blob: bf50a6448014426682dcc239cb172b61cabb3a96 [file] [log] [blame]
//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for 32 bit PowerPC.
// Magic number generation for integer divide from the PowerPC Compiler Writer's
// Guide, section 3.2.3.5
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCTargetMachine.h"
#include "PPCISelLowering.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include <set>
#include <algorithm>
using namespace llvm;
namespace {
Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted");
Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
//===--------------------------------------------------------------------===//
// ISel - PPC32 specific code to select PPC32 machine instructions for
// SelectionDAG operations.
//===--------------------------------------------------------------------===//
class ISel : public SelectionDAGISel {
PPCTargetLowering PPCLowering;
SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
// for sdiv and udiv until it is put into the future
// dag combiner.
/// ExprMap - As shared expressions are codegen'd, we keep track of which
/// vreg the value is produced in, so we only emit one copy of each compiled
/// tree.
std::map<SDOperand, unsigned> ExprMap;
unsigned GlobalBaseReg;
bool GlobalBaseInitialized;
bool RecordSuccess;
public:
ISel(TargetMachine &TM) : SelectionDAGISel(PPCLowering), PPCLowering(TM),
ISelDAG(0) {}
/// runOnFunction - Override this function in order to reset our per-function
/// variables.
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseInitialized = false;
return SelectionDAGISel::runOnFunction(Fn);
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Codegen the basic block.
ISelDAG = &DAG;
Select(DAG.getRoot());
// Clear state used for selection.
ExprMap.clear();
ISelDAG = 0;
}
// convenience functions for virtual register creation
inline unsigned MakeIntReg() {
return RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
}
// dag -> dag expanders for integer divide by constant
SDOperand BuildSDIVSequence(SDOperand N);
SDOperand BuildUDIVSequence(SDOperand N);
unsigned getGlobalBaseReg();
void MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result);
bool SelectBitfieldInsert(SDOperand OR, unsigned Result);
unsigned FoldIfWideZeroExtend(SDOperand N);
unsigned SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
bool SelectIntImmediateExpr(SDOperand N, unsigned Result,
unsigned OCHi, unsigned OCLo,
bool IsArithmetic = false, bool Negate = false);
unsigned SelectExpr(SDOperand N, bool Recording=false);
void Select(SDOperand N);
unsigned SelectAddr(SDOperand N, unsigned& Reg, int& offset);
void SelectBranchCC(SDOperand N);
virtual const char *getPassName() const {
return "PowerPC Pattern Instruction Selection";
}
};
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
// not, since all 1s are not contiguous.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
if (isShiftedMask_32(Val)) {
// look for the first non-zero bit
MB = CountLeadingZeros_32(Val);
// look for the first zero bit after the run of ones
ME = CountLeadingZeros_32((Val - 1) ^ Val);
return true;
} else if (isShiftedMask_32(Val = ~Val)) { // invert mask
// effectively look for the first zero bit
ME = CountLeadingZeros_32(Val) - 1;
// effectively look for the first one bit after the run of zeros
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
return true;
}
// no run present
return false;
}
// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
// and mask opcode and mask operation.
static bool isRotateAndMask(unsigned Opcode, unsigned Shift, unsigned Mask,
bool IsShiftMask,
unsigned &SH, unsigned &MB, unsigned &ME) {
if (Shift > 31) return false;
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
if (Opcode == ISD::SHL) { // shift left
// apply shift to mask if it comes first
if (IsShiftMask) Mask = Mask << Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu << Shift);
} else if (Opcode == ISD::SRL) { // shift rights
// apply shift to mask if it comes first
if (IsShiftMask) Mask = Mask >> Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu >> Shift);
// adjust for the left rotate
Shift = 32 - Shift;
}
// if the mask doesn't intersect any Indeterminant bits
if (Mask && !(Mask & Indeterminant)) {
SH = Shift;
// make sure the mask is still a mask (wrap arounds may not be)
return isRunOfOnes(Mask, MB, ME);
}
// can't do it
return false;
}
// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
// test for constant
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// retrieve value
Imm = (unsigned)CN->getValue();
// passes muster
return true;
}
// not a constant
return false;
}
// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDOperand N, unsigned Opc, unsigned& Imm) {
return N.getOpcode() == Opc && isIntImmediate(N.getOperand(1), Imm);
}
// isOprShiftImm - Returns true if the specified operand is a shift opcode with
// a immediate shift count less than 32.
static bool isOprShiftImm(SDOperand N, unsigned& Opc, unsigned& SH) {
Opc = N.getOpcode();
return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
isIntImmediate(N.getOperand(1), SH) && SH < 32;
}
// isOprNot - Returns true if the specified operand is an xor with immediate -1.
static bool isOprNot(SDOperand N) {
unsigned Imm;
return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
}
// Immediate constant composers.
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
// arithmethically.
static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; }
static unsigned Hi16(unsigned x) { return Lo16(x >> 16); }
static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); }
/// NodeHasRecordingVariant - If SelectExpr can always produce code for
/// NodeOpcode that also sets CR0 as a side effect, return true. Otherwise,
/// return false.
static bool NodeHasRecordingVariant(unsigned NodeOpcode) {
switch(NodeOpcode) {
default: return false;
case ISD::AND:
case ISD::OR:
return true;
}
}
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
/// to Condition.
