| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 |  | 
 | <html> | 
 | <head> | 
 |   <title>Kaleidoscope: Adding JIT and Optimizer Support</title> | 
 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 |   <meta name="author" content="Chris Lattner"> | 
 |   <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <body> | 
 |  | 
 | <div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div> | 
 |  | 
 | <ul> | 
 | <li><a href="index.html">Up to Tutorial Index</a></li> | 
 | <li>Chapter 4 | 
 |   <ol> | 
 |     <li><a href="#intro">Chapter 4 Introduction</a></li> | 
 |     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> | 
 |     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> | 
 |     <li><a href="#jit">Adding a JIT Compiler</a></li> | 
 |     <li><a href="#code">Full Code Listing</a></li> | 
 |   </ol> | 
 | </li> | 
 | <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control  | 
 | Flow</li> | 
 | </ul> | 
 |  | 
 | <div class="doc_author"> | 
 |   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language | 
 | with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple | 
 | language and added support for generating LLVM IR.  This chapter describes | 
 | two new techniques: adding optimizer support to your language, and adding JIT | 
 | compiler support.  These additions will demonstrate how to get nice, efficient code  | 
 | for the Kaleidoscope language.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="trivialconstfold">Trivial Constant | 
 | Folding</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately, | 
 | it does not produce wonderful code.  The IRBuilder, however, does give us | 
 | obvious optimizations when compiling simple code:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def test(x) 1+2+x;</b> | 
 | Read function definition: | 
 | define double @test(double %x) { | 
 | entry: | 
 |         %addtmp = add double 3.000000e+00, %x | 
 |         ret double %addtmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This code is not a literal transcription of the AST built by parsing the  | 
 | input. That would be: | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def test(x) 1+2+x;</b> | 
 | Read function definition: | 
 | define double @test(double %x) { | 
 | entry: | 
 |         %addtmp = add double 2.000000e+00, 1.000000e+00 | 
 |         %addtmp1 = add double %addtmp, %x | 
 |         ret double %addtmp1 | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | Constant folding, as seen above, in particular, is a very common and very | 
 | important optimization: so much so that many language implementors implement | 
 | constant folding support in their AST representation.</p> | 
 |  | 
 | <p>With LLVM, you don't need this support in the AST.  Since all calls to build  | 
 | LLVM IR go through the LLVM IR builder, the builder itself checked to see if  | 
 | there was a constant folding opportunity when you call it.  If so, it just does  | 
 | the constant fold and return the constant instead of creating an instruction. | 
 |  | 
 | <p>Well, that was easy :).  In practice, we recommend always using | 
 | <tt>IRBuilder</tt> when generating code like this.  It has no | 
 | "syntactic overhead" for its use (you don't have to uglify your compiler with | 
 | constant checks everywhere) and it can dramatically reduce the amount of | 
 | LLVM IR that is generated in some cases (particular for languages with a macro | 
 | preprocessor or that use a lot of constants).</p> | 
 |  | 
 | <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact | 
 | that it does all of its analysis inline with the code as it is built.  If you | 
 | take a slightly more complex example:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
 | ready> Read function definition: | 
 | define double @test(double %x) { | 
 | entry: | 
 |         %addtmp = add double 3.000000e+00, %x | 
 |         %addtmp1 = add double %x, 3.000000e+00 | 
 |         %multmp = mul double %addtmp, %addtmp1 | 
 |         ret double %multmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd | 
 | really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead | 
 | of computing "<tt>x+3</tt>" twice.</p> | 
 |  | 
 | <p>Unfortunately, no amount of local analysis will be able to detect and correct | 
 | this.  This requires two transformations: reassociation of expressions (to  | 
 | make the add's lexically identical) and Common Subexpression Elimination (CSE) | 
 | to  delete the redundant add instruction.  Fortunately, LLVM provides a broad | 
 | range of optimizations that you can use, in the form of "passes".</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="optimizerpasses">LLVM Optimization | 
 |  Passes</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM provides many optimization passes, which do many different sorts of | 
