| //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a top-down list scheduler, using standard algorithms. |
| // The basic approach uses a priority queue of available nodes to schedule. |
| // One at a time, nodes are taken from the priority queue (thus in priority |
| // order), checked for legality to schedule, and emitted if legal. |
| // |
| // Nodes may not be legal to schedule either due to structural hazards (e.g. |
| // pipeline or resource constraints) or because an input to the instruction has |
| // not completed execution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "ScheduleDAGSDNodes.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LatencyPriorityQueue.h" |
| #include "llvm/CodeGen/ResourcePriorityQueue.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include <climits> |
| using namespace llvm; |
| |
| STATISTIC(NumNoops , "Number of noops inserted"); |
| STATISTIC(NumStalls, "Number of pipeline stalls"); |
| |
| static RegisterScheduler |
| VLIWScheduler("vliw-td", "VLIW scheduler", |
| createVLIWDAGScheduler); |
| |
| namespace { |
| //===----------------------------------------------------------------------===// |
| /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This |
| /// supports / top-down scheduling. |
| /// |
| class ScheduleDAGVLIW : public ScheduleDAGSDNodes { |
| private: |
| /// AvailableQueue - The priority queue to use for the available SUnits. |
| /// |
| SchedulingPriorityQueue *AvailableQueue; |
| |
| /// PendingQueue - This contains all of the instructions whose operands have |
| /// been issued, but their results are not ready yet (due to the latency of |
| /// the operation). Once the operands become available, the instruction is |
| /// added to the AvailableQueue. |
| std::vector<SUnit*> PendingQueue; |
| |
| /// HazardRec - The hazard recognizer to use. |
| ScheduleHazardRecognizer *HazardRec; |
| |
| /// AA - AliasAnalysis for making memory reference queries. |
| AliasAnalysis *AA; |
| |
| public: |
| ScheduleDAGVLIW(MachineFunction &mf, |
| AliasAnalysis *aa, |
| SchedulingPriorityQueue *availqueue) |
| : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) { |
| |
| const TargetMachine &tm = mf.getTarget(); |
| HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this); |
| } |
| |
| ~ScheduleDAGVLIW() { |
| delete HazardRec; |
| delete AvailableQueue; |
| } |
| |
| void Schedule(); |
| |
| private: |
| void releaseSucc(SUnit *SU, const SDep &D); |
| void releaseSuccessors(SUnit *SU); |
| void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle); |
| void listScheduleTopDown(); |
| }; |
| } // end anonymous namespace |
| |
| /// Schedule - Schedule the DAG using list scheduling. |
| void ScheduleDAGVLIW::Schedule() { |
| DEBUG(dbgs() |
| << "********** List Scheduling BB#" << BB->getNumber() |
| << " '" << BB->getName() << "' **********\n"); |
| |
| // Build the scheduling graph. |
| BuildSchedGraph(AA); |
| |
| AvailableQueue->initNodes(SUnits); |
| |
| listScheduleTopDown(); |
| |
| AvailableQueue->releaseState(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Down Scheduling |
| //===----------------------------------------------------------------------===// |
| |
| /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to |
| /// the PendingQueue if the count reaches zero. Also update its cycle bound. |
| void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) { |
| SUnit *SuccSU = D.getSUnit(); |
| |
| #ifndef NDEBUG |
| if (SuccSU->NumPredsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| SuccSU->dump(this); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(0); |
| } |
| #endif |
| assert(!D.isWeak() && "unexpected artificial DAG edge"); |
| |
| --SuccSU->NumPredsLeft; |
| |
| SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency()); |
| |
| // If all the node's predecessors are scheduled, this node is ready |
| // to be scheduled. Ignore the special ExitSU node. |
| if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) { |
| PendingQueue.push_back(SuccSU); |
| } |
| } |
| |
| void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) { |
| // Top down: release successors. |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| assert(!I->isAssignedRegDep() && |
| "The list-td scheduler doesn't yet support physreg dependencies!"); |