static unsigned getBCCForSetCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETEQ: return PPC::BEQ;
case ISD::SETNE: return PPC::BNE;
case ISD::SETULT:
case ISD::SETLT: return PPC::BLT;
case ISD::SETULE:
case ISD::SETLE: return PPC::BLE;
case ISD::SETUGT:
case ISD::SETGT: return PPC::BGT;
case ISD::SETUGE:
case ISD::SETGE: return PPC::BGE;
}
return 0;
}
/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETULT:
case ISD::SETLT: Inv = false; return 0;
case ISD::SETUGE:
case ISD::SETGE: Inv = true; return 0;
case ISD::SETUGT:
case ISD::SETGT: Inv = false; return 1;
case ISD::SETULE:
case ISD::SETLE: Inv = true; return 1;
case ISD::SETEQ: Inv = false; return 2;
case ISD::SETNE: Inv = true; return 2;
}
return 0;
}
/// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
/// and store immediate instructions.
static unsigned IndexedOpForOp(unsigned Opcode) {
switch(Opcode) {
default: assert(0 && "Unknown opcode!"); abort();
case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX;
case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX;
case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX;
case PPC::LWZ: return PPC::LWZX; case PPC::STFS: return PPC::STFSX;
case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX;
case PPC::LFD: return PPC::LFDX;
}
return 0;
}
// Structure used to return the necessary information to codegen an SDIV as
// a multiply.
struct ms {
int m; // magic number
int s; // shift amount
};
struct mu {
unsigned int m; // magic number
int a; // add indicator
int s; // shift amount
};
/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1.
static struct ms magic(int d) {
int p;
unsigned int ad, anc, delta, q1, r1, q2, r2, t;
const unsigned int two31 = 0x80000000U;
struct ms mag;
ad = abs(d);
t = two31 + ((unsigned int)d >> 31);
anc = t - 1 - t%ad; // absolute value of nc
p = 31; // initialize p
q1 = two31/anc; // initialize q1 = 2p/abs(nc)
r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
q2 = two31/ad; // initialize q2 = 2p/abs(d)
r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
do {
p = p + 1;
q1 = 2*q1; // update q1 = 2p/abs(nc)
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
if (r1 >= anc) { // must be unsigned comparison
q1 = q1 + 1;
r1 = r1 - anc;
}
q2 = 2*q2; // update q2 = 2p/abs(d)
r2 = 2*r2; // update r2 = rem(2p/abs(d))
if (r2 >= ad) { // must be unsigned comparison
q2 = q2 + 1;
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
mag.m = q2 + 1;
if (d < 0) mag.m = -mag.m; // resulting magic number
mag.s = p - 32; // resulting shift
return mag;
}
/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
static struct mu magicu(unsigned d)
{
int p;
unsigned int nc, delta, q1, r1, q2, r2;
struct mu magu;
magu.a = 0; // initialize "add" indicator
nc = - 1 - (-d)%d;
p = 31; // initialize p
q1 = 0x80000000/nc; // initialize q1 = 2p/nc
r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
do {
p = p + 1;
if (r1 >= nc - r1 ) {
q1 = 2*q1 + 1; // update q1
r1 = 2*r1 - nc; // update r1
}
else {
q1 = 2*q1; // update q1
r1 = 2*r1; // update r1
}
if (r2 + 1 >= d - r2) {
if (q2 >= 0x7FFFFFFF) magu.a = 1;
q2 = 2*q2 + 1; // update q2
r2 = 2*r2 + 1 - d; // update r2
}
else {
if (q2 >= 0x80000000) magu.a = 1;
q2 = 2*q2; // update q2
r2 = 2*r2 + 1; // update r2
}
delta = d - 1 - r2;
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
magu.m = q2 + 1; // resulting magic number
magu.s = p - 32; // resulting shift
return magu;
}
}
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand ISel::BuildSDIVSequence(SDOperand N) {
int d = (int)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
ms magics = magic(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i32));
// If d > 0 and m < 0, add the numerator
if (d > 0 && magics.m < 0)
Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0));
// If d < 0 and m > 0, subtract the numerator.
if (d < 0 && magics.m > 0)
Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0));
// Shift right algebraic if shift value is nonzero
if (magics.s > 0)
Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q,
ISelDAG->getConstant(magics.s, MVT::i32));
// Extract the sign bit and add it to the quotient
SDOperand T =
ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32));
return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T);
}
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand ISel::BuildUDIVSequence(SDOperand N) {
unsigned d =
(unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
mu magics = magicu(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i32));
if (magics.a == 0) {
Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q,
ISelDAG->getConstant(magics.s, MVT::i32));
} else {
SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q);
NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
ISelDAG->getConstant(1, MVT::i32));
NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
ISelDAG->getConstant(magics.s-1, MVT::i32));
}
return Q;
}
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
unsigned ISel::getGlobalBaseReg() {
if (!GlobalBaseInitialized) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = BB->getParent()->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
GlobalBaseReg = MakeIntReg();
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
GlobalBaseInitialized = true;
}
return GlobalBaseReg;
}
/// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result. If
/// Inv is true, then invert the result.
void ISel::MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result){
bool Inv;
unsigned IntCR = MakeIntReg();
unsigned Idx = getCRIdxForSetCC(CC, Inv);
BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg);
bool GPOpt =
TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor();
if (GPOpt)
BuildMI(BB, PPC::MFOCRF, 1, IntCR).addReg(PPC::CR7);
else
BuildMI(BB, PPC::MFCR, 0, IntCR);
if (Inv) {
unsigned Tmp1 = MakeIntReg();
BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx))
.addImm(31).addImm(31);
BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1);
} else {
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx))
.addImm(31).addImm(31);
}
}
/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
/// Returns true on success, false if the caller still needs to select OR.
