragment references another | 
 |     // before it is processed. | 
 |     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) | 
 |       return PFRec->getOnlyTree()->getNumTypes(); | 
 |  | 
 |     // Get the result tree. | 
 |     DagInit *Tree = Operator->getValueAsDag("Fragment"); | 
 |     Record *Op = 0; | 
 |     if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) | 
 |       Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); | 
 |     assert(Op && "Invalid Fragment"); | 
 |     return GetNumNodeResults(Op, CDP); | 
 |   } | 
 |  | 
 |   if (Operator->isSubClassOf("Instruction")) { | 
 |     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); | 
 |  | 
 |     // FIXME: Should allow access to all the results here. | 
 |     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; | 
 |  | 
 |     // Add on one implicit def if it has a resolvable type. | 
 |     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) | 
 |       ++NumDefsToAdd; | 
 |     return NumDefsToAdd; | 
 |   } | 
 |  | 
 |   if (Operator->isSubClassOf("SDNodeXForm")) | 
 |     return 1;  // FIXME: Generalize SDNodeXForm | 
 |  | 
 |   Operator->dump(); | 
 |   errs() << "Unhandled node in GetNumNodeResults\n"; | 
 |   exit(1); | 
 | } | 
 |  | 
 | void TreePatternNode::print(raw_ostream &OS) const { | 
 |   if (isLeaf()) | 
 |     OS << *getLeafValue(); | 
 |   else | 
 |     OS << '(' << getOperator()->getName(); | 
 |  | 
 |   for (unsigned i = 0, e = Types.size(); i != e; ++i) | 
 |     OS << ':' << getExtType(i).getName(); | 
 |  | 
 |   if (!isLeaf()) { | 
 |     if (getNumChildren() != 0) { | 
 |       OS << " "; | 
 |       getChild(0)->print(OS); | 
 |       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { | 
 |         OS << ", "; | 
 |         getChild(i)->print(OS); | 
 |       } | 
 |     } | 
 |     OS << ")"; | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) | 
 |     OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; | 
 |   if (TransformFn) | 
 |     OS << "<<X:" << TransformFn->getName() << ">>"; | 
 |   if (!getName().empty()) | 
 |     OS << ":$" << getName(); | 
 |  | 
 | } | 
 | void TreePatternNode::dump() const { | 
 |   print(errs()); | 
 | } | 
 |  | 
 | /// isIsomorphicTo - Return true if this node is recursively | 
 | /// isomorphic to the specified node.  For this comparison, the node's | 
 | /// entire state is considered. The assigned name is ignored, since | 
 | /// nodes with differing names are considered isomorphic. However, if | 
 | /// the assigned name is present in the dependent variable set, then | 
 | /// the assigned name is considered significant and the node is | 
 | /// isomorphic if the names match. | 
 | bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, | 
 |                                      const MultipleUseVarSet &DepVars) const { | 
 |   if (N == this) return true; | 
 |   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || | 
 |       getPredicateFns() != N->getPredicateFns() || | 
 |       getTransformFn() != N->getTransformFn()) | 
 |     return false; | 
 |  | 
 |   if (isLeaf()) { | 
 |     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { | 
 |       if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { | 
 |         return ((DI->getDef() == NDI->getDef()) | 
 |                 && (DepVars.find(getName()) == DepVars.end() | 
 |                     || getName() == N->getName())); | 
 |       } | 
 |     } | 
 |     return getLeafValue() == N->getLeafValue(); | 
 |   } | 
 |  | 
 |   if (N->getOperator() != getOperator() || | 
 |       N->getNumChildren() != getNumChildren()) return false; | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// clone - Make a copy of this tree and all of its children. | 
 | /// | 
 | TreePatternNode *TreePatternNode::clone() const { | 
 |   TreePatternNode *New; | 
 |   if (isLeaf()) { | 
 |     New = new TreePatternNode(getLeafValue(), getNumTypes()); | 
 |   } else { | 
 |     std::vector<TreePatternNode*> CChildren; | 
 |     CChildren.reserve(Children.size()); | 
 |     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |       CChildren.push_back(getChild(i)->clone()); | 
 |     New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); | 
 |   } | 
 |   New->setName(getName()); | 
 |   New->Types = Types; | 
 |   New->setPredicateFns(getPredicateFns()); | 
 |   New->setTransformFn(getTransformFn()); | 
 |   return New; | 
 | } | 
 |  | 
 | /// RemoveAllTypes - Recursively strip all the types of this tree. | 
 | void TreePatternNode::RemoveAllTypes() { | 
 |   for (unsigned i = 0, e = Types.size(); i != e; ++i) | 
 |     Types[i] = EEVT::TypeSet();  // Reset to unknown type. | 
 |   if (isLeaf()) return; | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |     getChild(i)->RemoveAllTypes(); | 
 | } | 
 |  | 
 |  | 
 | /// SubstituteFormalArguments - Replace the formal arguments in this tree | 
 | /// with actual values specified by ArgMap. | 
 | void TreePatternNode:: | 
 | SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { | 
 |   if (isLeaf()) return; | 
 |  | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { | 
 |     TreePatternNode *Child = getChild(i); | 
 |     if (Child->isLeaf()) { | 
 |       Init *Val = Child->getLeafValue(); | 
 |       if (dynamic_cast<DefInit*>(Val) && | 
 |           static_cast<DefInit*>(Val)->getDef()->getName() == "node") { | 
 |         // We found a use of a formal argument, replace it with its value. | 
 |         TreePatternNode *NewChild = ArgMap[Child->getName()]; | 
 |         assert(NewChild && "Couldn't find formal argument!"); | 
 |         assert((Child->getPredicateFns().empty() || | 
 |                 NewChild->getPredicateFns() == Child->getPredicateFns()) && | 
 |                "Non-empty child predicate clobbered!"); | 
 |         setChild(i, NewChild); | 
 |       } | 
 |     } else { | 
 |       getChild(i)->SubstituteFormalArguments(ArgMap); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// InlinePatternFragments - If this pattern refers to any pattern | 
 | /// fragments, inline them into place, giving us a pattern without any | 
 | /// PatFrag references. | 
 | TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { | 
 |   if (isLeaf()) return this;  // nothing to do. | 
 |   Record *Op = getOperator(); | 
 |  | 
 |   if (!Op->isSubClassOf("PatFrag")) { | 
 |     // Just recursively inline children nodes. | 
 |     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { | 
 |       TreePatternNode *Child = getChild(i); | 
 |       TreePatternNode *NewChild = Child->InlinePatternFragments(TP); | 
 |  | 
 |       assert((Child->getPredicateFns().empty() || | 
 |               NewChild->getPredicateFns() == Child->getPredicateFns()) && | 
 |              "Non-empty child predicate clobbered!"); | 
 |  | 
 |       setChild(i, NewChild); | 
 |     } | 
 |     return this; | 
 |   } | 
 |  | 
 |   // Otherwise, we found a reference to a fragment.  First, look up its | 
 |   // TreePattern record. | 
 |   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); | 
 |  | 
 |   // Verify that we are passing the right number of operands. | 
 |   if (Frag->getNumArgs() != Children.size()) | 
 |     TP.error("'" + Op->getName() + "' fragment requires " + | 
 |              utostr(Frag->getNumArgs()) + " operands!"); | 
 |  | 
 |   TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); | 
 |  | 
 |   TreePredicateFn PredFn(Frag); | 
 |   if (!PredFn.isAlwaysTrue()) | 
 |     FragTree->addPredicateFn(PredFn); | 
 |  | 
 |   // Resolve formal arguments to their actual value. | 
 |   if (Frag->getNumArgs()) { | 
 |     // Compute the map of formal to actual arguments. | 
 |     std::map<std::string, TreePatternNode*> ArgMap; | 
 |     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) | 
 |       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); | 
 |  | 
 |     FragTree->SubstituteFormalArguments(ArgMap); | 
 |   } | 
 |  | 
 |   FragTree->setName(getName()); | 
 |   for (unsigned i = 0, e = Types.size(); i != e; ++i) | 
 |     FragTree->UpdateNodeType(i, getExtType(i), TP); | 
 |  | 
 |   // Transfer in the old predicates. | 
 |   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) | 
 |     FragTree->addPredicateFn(getPredicateFns()[i]); | 
 |  | 
 |   // Get a new copy of this fragment to stitch into here. | 
 |   //delete this;    // FIXME: implement refcounting! | 
 |  | 
 |   // The fragment we inlined could have recursive inlining that is needed.  See | 
 |   // if there are any pattern fragments in it and inline them as needed. | 
 |   return FragTree->InlinePatternFragments(TP); | 
 | } | 
 |  | 
 | /// getImplicitType - Check to see if the specified record has an implicit | 
 | /// type which should be applied to it.  This will infer the type of register | 
 | /// references from the register file information, for example. | 
 | /// | 
 | static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, | 
 |                                      bool NotRegisters, TreePattern &TP) { | 
 |   // Check to see if this is a register or a register class. | 
 |   if (R->isSubClassOf("RegisterClass")) { | 
 |     assert(ResNo == 0 && "Regclass ref only has one result!"); | 
 |     if (NotRegisters) | 
 |       return EEVT::TypeSet(); // Unknown. | 
 |     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); | 
 |     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); | 
 |   } | 
 |  | 
 |   if (R->isSubClassOf("PatFrag")) { | 
 |     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); | 
 |     // Pattern fragment types will be resolved when they are inlined. | 
 |     return EEVT::TypeSet(); // Unknown. | 
 |   } | 
 |  | 
 |   if (R->isSubClassOf("Register")) { | 
 |     assert(ResNo == 0 && "Registers only produce one result!"); | 
 |     if (NotRegisters) | 
 |       return EEVT::TypeSet(); // Unknown. | 
 |     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); | 
 |     return EEVT::TypeSet(T.getRegisterVTs(R)); | 
 |   } | 
 |  | 
 |   if (R->isSubClassOf("SubRegIndex")) { | 
 |     assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); | 
 |     return EEVT::TypeSet(); | 
 |   } | 
 |  | 
 |   if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { | 
 |     assert(ResNo == 0 && "This node only has one result!"); | 
 |     // Using a VTSDNode or CondCodeSDNode. | 
 |     return EEVT::TypeSet(MVT::Other, TP); | 
 |   } | 
 |  | 
 |   if (R->isSubClassOf("ComplexPattern")) { | 
 |     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); | 
 |     if (NotRegisters) | 
 |       return EEVT::TypeSet(); // Unknown. | 
 |    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), | 
 |                          TP); | 
 |   } | 
 |   if (R->isSubClassOf("PointerLikeRegClass")) { | 
 |     assert(ResNo == 0 && "Regclass can only have one result!"); | 
 |     return EEVT::TypeSet(MVT::iPTR, TP); | 
 |   } | 
 |  | 
 |   if (R->getName() == "node" || R->getName() == "srcvalue" || | 
 |       R->getName() == "zero_reg") { | 
 |     // Placeholder. | 
 |     return EEVT::TypeSet(); // Unknown. | 
 |   } | 
 |  | 
 |   TP.error("Unknown node flavor used in pattern: " + R->getName()); | 
 |   return EEVT::TypeSet(MVT::Other, TP); | 
 | } | 
 |  | 
 |  | 
 | /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the | 
 | /// CodeGenIntrinsic information for it, otherwise return a null pointer. | 
 | const CodeGenIntrinsic *TreePatternNode:: | 
 | getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { | 
 |   if (getOperator() != CDP.get_intrinsic_void_sdnode() && | 
 |       getOperator() != CDP.get_intrinsic_w_chain_sdnode() && | 
 |       getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) | 
 |     return 0; | 
 |  | 
 |   unsigned IID = | 
 |     dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); | 
 |   return &CDP.getIntrinsicInfo(IID); | 
 | } | 
 |  | 