 | things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold | 
 | to the mistaken notion that one set of optimizations is right for all languages | 
 | and for all situations.  LLVM allows a compiler implementor to make complete | 
 | decisions about what optimizations to use, in which order, and in what | 
 | situation.</p> | 
 |  | 
 | <p>As a concrete example, LLVM supports both "whole module" passes, which look | 
 | across as large of body of code as they can (often a whole file, but if run  | 
 | at link time, this can be a substantial portion of the whole program).  It also | 
 | supports and includes "per-function" passes which just operate on a single | 
 | function at a time, without looking at other functions.  For more information | 
 | on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How | 
 | to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM  | 
 | Passes</a>.</p> | 
 |  | 
 | <p>For Kaleidoscope, we are currently generating functions on the fly, one at | 
 | a time, as the user types them in.  We aren't shooting for the ultimate | 
 | optimization experience in this setting, but we also want to catch the easy and | 
 | quick stuff where possible.  As such, we will choose to run a few per-function | 
 | optimizations as the user types the function in.  If we wanted to make a "static | 
 | Kaleidoscope compiler", we would use exactly the code we have now, except that | 
 | we would defer running the optimizer until the entire file has been parsed.</p> | 
 |  | 
 | <p>In order to get per-function optimizations going, we need to set up a | 
 | <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and | 
 | organize the LLVM optimizations that we want to run.  Once we have that, we can | 
 | add a set of optimizations to run.  The code looks like this:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |     ExistingModuleProvider OurModuleProvider(TheModule); | 
 |     FunctionPassManager OurFPM(&OurModuleProvider); | 
 |        | 
 |     // Set up the optimizer pipeline.  Start with registering info about how the | 
 |     // target lays out data structures. | 
 |     OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
 |     // Do simple "peephole" optimizations and bit-twiddling optzns. | 
 |     OurFPM.add(createInstructionCombiningPass()); | 
 |     // Reassociate expressions. | 
 |     OurFPM.add(createReassociatePass()); | 
 |     // Eliminate Common SubExpressions. | 
 |     OurFPM.add(createGVNPass()); | 
 |     // Simplify the control flow graph (deleting unreachable blocks, etc). | 
 |     OurFPM.add(createCFGSimplificationPass()); | 
 |  | 
 |     // Set the global so the code gen can use this. | 
 |     TheFPM = &OurFPM; | 
 |  | 
 |     // Run the main "interpreter loop" now. | 
 |     MainLoop(); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This code defines two objects, an <tt>ExistingModuleProvider</tt> and a | 
 | <tt>FunctionPassManager</tt>.  The former is basically a wrapper around our | 
 | <tt>Module</tt> that the PassManager requires.  It provides certain flexibility | 
 | that we're not going to take advantage of here, so I won't dive into any details  | 
 | about it.</p> | 
 |  | 
 | <p>The meat of the matter here, is the definition of "<tt>OurFPM</tt>".  It | 
 | requires a pointer to the <tt>Module</tt> (through the <tt>ModuleProvider</tt>) | 
 | to construct itself.  Once it is set up, we use a series of "add" calls to add | 
 | a bunch of LLVM passes.  The first pass is basically boilerplate, it adds a pass | 
 | so that later optimizations know how the data structures in the program are | 
 | layed out.  The "<tt>TheExecutionEngine</tt>" variable is related to the JIT, | 
 | which we will get to in the next section.</p> | 
 |  | 
 | <p>In this case, we choose to add 4 optimization passes.  The passes we chose | 
 | here are a pretty standard set of "cleanup" optimizations that are useful for | 
 | a wide variety of code.  I won't delve into what they do but, believe me, | 
 | they are a good starting place :).</p> | 
 |  | 
 | <p>Once the PassManager is set up, we need to make use of it.  We do this by | 
 | running it after our newly created function is constructed (in  | 
 | <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 |     // Finish off the function. | 
 |     Builder.CreateRet(RetVal); | 
 |  | 
 |     // Validate the generated code, checking for consistency. | 
 |     verifyFunction(*TheFunction); | 
 |  | 
 |     <b>// Optimize the function. | 
 |     TheFPM->run(*TheFunction);</b> | 
 |      | 
 |     return TheFunction; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>As you can see, this is pretty straightforward.  The  | 
 | <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place, | 
 | improving (hopefully) its body.  With this in place, we can try our test above | 