///
/// Patterns matched:
/// 1. or shl, and 5. or and, and
/// 2. or and, shl 6. or shl, shr
/// 3. or shr, and 7. or shr, shl
/// 4. or and, shr
bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) {
bool IsRotate = false;
unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0;
unsigned Value;
SDOperand Op0 = OR.getOperand(0);
SDOperand Op1 = OR.getOperand(1);
unsigned Op0Opc = Op0.getOpcode();
unsigned Op1Opc = Op1.getOpcode();
// Verify that we have the correct opcodes
if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
return false;
if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
return false;
// Generate Mask value for Target
if (isIntImmediate(Op0.getOperand(1), Value)) {
switch(Op0Opc) {
case ISD::SHL: TgtMask <<= Value; break;
case ISD::SRL: TgtMask >>= Value; break;
case ISD::AND: TgtMask &= Value; break;
}
} else {
return false;
}
// Generate Mask value for Insert
if (isIntImmediate(Op1.getOperand(1), Value)) {
switch(Op1Opc) {
case ISD::SHL:
Amount = Value;
InsMask <<= Amount;
if (Op0Opc == ISD::SRL) IsRotate = true;
break;
case ISD::SRL:
Amount = Value;
InsMask >>= Amount;
Amount = 32-Amount;
if (Op0Opc == ISD::SHL) IsRotate = true;
break;
case ISD::AND:
InsMask &= Value;
break;
}
} else {
return false;
}
unsigned Tmp3 = 0;
// If both of the inputs are ANDs and one of them has a logical shift by
// constant as its input, make that the inserted value so that we can combine
// the shift into the rotate part of the rlwimi instruction
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
Op1.getOperand(0).getOpcode() == ISD::SRL) {
if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ?
Value : 32 - Value;
Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
}
} else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
Op0.getOperand(0).getOpcode() == ISD::SRL) {
if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
std::swap(Op0, Op1);
std::swap(TgtMask, InsMask);
Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ?
Value : 32 - Value;
Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0));
}
}
}
// Verify that the Target mask and Insert mask together form a full word mask
// and that the Insert mask is a run of set bits (which implies both are runs
// of set bits). Given that, Select the arguments and generate the rlwimi
// instruction.
unsigned MB, ME;
if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
unsigned Tmp1, Tmp2;
bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
// Check for rotlwi / rotrwi here, a special case of bitfield insert
// where both bitfield halves are sourced from the same value.
if (IsRotate && fullMask &&
OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) {
Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0));
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount)
.addImm(0).addImm(31);
return true;
}
if (Op0Opc == ISD::AND && fullMask)
Tmp1 = SelectExpr(Op0.getOperand(0));
else
Tmp1 = SelectExpr(Op0);
Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0));
BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2)
.addImm(Amount).addImm(MB).addImm(ME);
return true;
}
return false;
}
/// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the
/// low six bits. If the shift amount is an ISD::AND node with a mask that is
/// wider than the implicit mask, then we can get rid of the AND and let the
/// shift do the mask.
unsigned ISel::FoldIfWideZeroExtend(SDOperand N) {
unsigned C;
if (isOpcWithIntImmediate(N, ISD::AND, C) && isMask_32(C) && C > 63)
return SelectExpr(N.getOperand(0));
else
return SelectExpr(N);
}
unsigned ISel::SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC) {
unsigned Result, Tmp1, Tmp2;
bool AlreadySelected = false;
// Allocate a condition register for this expression
Result = RegMap->createVirtualRegister(PPC::CRRCRegisterClass);
// Use U to determine whether the SETCC immediate range is signed or not.
bool U = ISD::isUnsignedIntSetCC(CC);
if (isIntImmediate(RHS, Tmp2) &&
((U && isUInt16(Tmp2)) || (!U && isInt16(Tmp2)))) {
Tmp2 = Lo16(Tmp2);
// For comparisons against zero, we can implicity set CR0 if a recording
// variant (e.g. 'or.' instead of 'or') of the instruction that defines
// operand zero of the SetCC node is available.
if (Tmp2 == 0 &&
NodeHasRecordingVariant(LHS.getOpcode()) && LHS.Val->hasOneUse()) {
RecordSuccess = false;
Tmp1 = SelectExpr(LHS, true);
if (RecordSuccess) {
++Recorded;
BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0);
return Result;
}
AlreadySelected = true;
}
// If we could not implicitly set CR0, then emit a compare immediate
// instead.
if (!AlreadySelected) Tmp1 = SelectExpr(LHS);
if (U)
BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
else
BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
} else {
unsigned CompareOpc;
if (MVT::isInteger(LHS.getValueType()))
CompareOpc = U ? PPC::CMPLW : PPC::CMPW;
else if (LHS.getValueType() == MVT::f32)
CompareOpc = PPC::FCMPUS;
else
CompareOpc = PPC::FCMPUD;
Tmp1 = SelectExpr(LHS);
Tmp2 = SelectExpr(RHS);
BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
}
/// Check to see if the load is a constant offset from a base register.
unsigned ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
{
unsigned imm = 0, opcode = N.getOpcode();
if (N.getOpcode() == ISD::ADD) {
bool isFrame = N.getOperand(0).getOpcode() == ISD::FrameIndex;
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
offset = Lo16(imm);
if (isFrame) {
++FrameOff;
Reg = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();
return 1;
} else {
Reg = SelectExpr(N.getOperand(0));
return 0;
}
} else {
Reg = SelectExpr(N.getOperand(0));
offset = SelectExpr(N.getOperand(1));
return 2;
}
}
// Now check if we're dealing with a global, and whether or not we should emit
// an optimized load or store for statics.