 | /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, | 
 | /// return the ComplexPattern information, otherwise return null. | 
 | const ComplexPattern * | 
 | TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { | 
 |   if (!isLeaf()) return 0; | 
 |  | 
 |   DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); | 
 |   if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) | 
 |     return &CGP.getComplexPattern(DI->getDef()); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// NodeHasProperty - Return true if this node has the specified property. | 
 | bool TreePatternNode::NodeHasProperty(SDNP Property, | 
 |                                       const CodeGenDAGPatterns &CGP) const { | 
 |   if (isLeaf()) { | 
 |     if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) | 
 |       return CP->hasProperty(Property); | 
 |     return false; | 
 |   } | 
 |  | 
 |   Record *Operator = getOperator(); | 
 |   if (!Operator->isSubClassOf("SDNode")) return false; | 
 |  | 
 |   return CGP.getSDNodeInfo(Operator).hasProperty(Property); | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | /// TreeHasProperty - Return true if any node in this tree has the specified | 
 | /// property. | 
 | bool TreePatternNode::TreeHasProperty(SDNP Property, | 
 |                                       const CodeGenDAGPatterns &CGP) const { | 
 |   if (NodeHasProperty(Property, CGP)) | 
 |     return true; | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |     if (getChild(i)->TreeHasProperty(Property, CGP)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// isCommutativeIntrinsic - Return true if the node corresponds to a | 
 | /// commutative intrinsic. | 
 | bool | 
 | TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { | 
 |   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) | 
 |     return Int->isCommutative; | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// ApplyTypeConstraints - Apply all of the type constraints relevant to | 
 | /// this node and its children in the tree.  This returns true if it makes a | 
 | /// change, false otherwise.  If a type contradiction is found, throw an | 
 | /// exception. | 
 | bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { | 
 |   CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); | 
 |   if (isLeaf()) { | 
 |     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { | 
 |       // If it's a regclass or something else known, include the type. | 
 |       bool MadeChange = false; | 
 |       for (unsigned i = 0, e = Types.size(); i != e; ++i) | 
 |         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, | 
 |                                                         NotRegisters, TP), TP); | 
 |       return MadeChange; | 
 |     } | 
 |  | 
 |     if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { | 
 |       assert(Types.size() == 1 && "Invalid IntInit"); | 
 |  | 
 |       // Int inits are always integers. :) | 
 |       bool MadeChange = Types[0].EnforceInteger(TP); | 
 |  | 
 |       if (!Types[0].isConcrete()) | 
 |         return MadeChange; | 
 |  | 
 |       MVT::SimpleValueType VT = getType(0); | 
 |       if (VT == MVT::iPTR || VT == MVT::iPTRAny) | 
 |         return MadeChange; | 
 |  | 
 |       unsigned Size = EVT(VT).getSizeInBits(); | 
 |       // Make sure that the value is representable for this type. | 
 |       if (Size >= 32) return MadeChange; | 
 |  | 
 |       int Val = (II->getValue() << (32-Size)) >> (32-Size); | 
 |       if (Val == II->getValue()) return MadeChange; | 
 |  | 
 |       // If sign-extended doesn't fit, does it fit as unsigned? | 
 |       unsigned ValueMask; | 
 |       unsigned UnsignedVal; | 
 |       ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); | 
 |       UnsignedVal = unsigned(II->getValue()); | 
 |  | 
 |       if ((ValueMask & UnsignedVal) == UnsignedVal) | 
 |         return MadeChange; | 
 |  | 
 |       TP.error("Integer value '" + itostr(II->getValue())+ | 
 |                "' is out of range for type '" + getEnumName(getType(0)) + "'!"); | 
 |       return MadeChange; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // special handling for set, which isn't really an SDNode. | 
 |   if (getOperator()->getName() == "set") { | 
 |     assert(getNumTypes() == 0 && "Set doesn't produce a value"); | 
 |     assert(getNumChildren() >= 2 && "Missing RHS of a set?"); | 
 |     unsigned NC = getNumChildren(); | 
 |  | 
 |     TreePatternNode *SetVal = getChild(NC-1); | 
 |     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); | 
 |  | 
 |     for (unsigned i = 0; i < NC-1; ++i) { | 
 |       TreePatternNode *Child = getChild(i); | 
 |       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); | 
 |  | 
 |       // Types of operands must match. | 
 |       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); | 
 |       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); | 
 |     } | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   if (getOperator()->getName() == "implicit") { | 
 |     assert(getNumTypes() == 0 && "Node doesn't produce a value"); | 
 |  | 
 |     bool MadeChange = false; | 
 |     for (unsigned i = 0; i < getNumChildren(); ++i) | 
 |       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   if (getOperator()->getName() == "COPY_TO_REGCLASS") { | 
 |     bool MadeChange = false; | 
 |     MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); | 
 |     MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); | 
 |  | 
 |     assert(getChild(0)->getNumTypes() == 1 && | 
 |            getChild(1)->getNumTypes() == 1 && "Unhandled case"); | 
 |  | 
 |     // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care | 
 |     // what type it gets, so if it didn't get a concrete type just give it the | 
 |     // first viable type from the reg class. | 
 |     if (!getChild(1)->hasTypeSet(0) && | 
 |         !getChild(1)->getExtType(0).isCompletelyUnknown()) { | 
 |       MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; | 
 |       MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); | 
 |     } | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { | 
 |     bool MadeChange = false; | 
 |  | 
 |     // Apply the result type to the node. | 
 |     unsigned NumRetVTs = Int->IS.RetVTs.size(); | 
 |     unsigned NumParamVTs = Int->IS.ParamVTs.size(); | 
 |  | 
 |     for (unsigned i = 0, e = NumRetVTs; i != e; ++i) | 
 |       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); | 
 |  | 
 |     if (getNumChildren() != NumParamVTs + 1) | 
 |       TP.error("Intrinsic '" + Int->Name + "' expects " + | 
 |                utostr(NumParamVTs) + " operands, not " + | 
 |                utostr(getNumChildren() - 1) + " operands!"); | 
 |  | 
 |     // Apply type info to the intrinsic ID. | 
 |     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); | 
 |  | 
 |     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { | 
 |       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); | 
 |  | 
 |       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; | 
 |       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); | 
 |       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); | 
 |     } | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   if (getOperator()->isSubClassOf("SDNode")) { | 
 |     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); | 
 |  | 
 |     // Check that the number of operands is sane.  Negative operands -> varargs. | 
 |     if (NI.getNumOperands() >= 0 && | 
 |         getNumChildren() != (unsigned)NI.getNumOperands()) | 
 |       TP.error(getOperator()->getName() + " node requires exactly " + | 
 |                itostr(NI.getNumOperands()) + " operands!"); | 
 |  | 
 |     bool MadeChange = NI.ApplyTypeConstraints(this, TP); | 
 |     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   if (getOperator()->isSubClassOf("Instruction")) { | 
 |     const DAGInstruction &Inst = CDP.getInstruction(getOperator()); | 
 |     CodeGenInstruction &InstInfo = | 
 |       CDP.getTargetInfo().getInstruction(getOperator()); | 
 |  | 
 |     bool MadeChange = false; | 
 |  | 
 |     // Apply the result types to the node, these come from the things in the | 
 |     // (outs) list of the instruction. | 
 |     // FIXME: Cap at one result so far. | 
 |     unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; | 
 |     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { | 
 |       Record *ResultNode = Inst.getResult(ResNo); | 
 |  | 
 |       if (ResultNode->isSubClassOf("PointerLikeRegClass")) { | 
 |         MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); | 
 |       } else if (ResultNode->getName() == "unknown") { | 
 |         // Nothing to do. | 
 |       } else { | 
 |         assert(ResultNode->isSubClassOf("RegisterClass") && | 
 |                "Operands should be register classes!"); | 
 |         const CodeGenRegisterClass &RC = | 
 |           CDP.getTargetInfo().getRegisterClass(ResultNode); | 
 |         MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); | 
 |       } | 
 |     } | 
 |  | 
 |     // If the instruction has implicit defs, we apply the first one as a result. | 
 |     // FIXME: This sucks, it should apply all implicit defs. | 
 |     if (!InstInfo.ImplicitDefs.empty()) { | 
 |       unsigned ResNo = NumResultsToAdd; | 
 |  | 
 |       // FIXME: Generalize to multiple possible types and multiple possible | 
 |       // ImplicitDefs. | 
 |       MVT::SimpleValueType VT = | 
 |         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); | 
 |  | 
 |       if (VT != MVT::Other) | 
 |         MadeChange |= UpdateNodeType(ResNo, VT, TP); | 
 |     } | 
 |  | 
 |     // If this is an INSERT_SUBREG, constrain the source and destination VTs to | 
 |     // be the same. | 
 |     if (getOperator()->getName() == "INSERT_SUBREG") { | 
 |       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); | 
 |       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); | 
 |       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); | 
 |     } | 
 |  | 
 |     unsigned ChildNo = 0; | 
 |     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { | 
 |       Record *OperandNode = Inst.getOperand(i); | 
 |  | 
 |       // If the instruction expects a predicate or optional def operand, we | 
 |       // codegen this by setting the operand to it's default value if it has a | 
 |       // non-empty DefaultOps field. | 
 |       if ((OperandNode->isSubClassOf("PredicateOperand") || | 
 |            OperandNode->isSubClassOf("OptionalDefOperand")) && | 
 |           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) | 
 |         continue; | 
 |  | 
 |       // Verify that we didn't run out of provided operands. | 
 |       if (ChildNo >= getNumChildren()) | 
 |         TP.error("Instruction '" + getOperator()->getName() + | 
 |                  "' expects more operands than were provided."); | 
 |  | 
 |       MVT::SimpleValueType VT; | 
 |       TreePatternNode *Child = getChild(ChildNo++); | 
 |       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op. | 
 |  | 
 |       if (OperandNode->isSubClassOf("RegisterClass")) { | 
 |         const CodeGenRegisterClass &RC = | 
 |           CDP.getTargetInfo().getRegisterClass(OperandNode); | 
 |         MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); | 
 |       } else if (OperandNode->isSubClassOf("Operand")) { | 
 |         VT = getValueType(OperandNode->getValueAsDef("Type")); | 
 |         MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); | 
 |       } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { | 
 |         MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); | 
 |       } else if (OperandNode->getName() == "unknown") { | 
 |         // Nothing to do. | 
 |       } else { | 
 |         assert(0 && "Unknown operand type!"); | 
 |         abort(); | 
 |       } | 