 | again:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
 | ready> Read function definition: | 
 | define double @test(double %x) { | 
 | entry: | 
 |         %addtmp = add double %x, 3.000000e+00 | 
 |         %multmp = mul double %addtmp, %addtmp | 
 |         ret double %multmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>As expected, we now get our nicely optimized code, saving a floating point | 
 | add instruction from every execution of this function.</p> | 
 |  | 
 | <p>LLVM provides a wide variety of optimizations that can be used in certain | 
 | circumstances.  Some <a href="../Passes.html">documentation about the various  | 
 | passes</a> is available, but it isn't very complete.  Another good source of | 
 | ideas can come from looking at the passes that <tt>llvm-gcc</tt> or | 
 | <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to  | 
 | experiment with passes from the command line, so you can see if they do | 
 | anything.</p> | 
 |  | 
 | <p>Now that we have reasonable code coming out of our front-end, lets talk about | 
 | executing it!</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Code that is available in LLVM IR can have a wide variety of tools  | 
 | applied to it.  For example, you can run optimizations on it (as we did above), | 
 | you can dump it out in textual or binary forms, you can compile the code to an | 
 | assembly file (.s) for some target, or you can JIT compile it.  The nice thing | 
 | about the LLVM IR representation is that it is the "common currency" between | 
 | many different parts of the compiler. | 
 | </p> | 
 |  | 
 | <p>In this section, we'll add JIT compiler support to our interpreter.  The | 
 | basic idea that we want for Kaleidoscope is to have the user enter function | 
 | bodies as they do now, but immediately evaluate the top-level expressions they | 
 | type in.  For example, if they type in "1 + 2;", we should evaluate and print | 
 | out 3.  If they define a function, they should be able to call it from the  | 
 | command line.</p> | 
 |  | 
 | <p>In order to do this, we first declare and initialize the JIT.  This is done | 
 | by adding a global variable and a call in <tt>main</tt>:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | <b>static ExecutionEngine *TheExecutionEngine;</b> | 
 | ... | 
 | int main() { | 
 |   .. | 
 |   <b>// Create the JIT. | 
 |   TheExecutionEngine = ExecutionEngine::create(TheModule);</b> | 
 |   .. | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This creates an abstract "Execution Engine" which can be either a JIT | 
 | compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler | 
 | for you if one is available for your platform, otherwise it will fall back to | 
 | the interpreter.</p> | 
 |  | 
 | <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used. | 
 | There are a variety of APIs that are useful, but the simplest one is the | 
 | "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the | 
 | specified LLVM Function and returns a function pointer to the generated machine | 
 | code.  In our case, this means that we can change the code that parses a | 
 | top-level expression to look like this:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | static void HandleTopLevelExpression() { | 
 |   // Evaluate a top level expression into an anonymous function. | 
 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       LF->dump();  // Dump the function for exposition purposes. | 
 |      | 
 |       <b>// JIT the function, returning a function pointer. | 
 |       void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
 |        | 
 |       // Cast it to the right type (takes no arguments, returns a double) so we | 
 |       // can call it as a native function. | 
 |       double (*FP)() = (double (*)())FPtr; | 
 |       fprintf(stderr, "Evaluated to %f\n", FP());</b> | 
 |     } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Recall that we compile top-level expressions into a self-contained LLVM | 
 | function that takes no arguments and returns the computed double.  Because the  | 
 | LLVM JIT compiler matches the native platform ABI, this means that you can just | 
 | cast the result pointer to a function pointer of that type and call it directly. | 
 | This means, there is no difference between JIT compiled code and native machine | 
 | code that is statically linked into your application.</p> | 
 |  | 
 | <p>With just these two changes, lets see how Kaleidoscope works now!</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>4+5;</b> | 
 | define double @""() { | 
 | entry: | 
 |         ret double 9.000000e+00 | 
 | } | 
 |  | 
 | <em>Evaluated to 9.000000</em> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Well this looks like it is basically working.  The dump of the function | 
 | shows the "no argument function that always returns double" that we synthesize | 