if(GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(N)) {
GlobalValue *GV = GN->getGlobal();
if (!GV->hasWeakLinkage() && !GV->isExternal()) {
unsigned GlobalHi = MakeIntReg();
if (PICEnabled)
BuildMI(BB, PPC::ADDIS, 2, GlobalHi).addReg(getGlobalBaseReg())
.addGlobalAddress(GV);
else
BuildMI(BB, PPC::LIS, 1, GlobalHi).addGlobalAddress(GV);
Reg = GlobalHi;
offset = 0;
return 3;
}
}
Reg = SelectExpr(N);
offset = 0;
return 0;
}
void ISel::SelectBranchCC(SDOperand N)
{
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(4))->getBasicBlock();
Select(N.getOperand(0)); //chain
ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(1))->get();
unsigned CCReg = SelectCC(N.getOperand(2), N.getOperand(3), CC);
unsigned Opc = getBCCForSetCC(CC);
// If this is a two way branch, then grab the fallthrough basic block argument
// and build a PowerPC branch pseudo-op, suitable for long branch conversion
// if necessary by the branch selection pass. Otherwise, emit a standard
// conditional branch.
if (N.getOpcode() == ISD::BRTWOWAY_CC) {
MachineBasicBlock *Fallthrough =
cast<BasicBlockSDNode>(N.getOperand(5))->getBasicBlock();
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
.addMBB(Dest).addMBB(Fallthrough);
BuildMI(BB, PPC::B, 1).addMBB(Fallthrough);
} else {
// Iterate to the next basic block
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// If the fallthrough path is off the end of the function, which would be
// undefined behavior, set it to be the same as the current block because
// we have nothing better to set it to, and leaving it alone will cause the
// PowerPC Branch Selection pass to crash.
if (It == BB->getParent()->end()) It = Dest;
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc)
.addMBB(Dest).addMBB(It);
}
return;
}
// SelectIntImmediateExpr - Choose code for opcodes with immediate value.
bool ISel::SelectIntImmediateExpr(SDOperand N, unsigned Result,
unsigned OCHi, unsigned OCLo,
bool IsArithmetic, bool Negate) {
// check constant
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1));
// exit if not a constant
if (!CN) return false;
// extract immediate
unsigned C = (unsigned)CN->getValue();
// negate if required (ISD::SUB)
if (Negate) C = -C;
// get the hi and lo portions of constant
unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
unsigned Lo = Lo16(C);
// assume no intermediate result from lo instruction (same as final result)
unsigned Tmp = Result;
// check if two instructions are needed
if (Hi && Lo) {
// exit if usage indicates it would be better to load immediate into a
// register
if (CN->use_size() > 2) return false;
// need intermediate result for two instructions
Tmp = MakeIntReg();
}
// get first operand
unsigned Opr0 = SelectExpr(N.getOperand(0));
// is a lo instruction needed
if (Lo) {
// generate instruction for lo portion
BuildMI(BB, OCLo, 2, Tmp).addReg(Opr0).addImm(Lo);
// need to switch out first operand for hi instruction
Opr0 = Tmp;
}
// is a hi instruction needed
if (Hi) {
// generate instruction for hi portion
BuildMI(BB, OCHi, 2, Result).addReg(Opr0).addImm(Hi);
}
return true;
}
unsigned ISel::SelectExpr(SDOperand N, bool Recording) {
unsigned Result;
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
unsigned opcode = N.getOpcode();
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
if (Node->getOpcode() == ISD::CopyFromReg) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
// Just use the specified register as our input.
if (MRegisterInfo::isVirtualRegister(Reg) || Reg == PPC::R1)
return Reg;
}
unsigned &Reg = ExprMap[N];
if (Reg) return Reg;
switch (N.getOpcode()) {
default:
Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : 1;
break;
case ISD::AssertSext:
case ISD::AssertZext:
// Don't allocate a vreg for these nodes.
return Reg = SelectExpr(N.getOperand(0));
case ISD::TAILCALL:
case ISD::CALL:
// If this is a call instruction, make sure to prepare ALL of the result
// values as well as the chain.
if (Node->getNumValues() == 1)
Reg = Result = 1; // Void call, just a chain.
else {
Result = MakeReg(Node->getValueType(0));
ExprMap[N.getValue(0)] = Result;
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
}
break;
case ISD::ADD_PARTS:
case ISD::SUB_PARTS:
Result = MakeReg(Node->getValueType(0));
ExprMap[N.getValue(0)] = Result;
for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
break;
}
switch (opcode) {
default:
Node->dump(); std::cerr << '\n';
assert(0 && "Node not handled!\n");
case PPCISD::FSEL:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Tmp3 = SelectExpr(N.getOperand(2));
// Extend the comparison to 64-bits if needed.
if (N.getOperand(0).getValueType() == MVT::f32) {
unsigned Tmp1New = MakeReg(MVT::f64);
BuildMI(BB, PPC::FMRSD, 1, Tmp1New).addReg(Tmp1);
Tmp1 = Tmp1New;
}
Opc = N.Val->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
case PPCISD::FCFID:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp1);
return Result;
case PPCISD::FCTIDZ:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FCTIDZ, 1, Result).addReg(Tmp1);
return Result;
case PPCISD::FCTIWZ:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FCTIWZ, 1, Result).addReg(Tmp1);
return Result;
case ISD::UNDEF:
if (Node->getValueType(0) == MVT::i32)
BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Result);
else if (Node->getValueType(0) == MVT::f32)
BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Result);
else
BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Result);
return Result;
case ISD::DYNAMIC_STACKALLOC:
// Generate both result values. FIXME: Need a better commment here?
