| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PPCISelLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCISelLowering.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCPredicates.h" |
| #include "PPCTargetMachine.h" |
| #include "PPCPerfectShuffle.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/CommandLine.h" |
| using namespace llvm; |
| |
| static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc"); |
| |
| PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) |
| : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) { |
| |
| setPow2DivIsCheap(); |
| |
| // Use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); |
| addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); |
| addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); |
| |
| // PowerPC has an i16 but no i8 (or i1) SEXTLOAD |
| setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); |
| |
| // PowerPC does not have truncstore for i1. |
| setStoreXAction(MVT::i1, Promote); |
| |
| // PowerPC has pre-inc load and store's. |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); |
| |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| |
| // PowerPC has no intrinsics for these particular operations |
| setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); |
| setOperationAction(ISD::MEMSET, MVT::Other, Expand); |
| setOperationAction(ISD::MEMCPY, MVT::Other, Expand); |
| |
| // PowerPC has no SREM/UREM instructions |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| // We don't support sin/cos/sqrt/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| |
| // If we're enabling GP optimizations, use hardware square root |
| if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| } |
| |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| // PowerPC does not have BSWAP, CTPOP or CTTZ |
| setOperationAction(ISD::BSWAP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::BSWAP, MVT::i64 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| |
| // PowerPC does not have ROTR |
| setOperationAction(ISD::ROTR, MVT::i32 , Expand); |
| |
| // PowerPC does not have Select |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| |
| // PowerPC wants to turn select_cc of FP into fsel when possible. |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| // PowerPC wants to optimize integer setcc a bit |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| |
| // PowerPC does not have BRCOND which requires SetCC |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| // PowerPC does not have [U|S]INT_TO_FP |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| |
| setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); |
| setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); |
| setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); |
| setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); |
| |
| // We cannot sextinreg(i1). Expand to shifts. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| // Support label based line numbers. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) { |
| setOperationAction(ISD::LABEL, MVT::Other, Expand); |
| } else { |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| } |
| |
| // We want to legalize GlobalAddress and ConstantPool nodes into the |
| // appropriate instructions to materialize the address. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| |
| // RET must be custom lowered, to meet ABI requirements |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { |
| // They also have instructions for converting between i64 and fp. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| |
| // FIXME: disable this lowered code. This generates 64-bit register values, |
| // and we don't model the fact that the top part is clobbered by calls. We |
| // need to flag these together so that the value isn't live across a call. |
| //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| |
| // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); |
| } else { |
| // PowerPC does not have FP_TO_UINT on 32-bit implementations. |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| } |
| |
| if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { |
| // 64 bit PowerPC implementations can support i64 types directly |
| addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); |
| // BUILD_PAIR can't be handled natively, and should be expanded to shl/or |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| } else { |
| // 32 bit PowerPC wants to expand i64 shifts itself. |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| } |
| |
| if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| // add/sub are legal for all supported vector VT's. |
| setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); |
| setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); |
| |
| // We promote all shuffles to v16i8. |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); |
| |
| // We promote all non-typed operations to v4i32. |
| setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32); |
| setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32); |
| setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32); |
| setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32); |
| setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); |
| setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); |
| |
| // No other operations are legal. |
| setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); |
| } |
| |
| // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle |
| // with merges, splats, etc. |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::AND , MVT::v4i32, Legal); |
| setOperationAction(ISD::OR , MVT::v4i32, Legal); |
| setOperationAction(ISD::XOR , MVT::v4i32, Legal); |