 | for each top level expression that is typed in.  This demonstrates very basic | 
 | functionality, but can we do more?</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def testfunc(x y) x + y*2; </b>  | 
 | Read function definition: | 
 | define double @testfunc(double %x, double %y) { | 
 | entry: | 
 |         %multmp = mul double %y, 2.000000e+00 | 
 |         %addtmp = add double %multmp, %x | 
 |         ret double %addtmp | 
 | } | 
 |  | 
 | ready> <b>testfunc(4, 10);</b> | 
 | define double @""() { | 
 | entry: | 
 |         %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 ) | 
 |         ret double %calltmp | 
 | } | 
 |  | 
 | <em>Evaluated to 24.000000</em> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This illustrates that we can now call user code, but there is something a bit subtle | 
 | going on here.  Note that we only invoke the JIT on the anonymous functions | 
 | that <em>call testfunc</em>, but we never invoked it on <em>testfunc | 
 | </em>itself.</p> | 
 |  | 
 | <p>What actually happened here is that the anonymous function was | 
 | JIT'd when requested.  When the Kaleidoscope app calls through the function | 
 | pointer that is returned, the anonymous function starts executing.  It ends up | 
 | making the call to the "testfunc" function, and ends up in a stub that invokes | 
 | the JIT, lazily, on testfunc.  Once the JIT finishes lazily compiling testfunc, | 
 | it returns and the code re-executes the call.</p> | 
 |  | 
 | <p>In summary, the JIT will lazily JIT code, on the fly, as it is needed.  The | 
 | JIT provides a number of other more advanced interfaces for things like freeing | 
 | allocated machine code, rejit'ing functions to update them, etc.  However, even | 
 | with this simple code, we get some surprisingly powerful capabilities - check | 
 | this out (I removed the dump of the anonymous functions, you should get the idea | 
 | by now :) :</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>extern sin(x);</b> | 
 | Read extern:  | 
 | declare double @sin(double) | 
 |  | 
 | ready> <b>extern cos(x);</b> | 
 | Read extern:  | 
 | declare double @cos(double) | 
 |  | 
 | ready> <b>sin(1.0);</b> | 
 | <em>Evaluated to 0.841471</em> | 
 |  | 
 | ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> | 
 | Read function definition: | 
 | define double @foo(double %x) { | 
 | entry: | 
 |         %calltmp = call double @sin( double %x ) | 
 |         %multmp = mul double %calltmp, %calltmp | 
 |         %calltmp2 = call double @cos( double %x ) | 
 |         %multmp4 = mul double %calltmp2, %calltmp2 | 
 |         %addtmp = add double %multmp, %multmp4 | 
 |         ret double %addtmp | 
 | } | 
 |  | 
 | ready> <b>foo(4.0);</b> | 
 | <em>Evaluated to 1.000000</em> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly | 
 | simple: in this | 
 | example, the JIT started execution of a function and got to a function call.  It | 
 | realized that the function was not yet JIT compiled and invoked the standard set | 
 | of routines to resolve the function.  In this case, there is no body defined | 
 | for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the | 
 | Kaleidoscope process itself. | 
 | Since "<tt>sin</tt>" is defined within the JIT's address space, it simply | 
 | patches up calls in the module to call the libm version of <tt>sin</tt> | 
 | directly.</p> | 
 |  | 
 | <p>The LLVM JIT provides a number of interfaces (look in the  | 
 | <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get | 
 | resolved.  It allows you to establish explicit mappings between IR objects and | 
 | addresses (useful for LLVM global variables that you want to map to static | 
 | tables, for example), allows you to dynamically decide on the fly based on the | 
 | function name, and even allows you to have the JIT abort itself if any lazy | 
 | compilation is attempted.</p> | 
 |  | 
 | <p>One interesting application of this is that we can now extend the language | 
 | by writing arbitrary C++ code to implement operations.  For example, if we add: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | /// putchard - putchar that takes a double and returns 0. | 
 | extern "C"  | 
 | double putchard(double X) { | 
 |   putchar((char)X); | 
 |   return 0; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Now we can produce simple output to the console by using things like: | 
 | "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on | 
 | the console (120 is the ASCII code for 'x').  Similar code could be used to  | 
 | implement file I/O, console input, and many other capabilities in | 
 | Kaleidoscope.</p> | 
 |  | 
 | <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At | 
 | this point, we can compile a non-Turing-complete programming language, optimize | 