 |       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); | 
 |     } | 
 |  | 
 |     if (ChildNo != getNumChildren()) | 
 |       TP.error("Instruction '" + getOperator()->getName() + | 
 |                "' was provided too many operands!"); | 
 |  | 
 |     return MadeChange; | 
 |   } | 
 |  | 
 |   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); | 
 |  | 
 |   // Node transforms always take one operand. | 
 |   if (getNumChildren() != 1) | 
 |     TP.error("Node transform '" + getOperator()->getName() + | 
 |              "' requires one operand!"); | 
 |  | 
 |   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); | 
 |  | 
 |  | 
 |   // If either the output or input of the xform does not have exact | 
 |   // type info. We assume they must be the same. Otherwise, it is perfectly | 
 |   // legal to transform from one type to a completely different type. | 
 | #if 0 | 
 |   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { | 
 |     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); | 
 |     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); | 
 |     return MadeChange; | 
 |   } | 
 | #endif | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the | 
 | /// RHS of a commutative operation, not the on LHS. | 
 | static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { | 
 |   if (!N->isLeaf() && N->getOperator()->getName() == "imm") | 
 |     return true; | 
 |   if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// canPatternMatch - If it is impossible for this pattern to match on this | 
 | /// target, fill in Reason and return false.  Otherwise, return true.  This is | 
 | /// used as a sanity check for .td files (to prevent people from writing stuff | 
 | /// that can never possibly work), and to prevent the pattern permuter from | 
 | /// generating stuff that is useless. | 
 | bool TreePatternNode::canPatternMatch(std::string &Reason, | 
 |                                       const CodeGenDAGPatterns &CDP) { | 
 |   if (isLeaf()) return true; | 
 |  | 
 |   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
 |     if (!getChild(i)->canPatternMatch(Reason, CDP)) | 
 |       return false; | 
 |  | 
 |   // If this is an intrinsic, handle cases that would make it not match.  For | 
 |   // example, if an operand is required to be an immediate. | 
 |   if (getOperator()->isSubClassOf("Intrinsic")) { | 
 |     // TODO: | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If this node is a commutative operator, check that the LHS isn't an | 
 |   // immediate. | 
 |   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); | 
 |   bool isCommIntrinsic = isCommutativeIntrinsic(CDP); | 
 |   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { | 
 |     // Scan all of the operands of the node and make sure that only the last one | 
 |     // is a constant node, unless the RHS also is. | 
 |     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { | 
 |       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. | 
 |       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) | 
 |         if (OnlyOnRHSOfCommutative(getChild(i))) { | 
 |           Reason="Immediate value must be on the RHS of commutative operators!"; | 
 |           return false; | 
 |         } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TreePattern implementation | 
 | // | 
 |  | 
 | TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, | 
 |                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ | 
 |   isInputPattern = isInput; | 
 |   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) | 
 |     Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); | 
 | } | 
 |  | 
 | TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, | 
 |                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ | 
 |   isInputPattern = isInput; | 
 |   Trees.push_back(ParseTreePattern(Pat, "")); | 
 | } | 
 |  | 
 | TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, | 
 |                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ | 
 |   isInputPattern = isInput; | 
 |   Trees.push_back(Pat); | 
 | } | 
 |  | 
 | void TreePattern::error(const std::string &Msg) const { | 
 |   dump(); | 
 |   throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); | 
 | } | 
 |  | 
 | void TreePattern::ComputeNamedNodes() { | 
 |   for (unsigned i = 0, e = Trees.size(); i != e; ++i) | 
 |     ComputeNamedNodes(Trees[i]); | 
 | } | 
 |  | 
 | void TreePattern::ComputeNamedNodes(TreePatternNode *N) { | 
 |   if (!N->getName().empty()) | 
 |     NamedNodes[N->getName()].push_back(N); | 
 |  | 
 |   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
 |     ComputeNamedNodes(N->getChild(i)); | 
 | } | 
 |  | 
 |  | 
 | TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ | 
 |   if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { | 
 |     Record *R = DI->getDef(); | 
 |  | 
 |     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a | 
 |     // TreePatternNode if its own.  For example: | 
 |     ///   (foo GPR, imm) -> (foo GPR, (imm)) | 
 |     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) | 
 |       return ParseTreePattern(new DagInit(DI, "", | 
 |                           std::vector<std::pair<Init*, std::string> >()), | 
 |                               OpName); | 
 |  | 
 |     // Input argument? | 
 |     TreePatternNode *Res = new TreePatternNode(DI, 1); | 
 |     if (R->getName() == "node" && !OpName.empty()) { | 
 |       if (OpName.empty()) | 
 |         error("'node' argument requires a name to match with operand list"); | 
 |       Args.push_back(OpName); | 
 |     } | 
 |  | 
 |     Res->setName(OpName); | 
 |     return Res; | 
 |   } | 
 |  | 
 |   if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { | 
 |     if (!OpName.empty()) | 
 |       error("Constant int argument should not have a name!"); | 
 |     return new TreePatternNode(II, 1); | 
 |   } | 
 |  | 
 |   if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { | 
 |     // Turn this into an IntInit. | 
 |     Init *II = BI->convertInitializerTo(new IntRecTy()); | 
 |     if (II == 0 || !dynamic_cast<IntInit*>(II)) | 
 |       error("Bits value must be constants!"); | 
 |     return ParseTreePattern(II, OpName); | 
 |   } | 
 |  | 
 |   DagInit *Dag = dynamic_cast<DagInit*>(TheInit); | 
 |   if (!Dag) { | 
 |     TheInit->dump(); | 
 |     error("Pattern has unexpected init kind!"); | 
 |   } | 
 |   DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); | 
 |   if (!OpDef) error("Pattern has unexpected operator type!"); | 
 |   Record *Operator = OpDef->getDef(); | 
 |  | 
 |   if (Operator->isSubClassOf("ValueType")) { | 
 |     // If the operator is a ValueType, then this must be "type cast" of a leaf | 
 |     // node. | 
 |     if (Dag->getNumArgs() != 1) | 
 |       error("Type cast only takes one operand!"); | 
 |  | 
 |     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); | 
 |  | 
 |     // Apply the type cast. | 
 |     assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); | 
 |     New->UpdateNodeType(0, getValueType(Operator), *this); | 
 |  | 
 |     if (!OpName.empty()) | 
 |       error("ValueType cast should not have a name!"); | 
 |     return New; | 
 |   } | 
 |  | 
 |   // Verify that this is something that makes sense for an operator. | 
 |   if (!Operator->isSubClassOf("PatFrag") && | 
 |       !Operator->isSubClassOf("SDNode") && | 
 |       !Operator->isSubClassOf("Instruction") && | 
 |       !Operator->isSubClassOf("SDNodeXForm") && | 
 |       !Operator->isSubClassOf("Intrinsic") && | 
 |       Operator->getName() != "set" && | 
 |       Operator->getName() != "implicit") | 
 |     error("Unrecognized node '" + Operator->getName() + "'!"); | 
 |  | 
 |   //  Check to see if this is something that is illegal in an input pattern. | 
 |   if (isInputPattern) { | 
 |     if (Operator->isSubClassOf("Instruction") || | 
 |         Operator->isSubClassOf("SDNodeXForm")) | 
 |       error("Cannot use '" + Operator->getName() + "' in an input pattern!"); | 
 |   } else { | 
 |     if (Operator->isSubClassOf("Intrinsic")) | 
 |       error("Cannot use '" + Operator->getName() + "' in an output pattern!"); | 
 |  | 
 |     if (Operator->isSubClassOf("SDNode") && | 
 |         Operator->getName() != "imm" && | 
 |         Operator->getName() != "fpimm" && | 
 |         Operator->getName() != "tglobaltlsaddr" && | 
 |         Operator->getName() != "tconstpool" && | 
 |         Operator->getName() != "tjumptable" && | 
 |         Operator->getName() != "tframeindex" && | 
 |         Operator->getName() != "texternalsym" && | 
 |         Operator->getName() != "tblockaddress" && | 
 |         Operator->getName() != "tglobaladdr" && | 
 |         Operator->getName() != "bb" && | 
 |         Operator->getName() != "vt") | 
 |       error("Cannot use '" + Operator->getName() + "' in an output pattern!"); | 
 |   } | 
 |  | 
 |   std::vector<TreePatternNode*> Children; | 
 |  | 
 |   // Parse all the operands. | 
 |   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) | 
 |     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); | 
 |  | 
 |   // If the operator is an intrinsic, then this is just syntactic sugar for for | 
 |   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and | 
 |   // convert the intrinsic name to a number. | 
 |   if (Operator->isSubClassOf("Intrinsic")) { | 
 |     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); | 
 |     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; | 
 |  | 
 |     // If this intrinsic returns void, it must have side-effects and thus a | 
 |     // chain. | 
 |     if (Int.IS.RetVTs.empty()) | 
 |       Operator = getDAGPatterns().get_intrinsic_void_sdnode(); | 
 |     else if (Int.ModRef != CodeGenIntrinsic::NoMem) | 
 |       // Has side-effects, requires chain. | 
 |       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); | 
 |     else // Otherwise, no chain. | 
 |       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); | 
 |  | 
 |     TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); | 
 |     Children.insert(Children.begin(), IIDNode); | 
 |   } | 
 |  | 
 |   unsigned NumResults = GetNumNodeResults(Operator, CDP); | 
 |   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); | 
 |   Result->setName(OpName); | 
 |  | 
 |   if (!Dag->getName().empty()) { | 
 |     assert(Result->getName().empty()); | 
 |     Result->setName(Dag->getName()); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | /// SimplifyTree - See if we can simplify this tree to eliminate something that | 
 | /// will never match in favor of something obvious that will.  This is here | 
 | /// strictly as a convenience to target authors because it allows them to write | 
 | /// more type generic things and have useless type casts fold away. | 
 | /// | 
 | /// This returns true if any change is made. | 
 | static bool SimplifyTree(TreePatternNode *&N) { | 
 |   if (N->isLeaf()) | 
 |     return false; | 
 |  | 
 |   // If we have a bitconvert with a resolved type and if the source and | 
 |   // destination types are the same, then the bitconvert is useless, remove it. | 
 |   if (N->getOperator()->getName() == "bitconvert" && | 
 |       N->getExtType(0).isConcrete() && | 
 |       N->getExtType(0) == N->getChild(0)->getExtType(0) && | 
 |       N->getName().empty()) { | 
 |     N = N->getChild(0); | 
 |     SimplifyTree(N); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Walk all children. | 
 |   bool MadeChange = false; | 
 |   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { | 
 |     TreePatternNode *Child = N->getChild(i); | 
 |     MadeChange |= SimplifyTree(Child); | 
 |     N->setChild(i, Child); | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// InferAllTypes - Infer/propagate as many types throughout the expression | 
 | /// patterns as possible.  Return true if all types are inferred, false | 