| setOperationAction(ISD::LOAD , MVT::v4i32, Legal); |
| setOperationAction(ISD::SELECT, MVT::v4i32, Expand); |
| setOperationAction(ISD::STORE , MVT::v4i32, Legal); |
| |
| addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); |
| |
| setOperationAction(ISD::MUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v8i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| } |
| |
| setSetCCResultType(MVT::i32); |
| setShiftAmountType(MVT::i32); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| |
| if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { |
| setStackPointerRegisterToSaveRestore(PPC::X1); |
| setExceptionPointerRegister(PPC::X3); |
| setExceptionSelectorRegister(PPC::X4); |
| } else { |
| setStackPointerRegisterToSaveRestore(PPC::R1); |
| setExceptionPointerRegister(PPC::R3); |
| setExceptionSelectorRegister(PPC::R4); |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::BR_CC); |
| setTargetDAGCombine(ISD::BSWAP); |
| |
| computeRegisterProperties(); |
| } |
| |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case PPCISD::FSEL: return "PPCISD::FSEL"; |
| case PPCISD::FCFID: return "PPCISD::FCFID"; |
| case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; |
| case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; |
| case PPCISD::STFIWX: return "PPCISD::STFIWX"; |
| case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; |
| case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; |
| case PPCISD::VPERM: return "PPCISD::VPERM"; |
| case PPCISD::Hi: return "PPCISD::Hi"; |
| case PPCISD::Lo: return "PPCISD::Lo"; |
| case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; |
| case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; |
| case PPCISD::SRL: return "PPCISD::SRL"; |
| case PPCISD::SRA: return "PPCISD::SRA"; |
| case PPCISD::SHL: return "PPCISD::SHL"; |
| case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; |
| case PPCISD::STD_32: return "PPCISD::STD_32"; |
| case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF"; |
| case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho"; |
| case PPCISD::MTCTR: return "PPCISD::MTCTR"; |
| case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho"; |
| case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF"; |
| case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; |
| case PPCISD::MFCR: return "PPCISD::MFCR"; |
| case PPCISD::VCMP: return "PPCISD::VCMP"; |
| case PPCISD::VCMPo: return "PPCISD::VCMPo"; |
| case PPCISD::LBRX: return "PPCISD::LBRX"; |
| case PPCISD::STBRX: return "PPCISD::STBRX"; |
| case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Node matching predicates, for use by the tblgen matching code. |
| //===----------------------------------------------------------------------===// |
| |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0. |
| static bool isFloatingPointZero(SDOperand Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); |
| else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { |
| // Maybe this has already been legalized into the constant pool? |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); |
| } |
| return false; |
| } |
| |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if it matches the specified value. |
| static bool isConstantOrUndef(SDOperand Op, unsigned Val) { |
| return Op.getOpcode() == ISD::UNDEF || |
| cast<ConstantSDNode>(Op)->getValue() == Val; |
| } |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), i*2+1)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), i*2+1) || |
| !isConstantOrUndef(N->getOperand(i+8), i*2+1)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; i += 2) |
| if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+1), i*2+3)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; i += 2) |
| if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+1), i*2+3) || |
| !isConstantOrUndef(N->getOperand(i+8), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+9), i*2+3)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMerge - Common function, used to match vmrg* shuffles. |
| /// |
| static bool isVMerge(SDNode *N, unsigned UnitSize, |
| unsigned LHSStart, unsigned RHSStart) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); |
| assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && |
| "Unsupported merge size!"); |
| |
| for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units |
| for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit |
| if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), |
| LHSStart+j+i*UnitSize) || |
| !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), |
| RHSStart+j+i*UnitSize)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 8, 24); |
| return isVMerge(N, UnitSize, 8, 8); |
| } |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 0, 16); |
| return isVMerge(N, UnitSize, 0, 0); |
| } |
| |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i; |
| for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) |
| /*search*/; |
| |
| if (i == 16) return -1; // all undef. |
| |
| // Otherwise, check to see if the rest of the elements are consequtively |
| // numbered from this value. |
| unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); |
| if (ShiftAmt < i) return -1; |
| ShiftAmt -= i; |
| |
| if (!isUnary) { |
| // Check the rest of the elements to see if they are consequtive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) |
| return -1; |
| } else { |
| // Check the rest of the elements to see if they are consequtive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) |
| return -1; |
| } |
| |
| return ShiftAmt; |
| } |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && |
| (EltSize == 1 || EltSize == 2 || EltSize == 4)); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned ElementBase = 0; |
| SDOperand Elt = N->getOperand(0); |
| if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) |
| ElementBase = EltV->getValue(); |
| else |
| return false; // FIXME: Handle UNDEF elements too! |
| |
| if (cast<ConstantSDNode>(Elt)->getValue() >= 16) |
| return false; |
| |
| // Check that they are consequtive. |
| for (unsigned i = 1; i != EltSize; ++i) { |
| if (!isa<ConstantSDNode>(N->getOperand(i)) || |
| cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) |
| return false; |
| } |
| |
| assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); |
| for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(N->getOperand(i)) && |
| "Invalid VECTOR_SHUFFLE mask!"); |
| for (unsigned j = 0; j != EltSize; ++j) |
| if (N->getOperand(i+j) != N->getOperand(j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { |
| assert(isSplatShuffleMask(N, EltSize)); |
| return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; |
| } |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed |
| /// by using a vspltis[bhw] instruction of the specified element size, return |
| /// the constant being splatted. The ByteSize field indicates the number of |
| /// bytes of each element [124] -> [bhw]. |
| SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { |
| SDOperand OpVal(0, 0); |
| |
| // If ByteSize of the splat is bigger than the element size of the |
| // build_vector, then we have a case where we are checking for a splat where |
| // multiple elements of the buildvector are folded together into a single |
| // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). |
| unsigned EltSize = 16/N->getNumOperands(); |
| if (EltSize < ByteSize) { |
| unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. |
| SDOperand UniquedVals[4]; |
| assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); |
| |
| // See if all of the elements in the buildvector agree across. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| // If the element isn't a constant, bail fully out. |
| if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand(); |
| |
| |
| if (UniquedVals[i&(Multiple-1)].Val == 0) |
| UniquedVals[i&(Multiple-1)] = N->getOperand(i); |
| else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) |
| return SDOperand(); // no match. |
| } |
| |
| // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains |
| // either constant or undef values that are identical for each chunk. See |
| // if these chunks can form into a larger vspltis*. |
| |
| // Check to see if all of the leading entries are either 0 or -1. If |
| // neither, then this won't fit into the immediate field. |
| bool LeadingZero = true; |
| bool LeadingOnes = true; |
| for (unsigned i = 0; i != Multiple-1; ++i) { |
| if (UniquedVals[i].Val == 0) continue; // Must have been undefs. |
| |
| LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); |
| LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); |
| } |
| // Finally, check the least significant entry. |
| if (LeadingZero) { |
| if (UniquedVals[Multiple-1].Val == 0) |
| return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef |
| int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue(); |
| if (Val < 16) |
| return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) |
| } |
| if (LeadingOnes) { |
| if (UniquedVals[Multiple-1].Val == 0) |
| return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef |
| int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended(); |
| if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) |
| return DAG.getTargetConstant(Val, MVT::i32); |
| } |
| |
| return SDOperand(); |
| } |
| |
| // Check to see if this buildvec has a single non-undef value in its elements. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| if (OpVal.Val == 0) |
| OpVal = N->getOperand(i); |
| else if (OpVal != N->getOperand(i)) |
| return SDOperand(); |
| } |
| |
| if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def. |
| |
| unsigned ValSizeInBytes = 0; |
| uint64_t Value = 0; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { |
| Value = CN->getValue(); |
| ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { |
| assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); |
| Value = FloatToBits(CN->getValue()); |
| ValSizeInBytes = 4; |
| } |
| |
| // If the splat value is larger than the element value, then we can never do |
| // this splat. The only case that we could fit the replicated bits into our |
| // immediate field for would be zero, and we prefer to use vxor for it. |
| if (ValSizeInBytes < ByteSize) return SDOperand(); |
| |
| // If the element value is larger than the splat value, cut it in half and |
| // check to see if the two halves are equal. Continue doing this until we |
| // get to ByteSize. This allows us to handle 0x01010101 as 0x01. |
| while (ValSizeInBytes > ByteSize) { |
| ValSizeInBytes >>= 1; |
| |
| // If the top half equals the bottom half, we're still ok. |
| if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != |
| (Value & ((1 << (8*ValSizeInBytes))-1))) |
| return SDOperand(); |
| } |
| |
| // Properly sign extend the value. |
| int ShAmt = (4-ByteSize)*8; |
| int MaskVal = ((int)Value << ShAmt) >> ShAmt; |
| |
| // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. |
| if (MaskVal == 0) return SDOperand(); |
| |
| // Finally, if this value fits in a 5 bit sext field, return it |
| if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) |
| return DAG.getTargetConstant(MaskVal, MVT::i32); |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Addressing Mode Selection |
| //===----------------------------------------------------------------------===// |