 | and JIT compile it in a user-driven way.  Next up we'll look into <a  | 
 | href="LangImpl5.html">extending the language with control flow constructs</a>, | 
 | tackling some interesting LLVM IR issues along the way.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Here is the complete code listing for our running example, enhanced with the | 
 | LLVM JIT and optimizer.  To build this example, use: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |    # Compile | 
 |    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
 |    # Run | 
 |    ./toy | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | If you are compiling this on Linux, make sure to add the "-rdynamic" option  | 
 | as well.  This makes sure that the external functions are resolved properly  | 
 | at runtime.</p> | 
 |  | 
 | <p>Here is the code:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/ModuleProvider.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/Analysis/Verifier.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Support/IRBuilder.h" | 
 | #include <cstdio> | 
 | #include <string> | 
 | #include <map> | 
 | #include <vector> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Lexer | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
 | // of these for known things. | 
 | enum Token { | 
 |   tok_eof = -1, | 
 |  | 
 |   // commands | 
 |   tok_def = -2, tok_extern = -3, | 
 |  | 
 |   // primary | 
 |   tok_identifier = -4, tok_number = -5, | 
 | }; | 
 |  | 
 | static std::string IdentifierStr;  // Filled in if tok_identifier | 
 | static double NumVal;              // Filled in if tok_number | 
 |  | 
 | /// gettok - Return the next token from standard input. | 
 | static int gettok() { | 
 |   static int LastChar = ' '; | 
 |  | 
 |   // Skip any whitespace. | 
 |   while (isspace(LastChar)) | 
 |     LastChar = getchar(); | 
 |  | 
 |   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
 |     IdentifierStr = LastChar; | 
 |     while (isalnum((LastChar = getchar()))) | 
 |       IdentifierStr += LastChar; | 
 |  | 
 |     if (IdentifierStr == "def") return tok_def; | 
 |     if (IdentifierStr == "extern") return tok_extern; | 
 |     return tok_identifier; | 
 |   } | 
 |  | 
 |   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
 |     std::string NumStr; | 
 |     do { | 
 |       NumStr += LastChar; | 
 |       LastChar = getchar(); | 
 |     } while (isdigit(LastChar) || LastChar == '.'); | 
 |  | 
 |     NumVal = strtod(NumStr.c_str(), 0); | 
 |     return tok_number; | 
 |   } | 
 |  | 
 |   if (LastChar == '#') { | 
 |     // Comment until end of line. | 
 |     do LastChar = getchar(); | 
 |     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
 |      | 
 |     if (LastChar != EOF) | 
 |       return gettok(); | 
 |   } | 
 |    | 
 |   // Check for end of file.  Don't eat the EOF. | 
 |   if (LastChar == EOF) | 
 |     return tok_eof; | 
 |  | 
 |   // Otherwise, just return the character as its ascii value. | 
 |   int ThisChar = LastChar; | 
 |   LastChar = getchar(); | 
 |   return ThisChar; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Abstract Syntax Tree (aka Parse Tree) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ExprAST - Base class for all expression nodes. | 
 | class ExprAST { | 
 | public: | 
 |   virtual ~ExprAST() {} | 
 |   virtual Value *Codegen() = 0; | 
 | }; | 
 |  | 
 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
 | class NumberExprAST : public ExprAST { | 
 |   double Val; | 
 | public: | 
 |   NumberExprAST(double val) : Val(val) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
 | class VariableExprAST : public ExprAST { | 
 |   std::string Name; | 
 | public: | 
 |   VariableExprAST(const std::string &name) : Name(name) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// BinaryExprAST - Expression class for a binary operator. | 
 | class BinaryExprAST : public ExprAST { | 
 |   char Op; | 
 |   ExprAST *LHS, *RHS; | 
 | public: | 
 |   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)  | 
 |     : Op(op), LHS(lhs), RHS(rhs) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// CallExprAST - Expression class for function calls. | 
 | class CallExprAST : public ExprAST { | 
 |   std::string Callee; | 
 |   std::vector<ExprAST*> Args; | 
 | public: | 
 |   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
 |     : Callee(callee), Args(args) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// PrototypeAST - This class represents the "prototype" for a function, | 
 | /// which captures its argument names as well as if it is an operator. | 
 | class PrototypeAST { | 
 |   std::string Name; | 
 |   std::vector<std::string> Args; | 
 | public: | 
 |   PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
 |     : Name(name), Args(args) {} | 
 |    | 
 |   Function *Codegen(); | 
 | }; | 
 |  | 