 | /// otherwise.  Throw an exception if a type contradiction is found. | 
 | bool TreePattern:: | 
 | InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { | 
 |   if (NamedNodes.empty()) | 
 |     ComputeNamedNodes(); | 
 |  | 
 |   bool MadeChange = true; | 
 |   while (MadeChange) { | 
 |     MadeChange = false; | 
 |     for (unsigned i = 0, e = Trees.size(); i != e; ++i) { | 
 |       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); | 
 |       MadeChange |= SimplifyTree(Trees[i]); | 
 |     } | 
 |  | 
 |     // If there are constraints on our named nodes, apply them. | 
 |     for (StringMap<SmallVector<TreePatternNode*,1> >::iterator | 
 |          I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { | 
 |       SmallVectorImpl<TreePatternNode*> &Nodes = I->second; | 
 |  | 
 |       // If we have input named node types, propagate their types to the named | 
 |       // values here. | 
 |       if (InNamedTypes) { | 
 |         // FIXME: Should be error? | 
 |         assert(InNamedTypes->count(I->getKey()) && | 
 |                "Named node in output pattern but not input pattern?"); | 
 |  | 
 |         const SmallVectorImpl<TreePatternNode*> &InNodes = | 
 |           InNamedTypes->find(I->getKey())->second; | 
 |  | 
 |         // The input types should be fully resolved by now. | 
 |         for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { | 
 |           // If this node is a register class, and it is the root of the pattern | 
 |           // then we're mapping something onto an input register.  We allow | 
 |           // changing the type of the input register in this case.  This allows | 
 |           // us to match things like: | 
 |           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; | 
 |           if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { | 
 |             DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); | 
 |             if (DI && DI->getDef()->isSubClassOf("RegisterClass")) | 
 |               continue; | 
 |           } | 
 |  | 
 |           assert(Nodes[i]->getNumTypes() == 1 && | 
 |                  InNodes[0]->getNumTypes() == 1 && | 
 |                  "FIXME: cannot name multiple result nodes yet"); | 
 |           MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), | 
 |                                                  *this); | 
 |         } | 
 |       } | 
 |  | 
 |       // If there are multiple nodes with the same name, they must all have the | 
 |       // same type. | 
 |       if (I->second.size() > 1) { | 
 |         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { | 
 |           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; | 
 |           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && | 
 |                  "FIXME: cannot name multiple result nodes yet"); | 
 |  | 
 |           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); | 
 |           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   bool HasUnresolvedTypes = false; | 
 |   for (unsigned i = 0, e = Trees.size(); i != e; ++i) | 
 |     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); | 
 |   return !HasUnresolvedTypes; | 
 | } | 
 |  | 
 | void TreePattern::print(raw_ostream &OS) const { | 
 |   OS << getRecord()->getName(); | 
 |   if (!Args.empty()) { | 
 |     OS << "(" << Args[0]; | 
 |     for (unsigned i = 1, e = Args.size(); i != e; ++i) | 
 |       OS << ", " << Args[i]; | 
 |     OS << ")"; | 
 |   } | 
 |   OS << ": "; | 
 |  | 
 |   if (Trees.size() > 1) | 
 |     OS << "[\n"; | 
 |   for (unsigned i = 0, e = Trees.size(); i != e; ++i) { | 
 |     OS << "\t"; | 
 |     Trees[i]->print(OS); | 
 |     OS << "\n"; | 
 |   } | 
 |  | 
 |   if (Trees.size() > 1) | 
 |     OS << "]\n"; | 
 | } | 
 |  | 
 | void TreePattern::dump() const { print(errs()); } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // CodeGenDAGPatterns implementation | 
 | // | 
 |  | 
 | CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : | 
 |   Records(R), Target(R) { | 
 |  | 
 |   Intrinsics = LoadIntrinsics(Records, false); | 
 |   TgtIntrinsics = LoadIntrinsics(Records, true); | 
 |   ParseNodeInfo(); | 
 |   ParseNodeTransforms(); | 
 |   ParseComplexPatterns(); | 
 |   ParsePatternFragments(); | 
 |   ParseDefaultOperands(); | 
 |   ParseInstructions(); | 
 |   ParsePatterns(); | 
 |  | 
 |   // Generate variants.  For example, commutative patterns can match | 
 |   // multiple ways.  Add them to PatternsToMatch as well. | 
 |   GenerateVariants(); | 
 |  | 
 |   // Infer instruction flags.  For example, we can detect loads, | 
 |   // stores, and side effects in many cases by examining an | 
 |   // instruction's pattern. | 
 |   InferInstructionFlags(); | 
 | } | 
 |  | 
 | CodeGenDAGPatterns::~CodeGenDAGPatterns() { | 
 |   for (pf_iterator I = PatternFragments.begin(), | 
 |        E = PatternFragments.end(); I != E; ++I) | 
 |     delete I->second; | 
 | } | 
 |  | 
 |  | 
 | Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { | 
 |   Record *N = Records.getDef(Name); | 
 |   if (!N || !N->isSubClassOf("SDNode")) { | 
 |     errs() << "Error getting SDNode '" << Name << "'!\n"; | 
 |     exit(1); | 
 |   } | 
 |   return N; | 
 | } | 
 |  | 
 | // Parse all of the SDNode definitions for the target, populating SDNodes. | 
 | void CodeGenDAGPatterns::ParseNodeInfo() { | 
 |   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); | 
 |   while (!Nodes.empty()) { | 
 |     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); | 
 |     Nodes.pop_back(); | 
 |   } | 
 |  | 
 |   // Get the builtin intrinsic nodes. | 
 |   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void"); | 
 |   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain"); | 
 |   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); | 
 | } | 
 |  | 
 | /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms | 
 | /// map, and emit them to the file as functions. | 
 | void CodeGenDAGPatterns::ParseNodeTransforms() { | 
 |   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); | 
 |   while (!Xforms.empty()) { | 
 |     Record *XFormNode = Xforms.back(); | 
 |     Record *SDNode = XFormNode->getValueAsDef("Opcode"); | 
 |     std::string Code = XFormNode->getValueAsCode("XFormFunction"); | 
 |     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); | 
 |  | 
 |     Xforms.pop_back(); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenDAGPatterns::ParseComplexPatterns() { | 
 |   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); | 
 |   while (!AMs.empty()) { | 
 |     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); | 
 |     AMs.pop_back(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td | 
 | /// file, building up the PatternFragments map.  After we've collected them all, | 
 | /// inline fragments together as necessary, so that there are no references left | 
 | /// inside a pattern fragment to a pattern fragment. | 
 | /// | 
 | void CodeGenDAGPatterns::ParsePatternFragments() { | 
 |   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); | 
 |  | 
 |   // First step, parse all of the fragments. | 
 |   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { | 
 |     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); | 
 |     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); | 
 |     PatternFragments[Fragments[i]] = P; | 
 |  | 
 |     // Validate the argument list, converting it to set, to discard duplicates. | 
 |     std::vector<std::string> &Args = P->getArgList(); | 
 |     std::set<std::string> OperandsSet(Args.begin(), Args.end()); | 
 |  | 
 |     if (OperandsSet.count("")) | 
 |       P->error("Cannot have unnamed 'node' values in pattern fragment!"); | 
 |  | 
 |     // Parse the operands list. | 
 |     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); | 
 |     DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); | 
 |     // Special cases: ops == outs == ins. Different names are used to | 
 |     // improve readability. | 
 |     if (!OpsOp || | 
 |         (OpsOp->getDef()->getName() != "ops" && | 
 |          OpsOp->getDef()->getName() != "outs" && | 
 |          OpsOp->getDef()->getName() != "ins")) | 
 |       P->error("Operands list should start with '(ops ... '!"); | 
 |  | 
 |     // Copy over the arguments. | 
 |     Args.clear(); | 
 |     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { | 
 |       if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || | 
 |           static_cast<DefInit*>(OpsList->getArg(j))-> | 
 |           getDef()->getName() != "node") | 
 |         P->error("Operands list should all be 'node' values."); | 
 |       if (OpsList->getArgName(j).empty()) | 
 |         P->error("Operands list should have names for each operand!"); | 
 |       if (!OperandsSet.count(OpsList->getArgName(j))) | 
 |         P->error("'" + OpsList->getArgName(j) + | 
 |                  "' does not occur in pattern or was multiply specified!"); | 
 |       OperandsSet.erase(OpsList->getArgName(j)); | 
 |       Args.push_back(OpsList->getArgName(j)); | 
 |     } | 
 |  | 
 |     if (!OperandsSet.empty()) | 
 |       P->error("Operands list does not contain an entry for operand '" + | 
 |                *OperandsSet.begin() + "'!"); | 
 |  | 
 |     // If there is a code init for this fragment, keep track of the fact that | 
 |     // this fragment uses it. | 
 |     TreePredicateFn PredFn(P); | 
 |     if (!PredFn.isAlwaysTrue()) | 
 |       P->getOnlyTree()->addPredicateFn(PredFn); | 
 |  | 
 |     // If there is a node transformation corresponding to this, keep track of | 
 |     // it. | 
 |     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); | 
 |     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform? | 
 |       P->getOnlyTree()->setTransformFn(Transform); | 
 |   } | 
 |  | 
 |   // Now that we've parsed all of the tree fragments, do a closure on them so | 
 |   // that there are not references to PatFrags left inside of them. | 
 |   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { | 
 |     TreePattern *ThePat = PatternFragments[Fragments[i]]; | 
 |     ThePat->InlinePatternFragments(); | 
 |  | 
 |     // Infer as many types as possible.  Don't worry about it if we don't infer | 
 |     // all of them, some may depend on the inputs of the pattern. | 
 |     try { | 
 |       ThePat->InferAllTypes(); | 
 |     } catch (...) { | 
 |       // If this pattern fragment is not supported by this target (no types can | 
 |       // satisfy its constraints), just ignore it.  If the bogus pattern is | 
 |       // actually used by instructions, the type consistency error will be | 
 |       // reported there. | 
 |     } | 
 |  | 
 |     // If debugging, print out the pattern fragment result. | 
 |     DEBUG(ThePat->dump()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenDAGPatterns::ParseDefaultOperands() { | 
 |   std::vector<Record*> DefaultOps[2]; | 
 |   DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); | 
 |   DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); | 
 |  | 
 |   // Find some SDNode. | 
 |   assert(!SDNodes.empty() && "No SDNodes parsed?"); | 
 |   Init *SomeSDNode = new DefInit(SDNodes.begin()->first); | 
 |  | 
 |   for (unsigned iter = 0; iter != 2; ++iter) { | 
 |     for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { | 
 |       DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); | 
 |  | 
 |       // Clone the DefaultInfo dag node, changing the operator from 'ops' to | 
 |       // SomeSDnode so that we can parse this. | 
 |       std::vector<std::pair<Init*, std::string> > Ops; | 
 |       for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) | 
 |         Ops.push_back(std::make_pair(DefaultInfo->getArg(op), | 
 |                                      DefaultInfo->getArgName(op))); | 
 |       DagInit *DI = new DagInit(SomeSDNode, "", Ops); | 