if (Result != 1)
ExprMap[N.getValue(1)] = 1;
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
// FIXME: We are currently ignoring the requested alignment for handling
// greater than the stack alignment. This will need to be revisited at some
// point. Align = N.getOperand(2);
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
// Put a pointer to the space into the result register by copying the SP
BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
return Result;
case ISD::ConstantPool:
Tmp1 = BB->getParent()->getConstantPool()->
getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
Tmp2 = MakeIntReg();
if (PICEnabled)
BuildMI(BB, PPC::ADDIS, 2, Tmp2).addReg(getGlobalBaseReg())
.addConstantPoolIndex(Tmp1);
else
BuildMI(BB, PPC::LIS, 1, Tmp2).addConstantPoolIndex(Tmp1);
BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
return Result;
case ISD::FrameIndex:
Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
return Result;
case ISD::GlobalAddress: {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
Tmp1 = MakeIntReg();
if (PICEnabled)
BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg())
.addGlobalAddress(GV);
else
BuildMI(BB, PPC::LIS, 1, Tmp1).addGlobalAddress(GV);
if (GV->hasWeakLinkage() || GV->isExternal()) {
BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
} else {
BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
}
return Result;
}
case ISD::LOAD:
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD: {
MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
Node->getValueType(0) : cast<VTSDNode>(Node->getOperand(3))->getVT();
bool sext = (ISD::SEXTLOAD == opcode);
// Make sure we generate both values.
if (Result != 1)
ExprMap[N.getValue(1)] = 1; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
switch (TypeBeingLoaded) {
default: Node->dump(); assert(0 && "Cannot load this type!");
case MVT::i1: Opc = PPC::LBZ; break;
case MVT::i8: Opc = PPC::LBZ; break;
case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
case MVT::i32: Opc = PPC::LWZ; break;
case MVT::f32: Opc = PPC::LFS; break;
case MVT::f64: Opc = PPC::LFD; break;
}
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
Tmp1 = MakeIntReg();
unsigned CPI = BB->getParent()->getConstantPool()->
getConstantPoolIndex(CP->get());
if (PICEnabled)
BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg())
.addConstantPoolIndex(CPI);
else
BuildMI(BB, PPC::LIS, 1, Tmp1).addConstantPoolIndex(CPI);
BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
} else if (Address.getOpcode() == ISD::FrameIndex) {
Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
} else {
int offset;
switch(SelectAddr(Address, Tmp1, offset)) {
default: assert(0 && "Unhandled return value from SelectAddr");
case 0: // imm offset, no frame, no index
BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
break;
case 1: // imm offset + frame index
addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1, offset);
break;
case 2: // base+index addressing
Opc = IndexedOpForOp(Opc);
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
break;
case 3: {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address);
GlobalValue *GV = GN->getGlobal();
BuildMI(BB, Opc, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
}
}
}
return Result;
}
case ISD::TAILCALL:
case ISD::CALL: {
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
// Lower the chain for this call.
Select(N.getOperand(0));
ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
MachineInstr *CallMI;
// Emit the correct call instruction based on the type of symbol called.
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
true);
} else if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
true);
} else {
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::MTCTR, 1).addReg(Tmp1);
BuildMI(BB, PPC::OR4, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
.addReg(PPC::R12);
}
// Load the register args to virtual regs
std::vector<unsigned> ArgVR;
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
ArgVR.push_back(SelectExpr(N.getOperand(i)));
// Copy the virtual registers into the appropriate argument register
for(int i = 0, e = ArgVR.size(); i < e; ++i) {
switch(N.getOperand(i+2).getValueType()) {
default: Node->dump(); assert(0 && "Unknown value type for call");
case MVT::i32:
assert(GPR_idx < 8 && "Too many int args");
if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
BuildMI(BB, PPC::OR4,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
++GPR_idx;
break;
case MVT::f64:
case MVT::f32:
assert(FPR_idx < 13 && "Too many fp args");
BuildMI(BB, N.getOperand(i+2).getValueType() == MVT::f32 ? PPC::FMRS :
PPC::FMRD, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
++FPR_idx;
break;
}
}
// Put the call instruction in the correct place in the MachineBasicBlock
BB->push_back(CallMI);
switch (Node->getValueType(0)) {
default: assert(0 && "Unknown value type for call result!");
case MVT::Other: return 1;
case MVT::i32:
if (Node->getValueType(1) == MVT::i32) {
BuildMI(BB, PPC::OR4, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3);
BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R4).addReg(PPC::R4);
} else {
BuildMI(BB, PPC::OR4, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
}
break;
case MVT::f32:
BuildMI(BB, PPC::FMRS, 1, Result).addReg(PPC::F1);
break;
case MVT::f64:
BuildMI(BB, PPC::FMRD, 1, Result).addReg(PPC::F1);
break;
}
return Result+N.ResNo;
}
case ISD::SIGN_EXTEND_INREG:
Tmp1 = SelectExpr(N.getOperand(0));
switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
case MVT::i16:
BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
break;
case MVT::i8:
BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
break;
}
return Result;
case ISD::CopyFromReg:
DestType = N.getValue(0).getValueType();
if (Result == 1)
Result = ExprMap[N.getValue(0)] = MakeReg(DestType);
else
ExprMap[N.getValue(1)] = 1;
Tmp1 = dyn_cast<RegisterSDNode>(Node->getOperand(1))->getReg();
if (MVT::isInteger(DestType))
BuildMI(BB, PPC::OR4, 2, Result).addReg(Tmp1).addReg(Tmp1);
else if (DestType == MVT::f32)
BuildMI(BB, PPC::FMRS, 1, Result).addReg(Tmp1);
else
BuildMI(BB, PPC::FMRD, 1, Result).addReg(Tmp1);
return Result;
case ISD::SHL:
if (isIntImmediate(N.getOperand(1), Tmp2)) {
unsigned SH, MB, ME;
if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) &&
isRotateAndMask(ISD::SHL, Tmp2, Tmp3, true, SH, MB, ME)) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH)
.addImm(MB).addImm(ME);
return Result;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 &= 0x1F;
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
.addImm(31-Tmp2);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::SRL:
if (isIntImmediate(N.getOperand(1), Tmp2)) {
unsigned SH, MB, ME;
if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) &&