 | /// FunctionAST - This class represents a function definition itself. | 
 | class FunctionAST { | 
 |   PrototypeAST *Proto; | 
 |   ExprAST *Body; | 
 | public: | 
 |   FunctionAST(PrototypeAST *proto, ExprAST *body) | 
 |     : Proto(proto), Body(body) {} | 
 |    | 
 |   Function *Codegen(); | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Parser | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
 | /// token the parser it looking at.  getNextToken reads another token from the | 
 | /// lexer and updates CurTok with its results. | 
 | static int CurTok; | 
 | static int getNextToken() { | 
 |   return CurTok = gettok(); | 
 | } | 
 |  | 
 | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
 | /// defined. | 
 | static std::map<char, int> BinopPrecedence; | 
 |  | 
 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
 | static int GetTokPrecedence() { | 
 |   if (!isascii(CurTok)) | 
 |     return -1; | 
 |    | 
 |   // Make sure it's a declared binop. | 
 |   int TokPrec = BinopPrecedence[CurTok]; | 
 |   if (TokPrec <= 0) return -1; | 
 |   return TokPrec; | 
 | } | 
 |  | 
 | /// Error* - These are little helper functions for error handling. | 
 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | static ExprAST *ParseExpression(); | 
 |  | 
 | /// identifierexpr | 
 | ///   ::= identifier | 
 | ///   ::= identifier '(' expression* ')' | 
 | static ExprAST *ParseIdentifierExpr() { | 
 |   std::string IdName = IdentifierStr; | 
 |    | 
 |   getNextToken();  // eat identifier. | 
 |    | 
 |   if (CurTok != '(') // Simple variable ref. | 
 |     return new VariableExprAST(IdName); | 
 |    | 
 |   // Call. | 
 |   getNextToken();  // eat ( | 
 |   std::vector<ExprAST*> Args; | 
 |   if (CurTok != ')') { | 
 |     while (1) { | 
 |       ExprAST *Arg = ParseExpression(); | 
 |       if (!Arg) return 0; | 
 |       Args.push_back(Arg); | 
 |      | 
 |       if (CurTok == ')') break; | 
 |      | 
 |       if (CurTok != ',') | 
 |         return Error("Expected ')' or ',' in argument list"); | 
 |       getNextToken(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Eat the ')'. | 
 |   getNextToken(); | 
 |    | 
 |   return new CallExprAST(IdName, Args); | 
 | } | 
 |  | 
 | /// numberexpr ::= number | 
 | static ExprAST *ParseNumberExpr() { | 
 |   ExprAST *Result = new NumberExprAST(NumVal); | 
 |   getNextToken(); // consume the number | 
 |   return Result; | 
 | } | 
 |  | 
 | /// parenexpr ::= '(' expression ')' | 
 | static ExprAST *ParseParenExpr() { | 
 |   getNextToken();  // eat (. | 
 |   ExprAST *V = ParseExpression(); | 
 |   if (!V) return 0; | 
 |    | 
 |   if (CurTok != ')') | 
 |     return Error("expected ')'"); | 
 |   getNextToken();  // eat ). | 
 |   return V; | 
 | } | 
 |  | 
 | /// primary | 
 | ///   ::= identifierexpr | 
 | ///   ::= numberexpr | 
 | ///   ::= parenexpr | 
 | static ExprAST *ParsePrimary() { | 
 |   switch (CurTok) { | 
 |   default: return Error("unknown token when expecting an expression"); | 
 |   case tok_identifier: return ParseIdentifierExpr(); | 
 |   case tok_number:     return ParseNumberExpr(); | 
 |   case '(':            return ParseParenExpr(); | 
 |   } | 
 | } | 
 |  | 
 | /// binoprhs | 
 | ///   ::= ('+' primary)* | 
 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
 |   // If this is a binop, find its precedence. | 
 |   while (1) { | 
 |     int TokPrec = GetTokPrecedence(); | 
 |      | 
 |     // If this is a binop that binds at least as tightly as the current binop, | 
 |     // consume it, otherwise we are done. | 
 |     if (TokPrec < ExprPrec) | 
 |       return LHS; | 
 |      | 
 |     // Okay, we know this is a binop. | 
 |     int BinOp = CurTok; | 
 |     getNextToken();  // eat binop | 
 |      | 
 |     // Parse the primary expression after the binary operator. | 
 |     ExprAST *RHS = ParsePrimary(); | 
 |     if (!RHS) return 0; | 
 |      | 
 |     // If BinOp binds less tightly with RHS than the operator after RHS, let | 
 |     // the pending operator take RHS as its LHS. | 
 |     int NextPrec = GetTokPrecedence(); | 
 |     if (TokPrec < NextPrec) { | 
 |       RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
 |       if (RHS == 0) return 0; | 
 |     } | 
 |      | 
 |     // Merge LHS/RHS. | 
 |     LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
 |   } | 
 | } | 
 |  | 
 | /// expression | 
 | ///   ::= primary binoprhs | 
 | /// | 
 | static ExprAST *ParseExpression() { | 
 |   ExprAST *LHS = ParsePrimary(); | 
 |   if (!LHS) return 0; | 
 |    | 
 |   return ParseBinOpRHS(0, LHS); | 
 | } | 
 |  | 
 | /// prototype | 
 | ///   ::= id '(' id* ')' | 
 | static PrototypeAST *ParsePrototype() { | 
 |   if (CurTok != tok_identifier) | 
 |     return ErrorP("Expected function name in prototype"); | 
 |  | 
 |   std::string FnName = IdentifierStr; | 