 |  | 
 |       // Create a TreePattern to parse this. | 
 |       TreePattern P(DefaultOps[iter][i], DI, false, *this); | 
 |       assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); | 
 |  | 
 |       // Copy the operands over into a DAGDefaultOperand. | 
 |       DAGDefaultOperand DefaultOpInfo; | 
 |  | 
 |       TreePatternNode *T = P.getTree(0); | 
 |       for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { | 
 |         TreePatternNode *TPN = T->getChild(op); | 
 |         while (TPN->ApplyTypeConstraints(P, false)) | 
 |           /* Resolve all types */; | 
 |  | 
 |         if (TPN->ContainsUnresolvedType()) { | 
 |           if (iter == 0) | 
 |             throw "Value #" + utostr(i) + " of PredicateOperand '" + | 
 |               DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; | 
 |           else | 
 |             throw "Value #" + utostr(i) + " of OptionalDefOperand '" + | 
 |               DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; | 
 |         } | 
 |         DefaultOpInfo.DefaultOps.push_back(TPN); | 
 |       } | 
 |  | 
 |       // Insert it into the DefaultOperands map so we can find it later. | 
 |       DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an | 
 | /// instruction input.  Return true if this is a real use. | 
 | static bool HandleUse(TreePattern *I, TreePatternNode *Pat, | 
 |                       std::map<std::string, TreePatternNode*> &InstInputs) { | 
 |   // No name -> not interesting. | 
 |   if (Pat->getName().empty()) { | 
 |     if (Pat->isLeaf()) { | 
 |       DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); | 
 |       if (DI && DI->getDef()->isSubClassOf("RegisterClass")) | 
 |         I->error("Input " + DI->getDef()->getName() + " must be named!"); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   Record *Rec; | 
 |   if (Pat->isLeaf()) { | 
 |     DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); | 
 |     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); | 
 |     Rec = DI->getDef(); | 
 |   } else { | 
 |     Rec = Pat->getOperator(); | 
 |   } | 
 |  | 
 |   // SRCVALUE nodes are ignored. | 
 |   if (Rec->getName() == "srcvalue") | 
 |     return false; | 
 |  | 
 |   TreePatternNode *&Slot = InstInputs[Pat->getName()]; | 
 |   if (!Slot) { | 
 |     Slot = Pat; | 
 |     return true; | 
 |   } | 
 |   Record *SlotRec; | 
 |   if (Slot->isLeaf()) { | 
 |     SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); | 
 |   } else { | 
 |     assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); | 
 |     SlotRec = Slot->getOperator(); | 
 |   } | 
 |  | 
 |   // Ensure that the inputs agree if we've already seen this input. | 
 |   if (Rec != SlotRec) | 
 |     I->error("All $" + Pat->getName() + " inputs must agree with each other"); | 
 |   if (Slot->getExtTypes() != Pat->getExtTypes()) | 
 |     I->error("All $" + Pat->getName() + " inputs must agree with each other"); | 
 |   return true; | 
 | } | 
 |  | 
 | /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is | 
 | /// part of "I", the instruction), computing the set of inputs and outputs of | 
 | /// the pattern.  Report errors if we see anything naughty. | 
 | void CodeGenDAGPatterns:: | 
 | FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, | 
 |                             std::map<std::string, TreePatternNode*> &InstInputs, | 
 |                             std::map<std::string, TreePatternNode*>&InstResults, | 
 |                             std::vector<Record*> &InstImpResults) { | 
 |   if (Pat->isLeaf()) { | 
 |     bool isUse = HandleUse(I, Pat, InstInputs); | 
 |     if (!isUse && Pat->getTransformFn()) | 
 |       I->error("Cannot specify a transform function for a non-input value!"); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Pat->getOperator()->getName() == "implicit") { | 
 |     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { | 
 |       TreePatternNode *Dest = Pat->getChild(i); | 
 |       if (!Dest->isLeaf()) | 
 |         I->error("implicitly defined value should be a register!"); | 
 |  | 
 |       DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); | 
 |       if (!Val || !Val->getDef()->isSubClassOf("Register")) | 
 |         I->error("implicitly defined value should be a register!"); | 
 |       InstImpResults.push_back(Val->getDef()); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Pat->getOperator()->getName() != "set") { | 
 |     // If this is not a set, verify that the children nodes are not void typed, | 
 |     // and recurse. | 
 |     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { | 
 |       if (Pat->getChild(i)->getNumTypes() == 0) | 
 |         I->error("Cannot have void nodes inside of patterns!"); | 
 |       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, | 
 |                                   InstImpResults); | 
 |     } | 
 |  | 
 |     // If this is a non-leaf node with no children, treat it basically as if | 
 |     // it were a leaf.  This handles nodes like (imm). | 
 |     bool isUse = HandleUse(I, Pat, InstInputs); | 
 |  | 
 |     if (!isUse && Pat->getTransformFn()) | 
 |       I->error("Cannot specify a transform function for a non-input value!"); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, this is a set, validate and collect instruction results. | 
 |   if (Pat->getNumChildren() == 0) | 
 |     I->error("set requires operands!"); | 
 |  | 
 |   if (Pat->getTransformFn()) | 
 |     I->error("Cannot specify a transform function on a set node!"); | 
 |  | 
 |   // Check the set destinations. | 
 |   unsigned NumDests = Pat->getNumChildren()-1; | 
 |   for (unsigned i = 0; i != NumDests; ++i) { | 
 |     TreePatternNode *Dest = Pat->getChild(i); | 
 |     if (!Dest->isLeaf()) | 
 |       I->error("set destination should be a register!"); | 
 |  | 
 |     DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); | 
 |     if (!Val) | 
 |       I->error("set destination should be a register!"); | 
 |  | 
 |     if (Val->getDef()->isSubClassOf("RegisterClass") || | 
 |         Val->getDef()->isSubClassOf("PointerLikeRegClass")) { | 
 |       if (Dest->getName().empty()) | 
 |         I->error("set destination must have a name!"); | 
 |       if (InstResults.count(Dest->getName())) | 
 |         I->error("cannot set '" + Dest->getName() +"' multiple times"); | 
 |       InstResults[Dest->getName()] = Dest; | 
 |     } else if (Val->getDef()->isSubClassOf("Register")) { | 
 |       InstImpResults.push_back(Val->getDef()); | 
 |     } else { | 
 |       I->error("set destination should be a register!"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Verify and collect info from the computation. | 
 |   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), | 
 |                               InstInputs, InstResults, InstImpResults); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instruction Analysis | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | class InstAnalyzer { | 
 |   const CodeGenDAGPatterns &CDP; | 
 |   bool &mayStore; | 
 |   bool &mayLoad; | 
 |   bool &IsBitcast; | 
 |   bool &HasSideEffects; | 
 |   bool &IsVariadic; | 
 | public: | 
 |   InstAnalyzer(const CodeGenDAGPatterns &cdp, | 
 |                bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) | 
 |     : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), | 
 |       HasSideEffects(hse), IsVariadic(isv) { | 
 |   } | 
 |  | 
 |   /// Analyze - Analyze the specified instruction, returning true if the | 
 |   /// instruction had a pattern. | 
 |   bool Analyze(Record *InstRecord) { | 
 |     const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); | 
 |     if (Pattern == 0) { | 
 |       HasSideEffects = 1; | 
 |       return false;  // No pattern. | 
 |     } | 
 |  | 
 |     // FIXME: Assume only the first tree is the pattern. The others are clobber | 
 |     // nodes. | 
 |     AnalyzeNode(Pattern->getTree(0)); | 
 |     return true; | 
 |   } | 
 |  | 
 | private: | 
 |   bool IsNodeBitcast(const TreePatternNode *N) const { | 
 |     if (HasSideEffects || mayLoad || mayStore || IsVariadic) | 
 |       return false; | 
 |  | 
 |     if (N->getNumChildren() != 2) | 
 |       return false; | 
 |  | 
 |     const TreePatternNode *N0 = N->getChild(0); | 
 |     if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) | 
 |       return false; | 
 |  | 
 |     const TreePatternNode *N1 = N->getChild(1); | 
 |     if (N1->isLeaf()) | 
 |       return false; | 
 |     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) | 
 |       return false; | 
 |  | 
 |     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); | 
 |     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) | 
 |       return false; | 
 |     return OpInfo.getEnumName() == "ISD::BITCAST"; | 
 |   } | 
 |  | 
 |   void AnalyzeNode(const TreePatternNode *N) { | 
 |     if (N->isLeaf()) { | 
 |       if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { | 
 |         Record *LeafRec = DI->getDef(); | 
 |         // Handle ComplexPattern leaves. | 
 |         if (LeafRec->isSubClassOf("ComplexPattern")) { | 
 |           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); | 
 |           if (CP.hasProperty(SDNPMayStore)) mayStore = true; | 
 |           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; | 
 |           if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; | 
 |         } | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     // Analyze children. | 
 |     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
 |       AnalyzeNode(N->getChild(i)); | 
 |  | 
 |     // Ignore set nodes, which are not SDNodes. | 
 |     if (N->getOperator()->getName() == "set") { | 
 |       IsBitcast = IsNodeBitcast(N); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Get information about the SDNode for the operator. | 
 |     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); | 
 |  | 
 |     // Notice properties of the node. | 
 |     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; | 
 |     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; | 
 |     if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; | 
 |     if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; | 
 |  | 
 |     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { | 
 |       // If this is an intrinsic, analyze it. | 
 |       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) | 
 |         mayLoad = true;// These may load memory. | 
 |  | 
 |       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) | 
 |         mayStore = true;// Intrinsics that can write to memory are 'mayStore'. | 
 |  | 
 |       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) | 
 |         // WriteMem intrinsics can have other strange effects. | 
 |         HasSideEffects = true; | 
 |     } | 
 |   } | 
 |  | 
 | }; | 
 |  | 
 | static void InferFromPattern(const CodeGenInstruction &Inst, | 
 |                              bool &MayStore, bool &MayLoad, | 
 |                              bool &IsBitcast, | 
 |                              bool &HasSideEffects, bool &IsVariadic, | 
 |                              const CodeGenDAGPatterns &CDP) { | 
 |   MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; | 
 |  | 
 |   bool HadPattern = | 
 |     InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) | 
 |     .Analyze(Inst.TheDef); | 
 |  | 
 |   // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. | 
 |   if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it. | 
 |     // If we decided that this is a store from the pattern, then the .td file | 
 |     // entry is redundant. | 
 |     if (MayStore) | 
 |       fprintf(stderr, | 
 |               "Warning: mayStore flag explicitly set on instruction '%s'" | 
 |               " but flag already inferred from pattern.\n", | 
 |               Inst.TheDef->getName().c_str()); | 
 |     MayStore = true; | 