isRotateAndMask(ISD::SRL, Tmp2, Tmp3, true, SH, MB, ME)) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH & 0x1F)
.addImm(MB).addImm(ME);
return Result;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 &= 0x1F;
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm((32-Tmp2) & 0x1F)
.addImm(Tmp2).addImm(31);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::SRA:
if (isIntImmediate(N.getOperand(1), Tmp2)) {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2 & 0x1F);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = FoldIfWideZeroExtend(N.getOperand(1));
BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::CTLZ:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1);
return Result;
case ISD::ADD:
if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true))
return Result;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::ADD4, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::FADD:
if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL &&
N.getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL &&
N.getOperand(1).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0));
Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::AND:
if (isIntImmediate(N.getOperand(1), Tmp2)) {
if (isShiftedMask_32(Tmp2) || isShiftedMask_32(~Tmp2)) {
unsigned SH, MB, ME;
Opc = Recording ? PPC::RLWINMo : PPC::RLWINM;
unsigned OprOpc;
if (isOprShiftImm(N.getOperand(0), OprOpc, Tmp3) &&
isRotateAndMask(OprOpc, Tmp3, Tmp2, false, SH, MB, ME)) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
} else {
Tmp1 = SelectExpr(N.getOperand(0));
isRunOfOnes(Tmp2, MB, ME);
SH = 0;
}
BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(SH)
.addImm(MB).addImm(ME);
RecordSuccess = true;
return Result;
} else if (isUInt16(Tmp2)) {
Tmp2 = Lo16(Tmp2);
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2);
RecordSuccess = true;
return Result;
} else if (isUInt16(Tmp2)) {
Tmp2 = Hi16(Tmp2);
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2);
RecordSuccess = true;
return Result;
}
}
if (isOprNot(N.getOperand(1))) {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2);
RecordSuccess = false;
return Result;
}
if (isOprNot(N.getOperand(0))) {
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2);
RecordSuccess = false;
return Result;
}
// emit a regular and
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = Recording ? PPC::ANDo : PPC::AND;
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
RecordSuccess = true;
return Result;
case ISD::OR:
if (SelectBitfieldInsert(N, Result))
return Result;
if (SelectIntImmediateExpr(N, Result, PPC::ORIS, PPC::ORI))
return Result;
if (isOprNot(N.getOperand(1))) {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2);
RecordSuccess = false;
return Result;
}
if (isOprNot(N.getOperand(0))) {
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2);
RecordSuccess = false;
return Result;
}
// emit regular or
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = Recording ? PPC::ORo : PPC::OR4;
RecordSuccess = true;
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::XOR: {
// Check for EQV: xor, (xor a, -1), b
if (isOprNot(N.getOperand(0))) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
// Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1
if (isOprNot(N)) {
switch(N.getOperand(0).getOpcode()) {
case ISD::OR:
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case ISD::AND:
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case ISD::XOR:
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
default:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
break;
}
return Result;
}
if (SelectIntImmediateExpr(N, Result, PPC::XORIS, PPC::XORI))
return Result;
// emit regular xor
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
case ISD::FSUB:
if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::FMUL &&
N.getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::FMUL &&
N.getOperand(1).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(1).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0));
Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::SUB:
if (isIntImmediate(N.getOperand(0), Tmp1) && isInt16(Tmp1)) {
Tmp1 = Lo16(Tmp1);
Tmp2 = SelectExpr(N.getOperand(1));
if (0 == Tmp1)
BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp2);
else
BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
return Result;
}
if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true, true))
return Result;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
return Result;
case ISD::FMUL:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, DestType == MVT::f32 ? PPC::FMULS : PPC::FMUL, 2,
Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::MUL:
Tmp1 = SelectExpr(N.getOperand(0));
if (isIntImmediate(N.getOperand(1), Tmp2) && isInt16(Tmp2)) {
Tmp2 = Lo16(Tmp2);
BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::MULHS:
case ISD::MULHU:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW;
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::FDIV:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
switch (DestType) {
default: assert(0 && "Unknown type to ISD::FDIV"); break;
case MVT::f32: Opc = PPC::FDIVS; break;
case MVT::f64: Opc = PPC::FDIV; break;
}
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::SDIV:
if (isIntImmediate(N.getOperand(1), Tmp3)) {
if ((signed)Tmp3 > 0 && isPowerOf2_32(Tmp3)) {
Tmp3 = Log2_32(Tmp3);
Tmp1 = MakeIntReg();
Tmp2 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
return Result;
} else if ((signed)Tmp3 < 0 && isPowerOf2_32(-Tmp3)) {
Tmp3 = Log2_32(-Tmp3);
Tmp2 = SelectExpr(N.getOperand(0));
Tmp1 = MakeIntReg();
unsigned Tmp4 = MakeIntReg();
BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1);
BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4);
return Result;
} else if (Tmp3) {
ExprMap.erase(N);
return SelectExpr(BuildSDIVSequence(N));
}
}
// fall thru
case ISD::UDIV:
// If this is a divide by constant, we can emit code using some magic
// constants to implement it as a multiply instead.
if (isIntImmediate(N.getOperand(1), Tmp3) && Tmp3) {
ExprMap.erase(N);
return SelectExpr(BuildUDIVSequence(N));
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break;
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::ADD_PARTS:
case ISD::SUB_PARTS: {
assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
"Not an i64 add/sub!");
unsigned Tmp4 = 0;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
if (N.getOpcode() == ISD::ADD_PARTS) {
bool ME = false, ZE = false;
if (isIntImmediate(N.getOperand(3), Tmp3)) {
ME = (signed)Tmp3 == -1;
ZE = Tmp3 == 0;
}
if (!ZE && !ME)
Tmp4 = SelectExpr(N.getOperand(3));
if (isIntImmediate(N.getOperand(2), Tmp3) &&
((signed)Tmp3 >= -32768 || (signed)Tmp3 < 32768)) {
// Codegen the low 32 bits of the add. Interestingly, there is no
// shifted form of add immediate carrying.