| |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// sign extension from a 16-bit value. If so, this returns true and the |
| /// immediate. |
| static bool isIntS16Immediate(SDNode *N, short &Imm) { |
| if (N->getOpcode() != ISD::Constant) |
| return false; |
| |
| Imm = (short)cast<ConstantSDNode>(N)->getValue(); |
| if (N->getValueType(0) == MVT::i32) |
| return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue(); |
| else |
| return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue(); |
| } |
| static bool isIntS16Immediate(SDOperand Op, short &Imm) { |
| return isIntS16Immediate(Op.Val, Imm); |
| } |
| |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be represented as an indexed [r+r] operation. Returns false if it |
| /// can be more efficiently represented with [r+imm]. |
| bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base, |
| SDOperand &Index, |
| SelectionDAG &DAG) { |
| short imm = 0; |
| if (N.getOpcode() == ISD::ADD) { |
| if (isIntS16Immediate(N.getOperand(1), imm)) |
| return false; // r+i |
| if (N.getOperand(1).getOpcode() == PPCISD::Lo) |
| return false; // r+i |
| |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } else if (N.getOpcode() == ISD::OR) { |
| if (isIntS16Immediate(N.getOperand(1), imm)) |
| return false; // r+i can fold it if we can. |
| |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are provably |
| // disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| uint64_t RHSKnownZero, RHSKnownOne; |
| ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); |
| |
| if (LHSKnownZero) { |
| ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne); |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| if ((LHSKnownZero | RHSKnownZero) == ~0U) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Returns true if the address N can be represented by a base register plus |
| /// a signed 16-bit displacement [r+imm], and if it is not better |
| /// represented as reg+reg. |
| bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp, |
| SDOperand &Base, SelectionDAG &DAG){ |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddressRegReg(N, Disp, Base, DAG)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm)) { |
| Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm)) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); |
| if ((LHSKnownZero|~(unsigned)imm) == ~0U) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. |
| |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0" |
| short Imm; |
| if (isIntS16Immediate(CN, Imm)) { |
| Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); |
| Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); |
| return true; |
| } |
| |
| // Handle 32-bit sext immediates with LIS + addr mode. |
| if (CN->getValueType(0) == MVT::i32 || |
| (int64_t)CN->getValue() == (int)CN->getValue()) { |
| int Addr = (int)CN->getValue(); |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = DAG.getTargetConstant((short)Addr, MVT::i32); |
| |
| Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); |
| unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); |
| return true; |
| } |
| } |
| |
| Disp = DAG.getTargetConstant(0, getPointerTy()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, |
| SDOperand &Index, |
| SelectionDAG &DAG) { |
| // Check to see if we can easily represent this as an [r+r] address. This |
| // will fail if it thinks that the address is more profitably represented as |
| // reg+imm, e.g. where imm = 0. |
| if (SelectAddressRegReg(N, Base, Index, DAG)) |
| return true; |
| |
| // If the operand is an addition, always emit this as [r+r], since this is |
| // better (for code size, and execution, as the memop does the add for free) |
| // than emitting an explicit add. |
| if (N.getOpcode() == ISD::ADD) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| |
| // Otherwise, do it the hard way, using R0 as the base register. |
| Base = DAG.getRegister(PPC::R0, N.getValueType()); |
| Index = N; |
| return true; |
| } |
| |
| /// SelectAddressRegImmShift - Returns true if the address N can be |
| /// represented by a base register plus a signed 14-bit displacement |
| /// [r+imm*4]. Suitable for use by STD and friends. |
| bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, |
| SDOperand &Base, |
| SelectionDAG &DAG) { |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddressRegReg(N, Disp, Base, DAG)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { |
| Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); |
| if ((LHSKnownZero|~(unsigned)imm) == ~0U) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. Verify low two bits are clear. |
| if ((CN->getValue() & 3) == 0) { |
| // If this address fits entirely in a 14-bit sext immediate field, codegen |
| // this as "d, 0" |
| short Imm; |
| if (isIntS16Immediate(CN, Imm)) { |
| Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); |
| Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); |
| return true; |
| } |
| |
| // Fold the low-part of 32-bit absolute addresses into addr mode. |
| if (CN->getValueType(0) == MVT::i32 || |
| (int64_t)CN->getValue() == (int)CN->getValue()) { |
| int Addr = (int)CN->getValue(); |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); |
| |
| Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); |
| unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); |
| return true; |
| } |
| } |
| } |
| |
| Disp = DAG.getTargetConstant(0, getPointerTy()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, |
| SDOperand &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) { |
| // Disabled by default for now. |
| if (!EnablePPCPreinc) return false; |
| |
| SDOperand Ptr; |
| MVT::ValueType VT; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getLoadedVT(); |