 |   } | 
 |  | 
 |   if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it. | 
 |     // If we decided that this is a load from the pattern, then the .td file | 
 |     // entry is redundant. | 
 |     if (MayLoad) | 
 |       fprintf(stderr, | 
 |               "Warning: mayLoad flag explicitly set on instruction '%s'" | 
 |               " but flag already inferred from pattern.\n", | 
 |               Inst.TheDef->getName().c_str()); | 
 |     MayLoad = true; | 
 |   } | 
 |  | 
 |   if (Inst.neverHasSideEffects) { | 
 |     if (HadPattern) | 
 |       fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " | 
 |               "which already has a pattern\n", Inst.TheDef->getName().c_str()); | 
 |     HasSideEffects = false; | 
 |   } | 
 |  | 
 |   if (Inst.hasSideEffects) { | 
 |     if (HasSideEffects) | 
 |       fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " | 
 |               "which already inferred this.\n", Inst.TheDef->getName().c_str()); | 
 |     HasSideEffects = true; | 
 |   } | 
 |  | 
 |   if (Inst.Operands.isVariadic) | 
 |     IsVariadic = true;  // Can warn if we want. | 
 | } | 
 |  | 
 | /// ParseInstructions - Parse all of the instructions, inlining and resolving | 
 | /// any fragments involved.  This populates the Instructions list with fully | 
 | /// resolved instructions. | 
 | void CodeGenDAGPatterns::ParseInstructions() { | 
 |   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); | 
 |  | 
 |   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { | 
 |     ListInit *LI = 0; | 
 |  | 
 |     if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) | 
 |       LI = Instrs[i]->getValueAsListInit("Pattern"); | 
 |  | 
 |     // If there is no pattern, only collect minimal information about the | 
 |     // instruction for its operand list.  We have to assume that there is one | 
 |     // result, as we have no detailed info. | 
 |     if (!LI || LI->getSize() == 0) { | 
 |       std::vector<Record*> Results; | 
 |       std::vector<Record*> Operands; | 
 |  | 
 |       CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); | 
 |  | 
 |       if (InstInfo.Operands.size() != 0) { | 
 |         if (InstInfo.Operands.NumDefs == 0) { | 
 |           // These produce no results | 
 |           for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) | 
 |             Operands.push_back(InstInfo.Operands[j].Rec); | 
 |         } else { | 
 |           // Assume the first operand is the result. | 
 |           Results.push_back(InstInfo.Operands[0].Rec); | 
 |  | 
 |           // The rest are inputs. | 
 |           for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) | 
 |             Operands.push_back(InstInfo.Operands[j].Rec); | 
 |         } | 
 |       } | 
 |  | 
 |       // Create and insert the instruction. | 
 |       std::vector<Record*> ImpResults; | 
 |       Instructions.insert(std::make_pair(Instrs[i], | 
 |                           DAGInstruction(0, Results, Operands, ImpResults))); | 
 |       continue;  // no pattern. | 
 |     } | 
 |  | 
 |     // Parse the instruction. | 
 |     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); | 
 |     // Inline pattern fragments into it. | 
 |     I->InlinePatternFragments(); | 
 |  | 
 |     // Infer as many types as possible.  If we cannot infer all of them, we can | 
 |     // never do anything with this instruction pattern: report it to the user. | 
 |     if (!I->InferAllTypes()) | 
 |       I->error("Could not infer all types in pattern!"); | 
 |  | 
 |     // InstInputs - Keep track of all of the inputs of the instruction, along | 
 |     // with the record they are declared as. | 
 |     std::map<std::string, TreePatternNode*> InstInputs; | 
 |  | 
 |     // InstResults - Keep track of all the virtual registers that are 'set' | 
 |     // in the instruction, including what reg class they are. | 
 |     std::map<std::string, TreePatternNode*> InstResults; | 
 |  | 
 |     std::vector<Record*> InstImpResults; | 
 |  | 
 |     // Verify that the top-level forms in the instruction are of void type, and | 
 |     // fill in the InstResults map. | 
 |     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { | 
 |       TreePatternNode *Pat = I->getTree(j); | 
 |       if (Pat->getNumTypes() != 0) | 
 |         I->error("Top-level forms in instruction pattern should have" | 
 |                  " void types"); | 
 |  | 
 |       // Find inputs and outputs, and verify the structure of the uses/defs. | 
 |       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, | 
 |                                   InstImpResults); | 
 |     } | 
 |  | 
 |     // Now that we have inputs and outputs of the pattern, inspect the operands | 
 |     // list for the instruction.  This determines the order that operands are | 
 |     // added to the machine instruction the node corresponds to. | 
 |     unsigned NumResults = InstResults.size(); | 
 |  | 
 |     // Parse the operands list from the (ops) list, validating it. | 
 |     assert(I->getArgList().empty() && "Args list should still be empty here!"); | 
 |     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); | 
 |  | 
 |     // Check that all of the results occur first in the list. | 
 |     std::vector<Record*> Results; | 
 |     TreePatternNode *Res0Node = 0; | 
 |     for (unsigned i = 0; i != NumResults; ++i) { | 
 |       if (i == CGI.Operands.size()) | 
 |         I->error("'" + InstResults.begin()->first + | 
 |                  "' set but does not appear in operand list!"); | 
 |       const std::string &OpName = CGI.Operands[i].Name; | 
 |  | 
 |       // Check that it exists in InstResults. | 
 |       TreePatternNode *RNode = InstResults[OpName]; | 
 |       if (RNode == 0) | 
 |         I->error("Operand $" + OpName + " does not exist in operand list!"); | 
 |  | 
 |       if (i == 0) | 
 |         Res0Node = RNode; | 
 |       Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); | 
 |       if (R == 0) | 
 |         I->error("Operand $" + OpName + " should be a set destination: all " | 
 |                  "outputs must occur before inputs in operand list!"); | 
 |  | 
 |       if (CGI.Operands[i].Rec != R) | 
 |         I->error("Operand $" + OpName + " class mismatch!"); | 
 |  | 
 |       // Remember the return type. | 
 |       Results.push_back(CGI.Operands[i].Rec); | 
 |  | 
 |       // Okay, this one checks out. | 
 |       InstResults.erase(OpName); | 
 |     } | 
 |  | 
 |     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy | 
 |     // the copy while we're checking the inputs. | 
 |     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); | 
 |  | 
 |     std::vector<TreePatternNode*> ResultNodeOperands; | 
 |     std::vector<Record*> Operands; | 
 |     for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { | 
 |       CGIOperandList::OperandInfo &Op = CGI.Operands[i]; | 
 |       const std::string &OpName = Op.Name; | 
 |       if (OpName.empty()) | 
 |         I->error("Operand #" + utostr(i) + " in operands list has no name!"); | 
 |  | 
 |       if (!InstInputsCheck.count(OpName)) { | 
 |         // If this is an predicate operand or optional def operand with an | 
 |         // DefaultOps set filled in, we can ignore this.  When we codegen it, | 
 |         // we will do so as always executed. | 
 |         if (Op.Rec->isSubClassOf("PredicateOperand") || | 
 |             Op.Rec->isSubClassOf("OptionalDefOperand")) { | 
 |           // Does it have a non-empty DefaultOps field?  If so, ignore this | 
 |           // operand. | 
 |           if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) | 
 |             continue; | 
 |         } | 
 |         I->error("Operand $" + OpName + | 
 |                  " does not appear in the instruction pattern"); | 
 |       } | 
 |       TreePatternNode *InVal = InstInputsCheck[OpName]; | 
 |       InstInputsCheck.erase(OpName);   // It occurred, remove from map. | 
 |  | 
 |       if (InVal->isLeaf() && | 
 |           dynamic_cast<DefInit*>(InVal->getLeafValue())) { | 
 |         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); | 
 |         if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) | 
 |           I->error("Operand $" + OpName + "'s register class disagrees" | 
 |                    " between the operand and pattern"); | 
 |       } | 
 |       Operands.push_back(Op.Rec); | 
 |  | 
 |       // Construct the result for the dest-pattern operand list. | 
 |       TreePatternNode *OpNode = InVal->clone(); | 
 |  | 
 |       // No predicate is useful on the result. | 
 |       OpNode->clearPredicateFns(); | 
 |  | 
 |       // Promote the xform function to be an explicit node if set. | 
 |       if (Record *Xform = OpNode->getTransformFn()) { | 
 |         OpNode->setTransformFn(0); | 
 |         std::vector<TreePatternNode*> Children; | 
 |         Children.push_back(OpNode); | 
 |         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); | 
 |       } | 
 |  | 
 |       ResultNodeOperands.push_back(OpNode); | 
 |     } | 
 |  | 
 |     if (!InstInputsCheck.empty()) | 
 |       I->error("Input operand $" + InstInputsCheck.begin()->first + | 
 |                " occurs in pattern but not in operands list!"); | 
 |  | 
 |     TreePatternNode *ResultPattern = | 
 |       new TreePatternNode(I->getRecord(), ResultNodeOperands, | 
 |                           GetNumNodeResults(I->getRecord(), *this)); | 
 |     // Copy fully inferred output node type to instruction result pattern. | 
 |     for (unsigned i = 0; i != NumResults; ++i) | 
 |       ResultPattern->setType(i, Res0Node->getExtType(i)); | 
 |  | 
 |     // Create and insert the instruction. | 
 |     // FIXME: InstImpResults should not be part of DAGInstruction. | 
 |     DAGInstruction TheInst(I, Results, Operands, InstImpResults); | 
 |     Instructions.insert(std::make_pair(I->getRecord(), TheInst)); | 
 |  | 
 |     // Use a temporary tree pattern to infer all types and make sure that the | 
 |     // constructed result is correct.  This depends on the instruction already | 
 |     // being inserted into the Instructions map. | 
 |     TreePattern Temp(I->getRecord(), ResultPattern, false, *this); | 
 |     Temp.InferAllTypes(&I->getNamedNodesMap()); | 
 |  | 
 |     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; | 
 |     TheInsertedInst.setResultPattern(Temp.getOnlyTree()); | 
 |  | 
 |     DEBUG(I->dump()); | 
 |   } | 
 |  | 
 |   // If we can, convert the instructions to be patterns that are matched! | 
 |   for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = | 
 |         Instructions.begin(), | 
 |        E = Instructions.end(); II != E; ++II) { | 
 |     DAGInstruction &TheInst = II->second; | 
 |     const TreePattern *I = TheInst.getPattern(); | 
 |     if (I == 0) continue;  // No pattern. | 
 |  | 
 |     // FIXME: Assume only the first tree is the pattern. The others are clobber | 
 |     // nodes. | 
 |     TreePatternNode *Pattern = I->getTree(0); | 
 |     TreePatternNode *SrcPattern; | 
 |     if (Pattern->getOperator()->getName() == "set") { | 
 |       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); | 
 |     } else{ | 
 |       // Not a set (store or something?) | 
 |       SrcPattern = Pattern; | 
 |     } | 
 |  | 
 |     Record *Instr = II->first; | 
 |     AddPatternToMatch(I, | 
 |                       PatternToMatch(Instr, | 
 |                                      Instr->getValueAsListInit("Predicates"), | 
 |                                      SrcPattern, | 
 |                                      TheInst.getResultPattern(), | 
 |                                      TheInst.getImpResults(), | 
 |                                      Instr->getValueAsInt("AddedComplexity"), | 
 |                                      Instr->getID())); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | typedef std::pair<const TreePatternNode*, unsigned> NameRecord; | 