BuildMI(BB, PPC::ADDIC, 2, Result).addReg(Tmp1).addSImm(Tmp3);
} else {
Tmp3 = SelectExpr(N.getOperand(2));
BuildMI(BB, PPC::ADDC, 2, Result).addReg(Tmp1).addReg(Tmp3);
}
// Codegen the high 32 bits, adding zero, minus one, or the full value
// along with the carry flag produced by addc/addic to tmp2.
if (ZE) {
BuildMI(BB, PPC::ADDZE, 1, Result+1).addReg(Tmp2);
} else if (ME) {
BuildMI(BB, PPC::ADDME, 1, Result+1).addReg(Tmp2);
} else {
BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(Tmp2).addReg(Tmp4);
}
} else {
Tmp3 = SelectExpr(N.getOperand(2));
Tmp4 = SelectExpr(N.getOperand(3));
BuildMI(BB, PPC::SUBFC, 2, Result).addReg(Tmp3).addReg(Tmp1);
BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(Tmp4).addReg(Tmp2);
}
return Result+N.ResNo;
}
case ISD::SETCC: {
ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get();
if (isIntImmediate(Node->getOperand(1), Tmp3)) {
// We can codegen setcc op, imm very efficiently compared to a brcond.
// Check for those cases here.
// setcc op, 0
if (Tmp3 == 0) {
Tmp1 = SelectExpr(Node->getOperand(0));
switch (CC) {
default: Node->dump(); assert(0 && "Unhandled SetCC condition");abort();
case ISD::SETEQ:
Tmp2 = MakeIntReg();
BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27)
.addImm(5).addImm(31);
break;
case ISD::SETNE:
Tmp2 = MakeIntReg();
BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1);
BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1);
break;
case ISD::SETLT:
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1)
.addImm(31).addImm(31);
break;
case ISD::SETGT:
Tmp2 = MakeIntReg();
Tmp3 = MakeIntReg();
BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
.addImm(31).addImm(31);
break;
}
return Result;
} else if (Tmp3 == ~0U) { // setcc op, -1
Tmp1 = SelectExpr(Node->getOperand(0));
switch (CC) {
default: assert(0 && "Unhandled SetCC condition"); abort();
case ISD::SETEQ:
Tmp2 = MakeIntReg();
Tmp3 = MakeIntReg();
BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1);
BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0);
BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3);
break;
case ISD::SETNE:
Tmp2 = MakeIntReg();
Tmp3 = MakeIntReg();
BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1);
BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2);
break;
case ISD::SETLT:
Tmp2 = MakeIntReg();
Tmp3 = MakeIntReg();
BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1);
BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1)
.addImm(31).addImm(31);
break;
case ISD::SETGT:
Tmp2 = MakeIntReg();
BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1)
.addImm(31).addImm(31);
BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1);
break;
}
return Result;
}
}
unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC);
MoveCRtoGPR(CCReg, CC, Result);
return Result;
}
case ISD::SELECT_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(4))->get();
// handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N.getOperand(2));
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N.getOperand(3));
if (N1C && N2C && N3C && N1C->isNullValue() && N3C->isNullValue() &&
N2C->getValue() == 1ULL && CC == ISD::SETNE) {
Tmp1 = SelectExpr(Node->getOperand(0));
Tmp2 = MakeIntReg();
BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1);
BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1);
return Result;
}
// If the False value only has one use, we can generate better code by
// selecting it in the fallthrough basic block rather than here, which
// increases register pressure.
unsigned TrueValue = SelectExpr(N.getOperand(2));
unsigned FalseValue;
// If the false value is simple enough, evaluate it inline in the false
// block.
if (N.getOperand(3).Val->hasOneUse() &&
(isa<ConstantSDNode>(N.getOperand(3)) ||
isa<GlobalAddressSDNode>(N.getOperand(3))))
FalseValue = 0;
else
FalseValue = SelectExpr(N.getOperand(3));
unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC);
Opc = getBCCForSetCC(CC);
// Create an iterator with which to insert the MBB for copying the false
// value and the MBB to hold the PHI instruction for this SetCC.
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// If the false value is simple enough, evaluate it here, to avoid it being
// evaluated on the true edge.