 |   getNextToken(); | 
 |    | 
 |   if (CurTok != '(') | 
 |     return ErrorP("Expected '(' in prototype"); | 
 |    | 
 |   std::vector<std::string> ArgNames; | 
 |   while (getNextToken() == tok_identifier) | 
 |     ArgNames.push_back(IdentifierStr); | 
 |   if (CurTok != ')') | 
 |     return ErrorP("Expected ')' in prototype"); | 
 |    | 
 |   // success. | 
 |   getNextToken();  // eat ')'. | 
 |    | 
 |   return new PrototypeAST(FnName, ArgNames); | 
 | } | 
 |  | 
 | /// definition ::= 'def' prototype expression | 
 | static FunctionAST *ParseDefinition() { | 
 |   getNextToken();  // eat def. | 
 |   PrototypeAST *Proto = ParsePrototype(); | 
 |   if (Proto == 0) return 0; | 
 |  | 
 |   if (ExprAST *E = ParseExpression()) | 
 |     return new FunctionAST(Proto, E); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// toplevelexpr ::= expression | 
 | static FunctionAST *ParseTopLevelExpr() { | 
 |   if (ExprAST *E = ParseExpression()) { | 
 |     // Make an anonymous proto. | 
 |     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
 |     return new FunctionAST(Proto, E); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// external ::= 'extern' prototype | 
 | static PrototypeAST *ParseExtern() { | 
 |   getNextToken();  // eat extern. | 
 |   return ParsePrototype(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Code Generation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static Module *TheModule; | 
 | static IRBuilder Builder; | 
 | static std::map<std::string, Value*> NamedValues; | 
 | static FunctionPassManager *TheFPM; | 
 |  | 
 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | Value *NumberExprAST::Codegen() { | 
 |   return ConstantFP::get(APFloat(Val)); | 
 | } | 
 |  | 
 | Value *VariableExprAST::Codegen() { | 
 |   // Look this variable up in the function. | 
 |   Value *V = NamedValues[Name]; | 
 |   return V ? V : ErrorV("Unknown variable name"); | 
 | } | 
 |  | 
 | Value *BinaryExprAST::Codegen() { | 
 |   Value *L = LHS->Codegen(); | 
 |   Value *R = RHS->Codegen(); | 
 |   if (L == 0 || R == 0) return 0; | 
 |    | 
 |   switch (Op) { | 
 |   case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
 |   case '-': return Builder.CreateSub(L, R, "subtmp"); | 
 |   case '*': return Builder.CreateMul(L, R, "multmp"); | 
 |   case '<': | 
 |     L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
 |     // Convert bool 0/1 to double 0.0 or 1.0 | 
 |     return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); | 
 |   default: return ErrorV("invalid binary operator"); | 
 |   } | 
 | } | 
 |  | 
 | Value *CallExprAST::Codegen() { | 
 |   // Look up the name in the global module table. | 
 |   Function *CalleeF = TheModule->getFunction(Callee); | 
 |   if (CalleeF == 0) | 
 |     return ErrorV("Unknown function referenced"); | 
 |    | 
 |   // If argument mismatch error. | 
 |   if (CalleeF->arg_size() != Args.size()) | 
 |     return ErrorV("Incorrect # arguments passed"); | 
 |  | 
 |   std::vector<Value*> ArgsV; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     ArgsV.push_back(Args[i]->Codegen()); | 
 |     if (ArgsV.back() == 0) return 0; | 
 |   } | 
 |    | 
 |   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
 | } | 
 |  | 
 | Function *PrototypeAST::Codegen() { | 
 |   // Make the function type:  double(double,double) etc. | 
 |   std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); | 
 |   FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); | 
 |    | 
 |   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
 |    | 
 |   // If F conflicted, there was already something named 'Name'.  If it has a | 
 |   // body, don't allow redefinition or reextern. | 
 |   if (F->getName() != Name) { | 
 |     // Delete the one we just made and get the existing one. | 
 |     F->eraseFromParent(); | 
 |     F = TheModule->getFunction(Name); | 
 |      | 
 |     // If F already has a body, reject this. | 
 |     if (!F->empty()) { | 
 |       ErrorF("redefinition of function"); | 
 |       return 0; | 
 |     } | 
 |      | 
 |     // If F took a different number of args, reject. | 
 |     if (F->arg_size() != Args.size()) { | 
 |       ErrorF("redefinition of function with different # args"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |    | 
 |   // Set names for all arguments. | 
 |   unsigned Idx = 0; | 
 |   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
 |        ++AI, ++Idx) { | 
 |     AI->setName(Args[Idx]); | 
 |      | 
 |     // Add arguments to variable symbol table. | 
 |     NamedValues[Args[Idx]] = AI; | 
 |   } | 
 |    | 
 |   return F; | 
 | } | 
 |  | 
 | Function *FunctionAST::Codegen() { | 
 |   NamedValues.clear(); | 
 |    | 
 |   Function *TheFunction = Proto->Codegen(); | 
 |   if (TheFunction == 0) | 
 |     return 0; | 
 |    | 