 |  | 
 | static void FindNames(const TreePatternNode *P, | 
 |                       std::map<std::string, NameRecord> &Names, | 
 |                       const TreePattern *PatternTop) { | 
 |   if (!P->getName().empty()) { | 
 |     NameRecord &Rec = Names[P->getName()]; | 
 |     // If this is the first instance of the name, remember the node. | 
 |     if (Rec.second++ == 0) | 
 |       Rec.first = P; | 
 |     else if (Rec.first->getExtTypes() != P->getExtTypes()) | 
 |       PatternTop->error("repetition of value: $" + P->getName() + | 
 |                         " where different uses have different types!"); | 
 |   } | 
 |  | 
 |   if (!P->isLeaf()) { | 
 |     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) | 
 |       FindNames(P->getChild(i), Names, PatternTop); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, | 
 |                                            const PatternToMatch &PTM) { | 
 |   // Do some sanity checking on the pattern we're about to match. | 
 |   std::string Reason; | 
 |   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) | 
 |     Pattern->error("Pattern can never match: " + Reason); | 
 |  | 
 |   // If the source pattern's root is a complex pattern, that complex pattern | 
 |   // must specify the nodes it can potentially match. | 
 |   if (const ComplexPattern *CP = | 
 |         PTM.getSrcPattern()->getComplexPatternInfo(*this)) | 
 |     if (CP->getRootNodes().empty()) | 
 |       Pattern->error("ComplexPattern at root must specify list of opcodes it" | 
 |                      " could match"); | 
 |  | 
 |  | 
 |   // Find all of the named values in the input and output, ensure they have the | 
 |   // same type. | 
 |   std::map<std::string, NameRecord> SrcNames, DstNames; | 
 |   FindNames(PTM.getSrcPattern(), SrcNames, Pattern); | 
 |   FindNames(PTM.getDstPattern(), DstNames, Pattern); | 
 |  | 
 |   // Scan all of the named values in the destination pattern, rejecting them if | 
 |   // they don't exist in the input pattern. | 
 |   for (std::map<std::string, NameRecord>::iterator | 
 |        I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { | 
 |     if (SrcNames[I->first].first == 0) | 
 |       Pattern->error("Pattern has input without matching name in output: $" + | 
 |                      I->first); | 
 |   } | 
 |  | 
 |   // Scan all of the named values in the source pattern, rejecting them if the | 
 |   // name isn't used in the dest, and isn't used to tie two values together. | 
 |   for (std::map<std::string, NameRecord>::iterator | 
 |        I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) | 
 |     if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) | 
 |       Pattern->error("Pattern has dead named input: $" + I->first); | 
 |  | 
 |   PatternsToMatch.push_back(PTM); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void CodeGenDAGPatterns::InferInstructionFlags() { | 
 |   const std::vector<const CodeGenInstruction*> &Instructions = | 
 |     Target.getInstructionsByEnumValue(); | 
 |   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { | 
 |     CodeGenInstruction &InstInfo = | 
 |       const_cast<CodeGenInstruction &>(*Instructions[i]); | 
 |     // Determine properties of the instruction from its pattern. | 
 |     bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; | 
 |     InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, | 
 |                      HasSideEffects, IsVariadic, *this); | 
 |     InstInfo.mayStore = MayStore; | 
 |     InstInfo.mayLoad = MayLoad; | 
 |     InstInfo.isBitcast = IsBitcast; | 
 |     InstInfo.hasSideEffects = HasSideEffects; | 
 |     InstInfo.Operands.isVariadic = IsVariadic; | 
 |   } | 
 | } | 
 |  | 
 | /// Given a pattern result with an unresolved type, see if we can find one | 
 | /// instruction with an unresolved result type.  Force this result type to an | 
 | /// arbitrary element if it's possible types to converge results. | 
 | static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { | 
 |   if (N->isLeaf()) | 
 |     return false; | 
 |  | 
 |   // Analyze children. | 
 |   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
 |     if (ForceArbitraryInstResultType(N->getChild(i), TP)) | 
 |       return true; | 
 |  | 
 |   if (!N->getOperator()->isSubClassOf("Instruction")) | 
 |     return false; | 
 |  | 
 |   // If this type is already concrete or completely unknown we can't do | 
 |   // anything. | 
 |   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { | 
 |     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) | 
 |       continue; | 
 |  | 
 |     // Otherwise, force its type to the first possibility (an arbitrary choice). | 
 |     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void CodeGenDAGPatterns::ParsePatterns() { | 
 |   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); | 
 |  | 
 |   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { | 
 |     Record *CurPattern = Patterns[i]; | 
 |     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); | 
 |     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); | 
 |  | 
 |     // Inline pattern fragments into it. | 
 |     Pattern->InlinePatternFragments(); | 
 |  | 
 |     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); | 
 |     if (LI->getSize() == 0) continue;  // no pattern. | 
 |  | 
 |     // Parse the instruction. | 
 |     TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); | 
 |  | 
 |     // Inline pattern fragments into it. | 
 |     Result->InlinePatternFragments(); | 
 |  | 
 |     if (Result->getNumTrees() != 1) | 
 |       Result->error("Cannot handle instructions producing instructions " | 
 |                     "with temporaries yet!"); | 
 |  | 
 |     bool IterateInference; | 
 |     bool InferredAllPatternTypes, InferredAllResultTypes; | 
 |     do { | 
 |       // Infer as many types as possible.  If we cannot infer all of them, we | 
 |       // can never do anything with this pattern: report it to the user. | 
 |       InferredAllPatternTypes = | 
 |         Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); | 
 |  | 
 |       // Infer as many types as possible.  If we cannot infer all of them, we | 
 |       // can never do anything with this pattern: report it to the user. | 
 |       InferredAllResultTypes = | 
 |         Result->InferAllTypes(&Pattern->getNamedNodesMap()); | 
 |  | 
 |       IterateInference = false; | 
 |  | 
 |       // Apply the type of the result to the source pattern.  This helps us | 
 |       // resolve cases where the input type is known to be a pointer type (which | 
 |       // is considered resolved), but the result knows it needs to be 32- or | 
 |       // 64-bits.  Infer the other way for good measure. | 
 |       for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), | 
 |                                         Pattern->getTree(0)->getNumTypes()); | 
 |            i != e; ++i) { | 
 |         IterateInference = Pattern->getTree(0)-> | 
 |           UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); | 
 |         IterateInference |= Result->getTree(0)-> | 
 |           UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); | 
 |       } | 
 |  | 
 |       // If our iteration has converged and the input pattern's types are fully | 
 |       // resolved but the result pattern is not fully resolved, we may have a | 
 |       // situation where we have two instructions in the result pattern and | 
 |       // the instructions require a common register class, but don't care about | 
 |       // what actual MVT is used.  This is actually a bug in our modelling: | 
 |       // output patterns should have register classes, not MVTs. | 
 |       // | 
 |       // In any case, to handle this, we just go through and disambiguate some | 
 |       // arbitrary types to the result pattern's nodes. | 
 |       if (!IterateInference && InferredAllPatternTypes && | 
 |           !InferredAllResultTypes) | 
 |         IterateInference = ForceArbitraryInstResultType(Result->getTree(0), | 
 |                                                         *Result); | 
 |     } while (IterateInference); | 
 |  | 
 |     // Verify that we inferred enough types that we can do something with the | 
 |     // pattern and result.  If these fire the user has to add type casts. | 
 |     if (!InferredAllPatternTypes) | 
 |       Pattern->error("Could not infer all types in pattern!"); | 
 |     if (!InferredAllResultTypes) { | 
 |       Pattern->dump(); | 
 |       Result->error("Could not infer all types in pattern result!"); | 
 |     } | 
 |  | 
 |     // Validate that the input pattern is correct. | 
 |     std::map<std::string, TreePatternNode*> InstInputs; | 
 |     std::map<std::string, TreePatternNode*> InstResults; | 
 |     std::vector<Record*> InstImpResults; | 
 |     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) | 
 |       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), | 
 |                                   InstInputs, InstResults, | 
 |                                   InstImpResults); | 
 |  | 
 |     // Promote the xform function to be an explicit node if set. | 
 |     TreePatternNode *DstPattern = Result->getOnlyTree(); | 
 |     std::vector<TreePatternNode*> ResultNodeOperands; | 
 |     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { | 
 |       TreePatternNode *OpNode = DstPattern->getChild(ii); | 
 |       if (Record *Xform = OpNode->getTransformFn()) { | 
 |         OpNode->setTransformFn(0); | 
 |         std::vector<TreePatternNode*> Children; | 
 |         Children.push_back(OpNode); | 
 |         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); | 
 |       } | 
 |       ResultNodeOperands.push_back(OpNode); | 
 |     } | 
 |     DstPattern = Result->getOnlyTree(); | 
 |     if (!DstPattern->isLeaf()) | 
 |       DstPattern = new TreePatternNode(DstPattern->getOperator(), | 
 |                                        ResultNodeOperands, | 
 |                                        DstPattern->getNumTypes()); | 
 |  | 
 |     for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) | 
 |       DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); | 
 |  | 
 |     TreePattern Temp(Result->getRecord(), DstPattern, false, *this); | 
 |     Temp.InferAllTypes(); | 
 |  | 
 |  | 
 |     AddPatternToMatch(Pattern, | 
 |                     PatternToMatch(CurPattern, | 
 |                                    CurPattern->getValueAsListInit("Predicates"), | 
 |                                    Pattern->getTree(0), | 
 |                                    Temp.getOnlyTree(), InstImpResults, | 
 |                                    CurPattern->getValueAsInt("AddedComplexity"), | 
 |                                    CurPattern->getID())); | 
 |   } | 
 | } | 
 |  | 
 | /// CombineChildVariants - Given a bunch of permutations of each child of the | 
 | /// 'operator' node, put them together in all possible ways. | 
 | static void CombineChildVariants(TreePatternNode *Orig, | 
 |                const std::vector<std::vector<TreePatternNode*> > &ChildVariants, | 
 |                                  std::vector<TreePatternNode*> &OutVariants, | 
 |                                  CodeGenDAGPatterns &CDP, | 
 |                                  const MultipleUseVarSet &DepVars) { | 
 |   // Make sure that each operand has at least one variant to choose from. | 
 |   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) | 
 |     if (ChildVariants[i].empty()) | 
 |       return; | 
 |  | 
 |   // The end result is an all-pairs construction of the resultant pattern. | 
 |   std::vector<unsigned> Idxs; | 
 |   Idxs.resize(ChildVariants.size()); | 
 |   bool NotDone; | 
 |   do { | 
 | #ifndef NDEBUG | 
 |     DEBUG(if (!Idxs.empty()) { | 
 |             errs() << Orig->getOperator()->getName() << ": Idxs = [ "; | 