| |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| ST = ST; |
| Ptr = ST->getBasePtr(); |
| VT = ST->getStoredVT(); |
| } else |
| return false; |
| |
| // PowerPC doesn't have preinc load/store instructions for vectors. |
| if (MVT::isVector(VT)) |
| return false; |
| |
| // TODO: Check reg+reg first. |
| |
| // LDU/STU use reg+imm*4, others use reg+imm. |
| if (VT != MVT::i64) { |
| // reg + imm |
| if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) |
| return false; |
| } else { |
| // reg + imm * 4. |
| if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) |
| return false; |
| } |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of |
| // sext i32 to i64 when addr mode is r+i. |
| if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 && |
| LD->getExtensionType() == ISD::SEXTLOAD && |
| isa<ConstantSDNode>(Offset)) |
| return false; |
| } |
| |
| AM = ISD::PRE_INC; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LowerOperation implementation |
| //===----------------------------------------------------------------------===// |
| |
| static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = Op.getValueType(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| Constant *C = CP->getConstVal(); |
| SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); |
| SDOperand Zero = DAG.getConstant(0, PtrVT); |
| |
| const TargetMachine &TM = DAG.getTarget(); |
| |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); |
| |
| // If this is a non-darwin platform, we don't support non-static relo models |
| // yet. |
| if (TM.getRelocationModel() == Reloc::Static || |
| !TM.getSubtarget<PPCSubtarget>().isDarwin()) { |
| // Generate non-pic code that has direct accesses to the constant pool. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| } |
| |
| if (TM.getRelocationModel() == Reloc::PIC_) { |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| Hi = DAG.getNode(ISD::ADD, PtrVT, |
| DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); |
| } |
| |
| Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| return Lo; |
| } |
| |
| static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = Op.getValueType(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| SDOperand Zero = DAG.getConstant(0, PtrVT); |
| |
| const TargetMachine &TM = DAG.getTarget(); |
| |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); |
| |
| // If this is a non-darwin platform, we don't support non-static relo models |
| // yet. |
| if (TM.getRelocationModel() == Reloc::Static || |
| !TM.getSubtarget<PPCSubtarget>().isDarwin()) { |
| // Generate non-pic code that has direct accesses to the constant pool. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| } |
| |
| if (TM.getRelocationModel() == Reloc::PIC_) { |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| Hi = DAG.getNode(ISD::ADD, PtrVT, |
| DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); |
| } |
| |
| Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| return Lo; |
| } |
| |
| static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = Op.getValueType(); |
| GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); |
| GlobalValue *GV = GSDN->getGlobal(); |
| SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); |
| SDOperand Zero = DAG.getConstant(0, PtrVT); |
| |
| const TargetMachine &TM = DAG.getTarget(); |
| |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); |
| |
| // If this is a non-darwin platform, we don't support non-static relo models |
| // yet. |
| if (TM.getRelocationModel() == Reloc::Static || |
| !TM.getSubtarget<PPCSubtarget>().isDarwin()) { |
| // Generate non-pic code that has direct accesses to globals. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| } |
| |
| if (TM.getRelocationModel() == Reloc::PIC_) { |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| Hi = DAG.getNode(ISD::ADD, PtrVT, |
| DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); |
| } |
| |
| Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); |
| |
| if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV)) |
| return Lo; |
| |
| // If the global is weak or external, we have to go through the lazy |
| // resolution stub. |
| return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0); |
| } |
| |
| static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| // If we're comparing for equality to zero, expose the fact that this is |
| // implented as a ctlz/srl pair on ppc, so that the dag combiner can |
| // fold the new nodes. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (C->isNullValue() && CC == ISD::SETEQ) { |
| MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| SDOperand Zext = Op.getOperand(0); |
| if (VT < MVT::i32) { |
| VT = MVT::i32; |
| Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); |
| } |
| unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); |
| SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); |
| SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, |
| DAG.getConstant(Log2b, MVT::i32)); |
| return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); |
| } |
| // Leave comparisons against 0 and -1 alone for now, since they're usually |
| // optimized. FIXME: revisit this when we can custom lower all setcc |
| // optimizations. |
| if (C->isAllOnesValue() || C->isNullValue()) |
| return SDOperand(); |
| } |
| |
| // If we have an integer seteq/setne, turn it into a compare against zero |
| // by xor'ing the rhs with the lhs, which is faster than setting a |
| // condition register, reading it back out, and masking the correct bit. The |
| // normal approach here uses sub to do this instead of xor. Using xor exposes |
| // the result to other bit-twiddling opportunities. |
| MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); |
| if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| MVT::ValueType VT = Op.getValueType(); |
| SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), |
| Op.getOperand(1)); |
| return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); |
| } |
| return SDOperand(); |
| } |
| |
| static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, |
| unsigned VarArgsFrameIndex) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); |
| SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2)); |
| return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(), |
| SV->getOffset()); |
| } |
| |
| #include "PPCGenCallingConv.inc" |
| |
| /// GetFPR - Get the set of FP registers that should be allocated for arguments, |
| /// depending on which subtarget is selected. |
| static const unsigned *GetFPR(const PPCSubtarget &Subtarget) { |
| if (Subtarget.isMachoABI()) { |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| return FPR; |
| } |
| |
| |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10 |
| }; |
| return FPR; |
| } |
| |
| static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, |
| int &VarArgsFrameIndex, |
| const PPCSubtarget &Subtarget) { |
| // TODO: add description of PPC stack frame format, or at least some docs. |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| SmallVector<SDOperand, 8> ArgValues; |
| SDOperand Root = Op.getOperand(0); |
| |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| bool isMachoABI = Subtarget.isMachoABI(); |
| unsigned PtrByteSize = isPPC64 ? 8 : 4; |
| |
| unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); |
| |
| static const unsigned GPR_32[] = { // 32-bit registers. |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned GPR_64[] = { // 64-bit registers. |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| |
| static const unsigned *FPR = GetFPR(Subtarget); |
| |
| static const unsigned VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]); |
| const unsigned Num_FPR_Regs = isMachoABI ? 13 : 10; |
| const unsigned Num_VR_Regs = sizeof( VR)/sizeof( VR[0]); |
| |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; |
| |
| // Add DAG nodes to load the arguments or copy them out of registers. On |
| // entry to a function on PPC, the arguments start after the linkage area, |
| // although the first ones are often in registers. |
| for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { |
| SDOperand ArgVal; |
| bool needsLoad = false; |
| MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); |
| unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; |
| unsigned ArgSize = ObjSize; |
| |
| unsigned CurArgOffset = ArgOffset; |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i32: |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); |
| ++GPR_idx; |
| } else { |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| // All int arguments reserve stack space in Macho ABI. |
| if (isMachoABI || needsLoad) ArgOffset += PtrByteSize; |
| break; |
| |
| case MVT::i64: // PPC64 |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass); |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); |
| ++GPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| // All int arguments reserve stack space in Macho ABI. |
| if (isMachoABI || needsLoad) ArgOffset += 8; |
| break; |
| |
| case MVT::f32: |
| case MVT::f64: |
| // Every 4 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_idx != Num_GPR_Regs) { |
| ++GPR_idx; |
| if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) |
| ++GPR_idx; |
| } |
| if (FPR_idx != Num_FPR_Regs) { |
| unsigned VReg; |
| if (ObjectVT == MVT::f32) |
| VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass); |
| else |
| VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass); |
| MF.addLiveIn(FPR[FPR_idx], VReg); |
| ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| |
| // All FP arguments reserve stack space in Macho ABI. |
| if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| // Note that vector arguments in registers don't reserve stack space. |
| if (VR_idx != Num_VR_Regs) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass); |
| MF.addLiveIn(VR[VR_idx], VReg); |
| ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); |
| ++VR_idx; |
| } else { |
| // This should be simple, but requires getting 16-byte aligned stack |
| // values. |
| assert(0 && "Loading VR argument not implemented yet!"); |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined above |
| // that we ran out of physical registers of the appropriate type |
| if (needsLoad) { |
| // If the argument is actually used, emit a load from the right stack |
| // slot. |
| if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { |
| int FI = MFI->CreateFixedObject(ObjSize, |
| CurArgOffset + (ArgSize - ObjSize)); |
| SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); |
| ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); |
| } else { |
| // Don't emit a dead load. |
| ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT); |
| } |
| } |
| |
| ArgValues.push_back(ArgVal); |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (isVarArg) { |
| VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, |
| ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing the |
| // result of va_next. |
| SmallVector<SDOperand, 8> MemOps; |
| for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { |
| unsigned VReg; |
| if (isPPC64) |
| VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass); |
| else |
| VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); |
| SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| if (!MemOps.empty()) |
| Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); |
| } |
| |
| /// isCallCompatibleAddress - Return the immediate to use if the specified |
| /// 32-bit value is representable in the immediate field of a BxA instruction. |
| static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) return 0; |
| |
| int Addr = C->getValue(); |
| if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. |
| (Addr << 6 >> 6) != Addr) |
| return 0; // Top 6 bits have to be sext of immediate. |
| |
| return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val; |
| } |
| |
| |
| static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| SDOperand Chain = Op.getOperand(0); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| bool isMachoABI = Subtarget.isMachoABI(); |
| |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| unsigned PtrByteSize = isPPC64 ? 8 : 4; |
| |
| // args_to_use will accumulate outgoing args for the PPCISD::CALL case in |
| // SelectExpr to use to put the arguments in the appropriate registers. |
| std::vector<SDOperand> args_to_use; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. We start with 24/48 bytes, which is |
| // prereserved space for [SP][CR][LR][3 x unused]. |
| unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); |
| |
| // Add up all the space actually used. |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8; |
| ArgSize = std::max(ArgSize, PtrByteSize); |
| NumBytes += ArgSize; |
| } |
| |
| // The prolog code of the callee may store up to 8 GPR argument registers to |
| // the stack, allowing va_start to index over them in memory if its varargs. |
| // Because we cannot tell if this is needed on the caller side, we have to |
| // conservatively assume that it is needed. As such, make sure we have at |
| // least enough stack space for the caller to store the 8 GPRs. |
| NumBytes = std::max(NumBytes, |
| PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI)); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, |
| DAG.getConstant(NumBytes, PtrVT)); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDOperand StackPtr; |
| if (isPPC64) |
| StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| else |
| StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| static const unsigned GPR_32[] = { // 32-bit registers. |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned GPR_64[] = { // 64-bit registers. |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const unsigned *FPR = GetFPR(Subtarget); |
| |
| static const unsigned VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]); |
| const unsigned NumFPRs = isMachoABI ? 13 : 10; |
| const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]); |
| |
| const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; |
| |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| SmallVector<SDOperand, 8> MemOpChains; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| bool inMem = false; |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); |
| |
| // On PPC64, promote integers to 64-bit values. |
| if (isPPC64 && Arg.getValueType() == MVT::i32) { |
| unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue(); |
| unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| |
| Arg = DAG.getNode(ExtOp, MVT::i64, Arg); |
| } |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i32: |
| case MVT::i64: |
| if (GPR_idx != NumGPRs) { |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); |
| } else { |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| inMem = true; |
| } |
| if (inMem || isMachoABI) ArgOffset += PtrByteSize; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (isVarArg) { |
| // Float varargs need to be promoted to double. |
| if (Arg.getValueType() == MVT::f32) |
| Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg); |
| } |
| |
| if (FPR_idx != NumFPRs) { |
| RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); |
| |
| if (isVarArg) { |
| SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); |
| MemOpChains.push_back(Store); |
| |
| // Float varargs are always shadowed in available integer registers |
| if (GPR_idx != NumGPRs) { |
| SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], |
| Load)); |
| } |
| if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ |
| SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour); |
| SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], |
| Load)); |
| } |
| } else { |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| // Args passed in FPRs consume either 1 (f32) or 2 (f64) available |
| // GPRs. |
| if (isMachoABI) { |
| if (GPR_idx != NumGPRs) |
| ++GPR_idx; |
| if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && |
| !isPPC64) // PPC64 has 64-bit GPR's obviously :) |
| ++GPR_idx; |
| } |
| } |
| } else { |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| inMem = true; |
| } |
| if (inMem || isMachoABI) { |
| if (isPPC64) |
| ArgOffset += 8; |
| else |
| ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; |
| } |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| assert(!isVarArg && "Don't support passing vectors to varargs yet!"); |
| assert(VR_idx != NumVRs && |
| "Don't support passing more than 12 vector args yet!"); |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); |
| break; |
| } |
| } |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // With the ELF ABI, set CR6 to true if this is a vararg call. |
| if (isVarArg && !isMachoABI) { |
| SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0); |
| Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| |
| SmallVector<SDOperand, 8> Ops; |
| unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF; |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); |
| else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) |