if (FalseValue == 0)
FalseValue = SelectExpr(N.getOperand(3));
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
return Result;
}
case ISD::Constant: {
assert(N.getValueType() == MVT::i32 &&
"Only i32 constants are legal on this target!");
unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue();
if (isInt16(v)) {
BuildMI(BB, PPC::LI, 1, Result).addSImm(Lo16(v));
} else {
unsigned Hi = Hi16(v);
unsigned Lo = Lo16(v);
if (Lo) {
Tmp1 = MakeIntReg();
BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(Hi);
BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Lo);
} else {
BuildMI(BB, PPC::LIS, 1, Result).addSImm(Hi);
}
}
return Result;
}
case ISD::FNEG:
if (!NoExcessFPPrecision &&
ISD::FADD == N.getOperand(0).getOpcode() &&
N.getOperand(0).Val->hasOneUse() &&
ISD::FMUL == N.getOperand(0).getOperand(0).getOpcode() &&
N.getOperand(0).getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
} else if (!NoExcessFPPrecision &&
ISD::FADD == N.getOperand(0).getOpcode() &&
N.getOperand(0).Val->hasOneUse() &&
ISD::FMUL == N.getOperand(0).getOperand(1).getOpcode() &&
N.getOperand(0).getOperand(1).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0).getOperand(0));
Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
} else if (ISD::FABS == N.getOperand(0).getOpcode()) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
if (N.getOperand(0).getValueType() == MVT::f32)
BuildMI(BB, PPC::FNABSS, 1, Result).addReg(Tmp1);
else
BuildMI(BB, PPC::FNABSD, 1, Result).addReg(Tmp1);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
if (N.getOperand(0).getValueType() == MVT::f32)
BuildMI(BB, PPC::FNEGS, 1, Result).addReg(Tmp1);
else
BuildMI(BB, PPC::FNEGD, 1, Result).addReg(Tmp1);
}
return Result;
case ISD::FABS:
Tmp1 = SelectExpr(N.getOperand(0));
if (N.getOperand(0).getValueType() == MVT::f32)
BuildMI(BB, PPC::FABSS, 1, Result).addReg(Tmp1);
else
BuildMI(BB, PPC::FABSD, 1, Result).addReg(Tmp1);
return Result;
case ISD::FSQRT:
Tmp1 = SelectExpr(N.getOperand(0));
Opc = DestType == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS;
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_ROUND:
assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_EXTEND:
assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FMRSD, 1, Result).addReg(Tmp1);
return Result;
}
return 0;
}
void ISel::Select(SDOperand N) {
unsigned Tmp1, Tmp2, Tmp3, Opc;
unsigned opcode = N.getOpcode();
if (!ExprMap.insert(std::make_pair(N, 1)).second)
return; // Already selected.
SDNode *Node = N.Val;
switch (Node->getOpcode()) {
default:
Node->dump(); std::cerr << "\n";
assert(0 && "Node not handled yet!");
case ISD::EntryToken: return; // Noop
case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i));
return;
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN :
PPC::ADJCALLSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1);
return;
case ISD::BR: {
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
Select(N.getOperand(0));
BuildMI(BB, PPC::B, 1).addMBB(Dest);
return;
}
case ISD::BR_CC:
case ISD::BRTWOWAY_CC:
SelectBranchCC(N);
return;
case ISD::CopyToReg:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(2));
Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
if (Tmp1 != Tmp2) {
if (N.getOperand(2).getValueType() == MVT::f64)
BuildMI(BB, PPC::FMRD, 1, Tmp2).addReg(Tmp1);
else if (N.getOperand(2).getValueType() == MVT::f32)
BuildMI(BB, PPC::FMRS, 1, Tmp2).addReg(Tmp1);
else
BuildMI(BB, PPC::OR4, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
}
return;
case ISD::ImplicitDef:
Select(N.getOperand(0));
Tmp1 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
if (N.getOperand(1).getValueType() == MVT::i32)
BuildMI(BB, PPC::IMPLICIT_DEF_GPR, 0, Tmp1);
else if (N.getOperand(1).getValueType() == MVT::f32)
BuildMI(BB, PPC::IMPLICIT_DEF_F4, 0, Tmp1);
else
BuildMI(BB, PPC::IMPLICIT_DEF_F8, 0, Tmp1);
return;
case ISD::RET:
switch (N.getNumOperands()) {
default:
assert(0 && "Unknown return instruction!");
case 3:
assert(N.getOperand(1).getValueType() == MVT::i32 &&
N.getOperand(2).getValueType() == MVT::i32 &&
"Unknown two-register value!");
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(2));
BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
BuildMI(BB, PPC::OR4, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
break;
case 2:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) {
default:
assert(0 && "Unknown return type!");
case MVT::f64:
BuildMI(BB, PPC::FMRD, 1, PPC::F1).addReg(Tmp1);
break;
case MVT::f32:
BuildMI(BB, PPC::FMRS, 1, PPC::F1).addReg(Tmp1);
break;
case MVT::i32:
BuildMI(BB, PPC::OR4, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
break;
}
case 1:
Select(N.getOperand(0));
break;
}
BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
return;
case ISD::TRUNCSTORE:
case ISD::STORE: {
SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1);
SDOperand Address = N.getOperand(2);
Select(Chain);
Tmp1 = SelectExpr(Value); //value
if (opcode == ISD::STORE) {
switch(Value.getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i32: Opc = PPC::STW; break;
case MVT::f64: Opc = PPC::STFD; break;
case MVT::f32: Opc = PPC::STFS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
default: assert(0 && "unknown Type in store");
case MVT::i8: Opc = PPC::STB; break;
case MVT::i16: Opc = PPC::STH; break;
}
}
if(Address.getOpcode() == ISD::FrameIndex) {
Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
} else {
int offset;
switch(SelectAddr(Address, Tmp2, offset)) {
default: assert(0 && "Unhandled return value from SelectAddr");
case 0: // imm offset, no frame, no index
BuildMI(BB, Opc, 3).addReg(Tmp1).addSImm(offset).addReg(Tmp2);
break;
case 1: // imm offset + frame index
addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2, offset);
break;
case 2: // base+index addressing
Opc = IndexedOpForOp(Opc);
BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
break;
case 3: {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Address);
GlobalValue *GV = GN->getGlobal();
BuildMI(BB, Opc, 3).addReg(Tmp1).addGlobalAddress(GV).addReg(Tmp2);
}
}
}
return;
}
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD:
case ISD::LOAD:
case ISD::CopyFromReg:
case ISD::TAILCALL:
case ISD::CALL:
case ISD::DYNAMIC_STACKALLOC:
ExprMap.erase(N);
SelectExpr(N);
return;
}
assert(0 && "Should not be reached!");
}
/// createPPCPatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
///
FunctionPass *llvm::createPPCISelPattern(TargetMachine &TM) {
return new ISel(TM);
}