 |               for (unsigned i = 0; i < Idxs.size(); ++i) { | 
 |                 errs() << Idxs[i] << " "; | 
 |             } | 
 |             errs() << "]\n"; | 
 |           }); | 
 | #endif | 
 |     // Create the variant and add it to the output list. | 
 |     std::vector<TreePatternNode*> NewChildren; | 
 |     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) | 
 |       NewChildren.push_back(ChildVariants[i][Idxs[i]]); | 
 |     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, | 
 |                                              Orig->getNumTypes()); | 
 |  | 
 |     // Copy over properties. | 
 |     R->setName(Orig->getName()); | 
 |     R->setPredicateFns(Orig->getPredicateFns()); | 
 |     R->setTransformFn(Orig->getTransformFn()); | 
 |     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) | 
 |       R->setType(i, Orig->getExtType(i)); | 
 |  | 
 |     // If this pattern cannot match, do not include it as a variant. | 
 |     std::string ErrString; | 
 |     if (!R->canPatternMatch(ErrString, CDP)) { | 
 |       delete R; | 
 |     } else { | 
 |       bool AlreadyExists = false; | 
 |  | 
 |       // Scan to see if this pattern has already been emitted.  We can get | 
 |       // duplication due to things like commuting: | 
 |       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) | 
 |       // which are the same pattern.  Ignore the dups. | 
 |       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) | 
 |         if (R->isIsomorphicTo(OutVariants[i], DepVars)) { | 
 |           AlreadyExists = true; | 
 |           break; | 
 |         } | 
 |  | 
 |       if (AlreadyExists) | 
 |         delete R; | 
 |       else | 
 |         OutVariants.push_back(R); | 
 |     } | 
 |  | 
 |     // Increment indices to the next permutation by incrementing the | 
 |     // indicies from last index backward, e.g., generate the sequence | 
 |     // [0, 0], [0, 1], [1, 0], [1, 1]. | 
 |     int IdxsIdx; | 
 |     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { | 
 |       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) | 
 |         Idxs[IdxsIdx] = 0; | 
 |       else | 
 |         break; | 
 |     } | 
 |     NotDone = (IdxsIdx >= 0); | 
 |   } while (NotDone); | 
 | } | 
 |  | 
 | /// CombineChildVariants - A helper function for binary operators. | 
 | /// | 
 | static void CombineChildVariants(TreePatternNode *Orig, | 
 |                                  const std::vector<TreePatternNode*> &LHS, | 
 |                                  const std::vector<TreePatternNode*> &RHS, | 
 |                                  std::vector<TreePatternNode*> &OutVariants, | 
 |                                  CodeGenDAGPatterns &CDP, | 
 |                                  const MultipleUseVarSet &DepVars) { | 
 |   std::vector<std::vector<TreePatternNode*> > ChildVariants; | 
 |   ChildVariants.push_back(LHS); | 
 |   ChildVariants.push_back(RHS); | 
 |   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); | 
 | } | 
 |  | 
 |  | 
 | static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, | 
 |                                      std::vector<TreePatternNode *> &Children) { | 
 |   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); | 
 |   Record *Operator = N->getOperator(); | 
 |  | 
 |   // Only permit raw nodes. | 
 |   if (!N->getName().empty() || !N->getPredicateFns().empty() || | 
 |       N->getTransformFn()) { | 
 |     Children.push_back(N); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) | 
 |     Children.push_back(N->getChild(0)); | 
 |   else | 
 |     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); | 
 |  | 
 |   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) | 
 |     Children.push_back(N->getChild(1)); | 
 |   else | 
 |     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); | 
 | } | 
 |  | 
 | /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of | 
 | /// the (potentially recursive) pattern by using algebraic laws. | 
 | /// | 
 | static void GenerateVariantsOf(TreePatternNode *N, | 
 |                                std::vector<TreePatternNode*> &OutVariants, | 
 |                                CodeGenDAGPatterns &CDP, | 
 |                                const MultipleUseVarSet &DepVars) { | 
 |   // We cannot permute leaves. | 
 |   if (N->isLeaf()) { | 
 |     OutVariants.push_back(N); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Look up interesting info about the node. | 
 |   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); | 
 |  | 
 |   // If this node is associative, re-associate. | 
 |   if (NodeInfo.hasProperty(SDNPAssociative)) { | 
 |     // Re-associate by pulling together all of the linked operators | 
 |     std::vector<TreePatternNode*> MaximalChildren; | 
 |     GatherChildrenOfAssociativeOpcode(N, MaximalChildren); | 
 |  | 
 |     // Only handle child sizes of 3.  Otherwise we'll end up trying too many | 
 |     // permutations. | 
 |     if (MaximalChildren.size() == 3) { | 
 |       // Find the variants of all of our maximal children. | 
 |       std::vector<TreePatternNode*> AVariants, BVariants, CVariants; | 
 |       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); | 
 |       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); | 
 |       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); | 
 |  | 
 |       // There are only two ways we can permute the tree: | 
 |       //   (A op B) op C    and    A op (B op C) | 
 |       // Within these forms, we can also permute A/B/C. | 
 |  | 
 |       // Generate legal pair permutations of A/B/C. | 
 |       std::vector<TreePatternNode*> ABVariants; | 
 |       std::vector<TreePatternNode*> BAVariants; | 
 |       std::vector<TreePatternNode*> ACVariants; | 
 |       std::vector<TreePatternNode*> CAVariants; | 
 |       std::vector<TreePatternNode*> BCVariants; | 
 |       std::vector<TreePatternNode*> CBVariants; | 
 |       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); | 
 |  | 
 |       // Combine those into the result: (x op x) op x | 
 |       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); | 
 |  | 
 |       // Combine those into the result: x op (x op x) | 
 |       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); | 
 |       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute permutations of all children. | 
 |   std::vector<std::vector<TreePatternNode*> > ChildVariants; | 
 |   ChildVariants.resize(N->getNumChildren()); | 
 |   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
 |     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); | 
 |  | 
 |   // Build all permutations based on how the children were formed. | 
 |   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); | 
 |  | 
 |   // If this node is commutative, consider the commuted order. | 
 |   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); | 
 |   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { | 
 |     assert((N->getNumChildren()==2 || isCommIntrinsic) && | 
 |            "Commutative but doesn't have 2 children!"); | 
 |     // Don't count children which are actually register references. | 
 |     unsigned NC = 0; | 
 |     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { | 
 |       TreePatternNode *Child = N->getChild(i); | 
 |       if (Child->isLeaf()) | 
 |         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { | 
 |           Record *RR = DI->getDef(); | 
 |           if (RR->isSubClassOf("Register")) | 
 |             continue; | 
 |         } | 
 |       NC++; | 
 |     } | 
 |     // Consider the commuted order. | 
 |     if (isCommIntrinsic) { | 
 |       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd | 
 |       // operands are the commutative operands, and there might be more operands | 
 |       // after those. | 
 |       assert(NC >= 3 && | 
 |              "Commutative intrinsic should have at least 3 childrean!"); | 
 |       std::vector<std::vector<TreePatternNode*> > Variants; | 
 |       Variants.push_back(ChildVariants[0]); // Intrinsic id. | 
 |       Variants.push_back(ChildVariants[2]); | 
 |       Variants.push_back(ChildVariants[1]); | 
 |       for (unsigned i = 3; i != NC; ++i) | 
 |         Variants.push_back(ChildVariants[i]); | 
 |       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); | 
 |     } else if (NC == 2) | 
 |       CombineChildVariants(N, ChildVariants[1], ChildVariants[0], | 
 |                            OutVariants, CDP, DepVars); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // GenerateVariants - Generate variants.  For example, commutative patterns can | 
 | // match multiple ways.  Add them to PatternsToMatch as well. | 
 | void CodeGenDAGPatterns::GenerateVariants() { | 
 |   DEBUG(errs() << "Generating instruction variants.\n"); | 
 |  | 
 |   // Loop over all of the patterns we've collected, checking to see if we can | 
 |   // generate variants of the instruction, through the exploitation of | 
 |   // identities.  This permits the target to provide aggressive matching without | 
 |   // the .td file having to contain tons of variants of instructions. | 
 |   // | 
 |   // Note that this loop adds new patterns to the PatternsToMatch list, but we | 
 |   // intentionally do not reconsider these.  Any variants of added patterns have | 
 |   // already been added. | 
 |   // | 
 |   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { | 
 |     MultipleUseVarSet             DepVars; | 
 |     std::vector<TreePatternNode*> Variants; | 
 |     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); | 
 |     DEBUG(errs() << "Dependent/multiply used variables: "); | 
 |     DEBUG(DumpDepVars(DepVars)); | 
 |     DEBUG(errs() << "\n"); | 
 |     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, | 
 |                        DepVars); | 
 |  | 
 |     assert(!Variants.empty() && "Must create at least original variant!"); | 
 |     Variants.erase(Variants.begin());  // Remove the original pattern. | 
 |  | 
 |     if (Variants.empty())  // No variants for this pattern. | 
 |       continue; | 
 |  | 
 |     DEBUG(errs() << "FOUND VARIANTS OF: "; | 
 |           PatternsToMatch[i].getSrcPattern()->dump(); | 
 |           errs() << "\n"); | 
 |  | 
 |     for (unsigned v = 0, e = Variants.size(); v != e; ++v) { | 
 |       TreePatternNode *Variant = Variants[v]; | 
 |  | 
 |       DEBUG(errs() << "  VAR#" << v <<  ": "; | 
 |             Variant->dump(); | 
 |             errs() << "\n"); | 
 |  | 
 |       // Scan to see if an instruction or explicit pattern already matches this. | 
 |       bool AlreadyExists = false; | 
 |       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { | 
 |         // Skip if the top level predicates do not match. | 
 |         if (PatternsToMatch[i].getPredicates() != | 
 |             PatternsToMatch[p].getPredicates()) | 
 |           continue; | 
 |         // Check to see if this variant already exists. | 
 |         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), | 
 |                                     DepVars)) { | 
 |           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n"); | 
 |           AlreadyExists = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       // If we already have it, ignore the variant. | 
 |       if (AlreadyExists) continue; | 
 |  | 
 |       // Otherwise, add it to the list of patterns we have. | 
 |       PatternsToMatch. | 
 |         push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), | 
 |                                  PatternsToMatch[i].getPredicates(), | 
 |                                  Variant, PatternsToMatch[i].getDstPattern(), | 
 |                                  PatternsToMatch[i].getDstRegs(), | 
 |                                  PatternsToMatch[i].getAddedComplexity(), | 
 |                                  Record::getNewUID())); | 
 |     } | 
 |  | 
 |     DEBUG(errs() << "\n"); | 
 |   } | 
 | } | 
 |  |