| |
| releaseSucc(SU, *I); |
| } |
| } |
| |
| /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending |
| /// count of its successors. If a successor pending count is zero, add it to |
| /// the Available queue. |
| void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { |
| DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); |
| DEBUG(SU->dump(this)); |
| |
| Sequence.push_back(SU); |
| assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); |
| SU->setDepthToAtLeast(CurCycle); |
| |
| releaseSuccessors(SU); |
| SU->isScheduled = true; |
| AvailableQueue->scheduledNode(SU); |
| } |
| |
| /// listScheduleTopDown - The main loop of list scheduling for top-down |
| /// schedulers. |
| void ScheduleDAGVLIW::listScheduleTopDown() { |
| unsigned CurCycle = 0; |
| |
| // Release any successors of the special Entry node. |
| releaseSuccessors(&EntrySU); |
| |
| // All leaves to AvailableQueue. |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| // It is available if it has no predecessors. |
| if (SUnits[i].Preds.empty()) { |
| AvailableQueue->push(&SUnits[i]); |
| SUnits[i].isAvailable = true; |
| } |
| } |
| |
| // While AvailableQueue is not empty, grab the node with the highest |
| // priority. If it is not ready put it back. Schedule the node. |
| std::vector<SUnit*> NotReady; |
| Sequence.reserve(SUnits.size()); |
| while (!AvailableQueue->empty() || !PendingQueue.empty()) { |
| // Check to see if any of the pending instructions are ready to issue. If |
| // so, add them to the available queue. |
| for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { |
| if (PendingQueue[i]->getDepth() == CurCycle) { |
| AvailableQueue->push(PendingQueue[i]); |
| PendingQueue[i]->isAvailable = true; |
| PendingQueue[i] = PendingQueue.back(); |
| PendingQueue.pop_back(); |
| --i; --e; |
| } |
| else { |
| assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?"); |
| } |
| } |
| |
| // If there are no instructions available, don't try to issue anything, and |
| // don't advance the hazard recognizer. |
| if (AvailableQueue->empty()) { |
| // Reset DFA state. |
| AvailableQueue->scheduledNode(0); |
| ++CurCycle; |
| continue; |
| } |
| |
| SUnit *FoundSUnit = 0; |
| |
| bool HasNoopHazards = false; |
| while (!AvailableQueue->empty()) { |
| SUnit *CurSUnit = AvailableQueue->pop(); |
| |
| ScheduleHazardRecognizer::HazardType HT = |
| HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); |
| if (HT == ScheduleHazardRecognizer::NoHazard) { |
| FoundSUnit = CurSUnit; |
| break; |
| } |
| |
| // Remember if this is a noop hazard. |
| HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; |
| |
| NotReady.push_back(CurSUnit); |
| } |
| |
| // Add the nodes that aren't ready back onto the available list. |
| if (!NotReady.empty()) { |
| AvailableQueue->push_all(NotReady); |
| NotReady.clear(); |
| } |
| |
| // If we found a node to schedule, do it now. |
| if (FoundSUnit) { |
| scheduleNodeTopDown(FoundSUnit, CurCycle); |
| HazardRec->EmitInstruction(FoundSUnit); |
| |
| // If this is a pseudo-op node, we don't want to increment the current |
| // cycle. |
| if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! |
| ++CurCycle; |
| } else if (!HasNoopHazards) { |
| // Otherwise, we have a pipeline stall, but no other problem, just advance |
| // the current cycle and try again. |
| DEBUG(dbgs() << "*** Advancing cycle, no work to do\n"); |
| HazardRec->AdvanceCycle(); |
| ++NumStalls; |
| ++CurCycle; |
| } else { |
| // Otherwise, we have no instructions to issue and we have instructions |
| // that will fault if we don't do this right. This is the case for |
| // processors without pipeline interlocks and other cases. |
| DEBUG(dbgs() << "*** Emitting noop\n"); |
| HazardRec->EmitNoop(); |
| Sequence.push_back(0); // NULL here means noop |
| ++NumNoops; |
| ++CurCycle; |
| } |
| } |
| |
| #ifndef NDEBUG |
| VerifyScheduledSequence(/*isBottomUp=*/false); |
| #endif |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public Constructor Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// createVLIWDAGScheduler - This creates a top-down list scheduler. |
| ScheduleDAGSDNodes * |
| llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { |
| return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS)); |
| } |