 |   // Create a new basic block to start insertion into. | 
 |   BasicBlock *BB = BasicBlock::Create("entry", TheFunction); | 
 |   Builder.SetInsertPoint(BB); | 
 |    | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 |     // Finish off the function. | 
 |     Builder.CreateRet(RetVal); | 
 |  | 
 |     // Validate the generated code, checking for consistency. | 
 |     verifyFunction(*TheFunction); | 
 |  | 
 |     // Optimize the function. | 
 |     TheFPM->run(*TheFunction); | 
 |      | 
 |     return TheFunction; | 
 |   } | 
 |    | 
 |   // Error reading body, remove function. | 
 |   TheFunction->eraseFromParent(); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top-Level parsing and JIT Driver | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static ExecutionEngine *TheExecutionEngine; | 
 |  | 
 | static void HandleDefinition() { | 
 |   if (FunctionAST *F = ParseDefinition()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       fprintf(stderr, "Read function definition:"); | 
 |       LF->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleExtern() { | 
 |   if (PrototypeAST *P = ParseExtern()) { | 
 |     if (Function *F = P->Codegen()) { | 
 |       fprintf(stderr, "Read extern: "); | 
 |       F->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleTopLevelExpression() { | 
 |   // Evaluate a top level expression into an anonymous function. | 
 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       // JIT the function, returning a function pointer. | 
 |       void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
 |        | 
 |       // Cast it to the right type (takes no arguments, returns a double) so we | 
 |       // can call it as a native function. | 
 |       double (*FP)() = (double (*)())FPtr; | 
 |       fprintf(stderr, "Evaluated to %f\n", FP()); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | /// top ::= definition | external | expression | ';' | 
 | static void MainLoop() { | 
 |   while (1) { | 
 |     fprintf(stderr, "ready> "); | 
 |     switch (CurTok) { | 
 |     case tok_eof:    return; | 
 |     case ';':        getNextToken(); break;  // ignore top level semicolons. | 
 |     case tok_def:    HandleDefinition(); break; | 
 |     case tok_extern: HandleExtern(); break; | 
 |     default:         HandleTopLevelExpression(); break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // "Library" functions that can be "extern'd" from user code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// putchard - putchar that takes a double and returns 0. | 
 | extern "C"  | 
 | double putchard(double X) { | 
 |   putchar((char)X); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Main driver code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | int main() { | 
 |   // Install standard binary operators. | 
 |   // 1 is lowest precedence. | 
 |   BinopPrecedence['<'] = 10; | 
 |   BinopPrecedence['+'] = 20; | 
 |   BinopPrecedence['-'] = 20; | 
 |   BinopPrecedence['*'] = 40;  // highest. | 
 |  | 
 |   // Prime the first token. | 
 |   fprintf(stderr, "ready> "); | 
 |   getNextToken(); | 
 |  | 
 |   // Make the module, which holds all the code. | 
 |   TheModule = new Module("my cool jit"); | 
 |    | 
 |   // Create the JIT. | 
 |   TheExecutionEngine = ExecutionEngine::create(TheModule); | 
 |  | 
 |   { | 
 |     ExistingModuleProvider OurModuleProvider(TheModule); | 
 |     FunctionPassManager OurFPM(&OurModuleProvider); | 
 |        | 
 |     // Set up the optimizer pipeline.  Start with registering info about how the | 
 |     // target lays out data structures. | 
 |     OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
 |     // Do simple "peephole" optimizations and bit-twiddling optzns. | 
 |     OurFPM.add(createInstructionCombiningPass()); | 
 |     // Reassociate expressions. | 
 |     OurFPM.add(createReassociatePass()); | 
 |     // Eliminate Common SubExpressions. | 
 |     OurFPM.add(createGVNPass()); | 
 |     // Simplify the control flow graph (deleting unreachable blocks, etc). | 
 |     OurFPM.add(createCFGSimplificationPass()); | 
 |  | 
 |     // Set the global so the code gen can use this. | 
 |     TheFPM = &OurFPM; | 
 |  | 
 |     // Run the main "interpreter loop" now. | 
 |     MainLoop(); | 
 |      | 
 |     TheFPM = 0; | 
 |      | 
 |     // Print out all of the generated code. | 
 |     TheModule->dump(); | 
 |   }  // Free module provider (and thus the module) and pass manager. | 
 |                                     | 
 |   return 0; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <a href="LangImpl5.html">Next: Extending the language: control flow</a> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
 |  | 
 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 |   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
 | </address> | 
 | </body> | 
 | </html> |