| // If this is an absolute destination address, use the munged value. |
| Callee = SDOperand(Dest, 0); |
| else { |
| // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair |
| // to do the call, we can't use PPCISD::CALL. |
| SDOperand MTCTROps[] = {Chain, Callee, InFlag}; |
| Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0)); |
| InFlag = Chain.getValue(1); |
| |
| // Copy the callee address into R12 on darwin. |
| if (isMachoABI) { |
| Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); |
| NodeTys.push_back(MVT::Flag); |
| Ops.push_back(Chain); |
| CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF; |
| Callee.Val = 0; |
| } |
| |
| // If this is a direct call, pass the chain and the callee. |
| if (Callee.Val) { |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| } |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| SDOperand ResultVals[3]; |
| unsigned NumResults = 0; |
| NodeTys.clear(); |
| |
| // If the call has results, copy the values out of the ret val registers. |
| switch (Op.Val->getValueType(0)) { |
| default: assert(0 && "Unexpected ret value!"); |
| case MVT::Other: break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1); |
| ResultVals[0] = Chain.getValue(0); |
| Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals[1] = Chain.getValue(0); |
| NumResults = 2; |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1); |
| ResultVals[0] = Chain.getValue(0); |
| NumResults = 1; |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::i64: |
| Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1); |
| ResultVals[0] = Chain.getValue(0); |
| NumResults = 1; |
| NodeTys.push_back(MVT::i64); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0), |
| InFlag).getValue(1); |
| ResultVals[0] = Chain.getValue(0); |
| NumResults = 1; |
| NodeTys.push_back(Op.Val->getValueType(0)); |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0), |
| InFlag).getValue(1); |
| ResultVals[0] = Chain.getValue(0); |
| NumResults = 1; |
| NodeTys.push_back(Op.Val->getValueType(0)); |
| break; |
| } |
| |
| Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, PtrVT)); |
| NodeTys.push_back(MVT::Other); |
| |
| // If the function returns void, just return the chain. |
| if (NumResults == 0) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| ResultVals[NumResults++] = Chain; |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, |
| ResultVals, NumResults); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| CCState CCInfo(CC, TM, RVLocs); |
| CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC); |
| |
| // If this is the first return lowered for this function, add the regs to the |
| // liveout set for the function. |
| if (DAG.getMachineFunction().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Flag; |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); |
| Flag = Chain.getValue(1); |
| } |
| |
| if (Flag.Val) |
| return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag); |
| else |
| return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain); |
| } |
| |
| static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| // When we pop the dynamic allocation we need to restore the SP link. |
| |
| // Get the corect type for pointers. |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| |
| // Construct the stack pointer operand. |
| bool IsPPC64 = Subtarget.isPPC64(); |
| unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; |
| SDOperand StackPtr = DAG.getRegister(SP, PtrVT); |
| |
| // Get the operands for the STACKRESTORE. |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand SaveSP = Op.getOperand(1); |
| |
| // Load the old link SP. |
| SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0); |
| |
| // Restore the stack pointer. |
| Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP); |
| |
| // Store the old link SP. |
| return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0); |
| } |
| |
| static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool IsPPC64 = Subtarget.isPPC64(); |
| bool isMachoABI = Subtarget.isMachoABI(); |
| |
| // Get current frame pointer save index. The users of this index will be |
| // primarily DYNALLOC instructions. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| int FPSI = FI->getFramePointerSaveIndex(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!FPSI) { |
| // Find out what the fix offset of the frame pointer save area. |
| int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI); |
| |
| // Allocate the frame index for frame pointer save area. |
| FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); |
| // Save the result. |
| FI->setFramePointerSaveIndex(FPSI); |
| } |
| |
| // Get the inputs. |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Size = Op.getOperand(1); |
| |
| // Get the corect type for pointers. |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| // Negate the size. |
| SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT, |
| DAG.getConstant(0, PtrVT), Size); |
| // Construct a node for the frame pointer save index. |
| SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT); |
| // Build a DYNALLOC node. |
| SDOperand Ops[3] = { Chain, NegSize, FPSIdx }; |
| SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); |
| return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3); |
| } |
| |
| |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when |
| /// possible. |
| static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { |
| // Not FP? Not a fsel. |
| if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || |
| !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) |
| return SDOperand(); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| |
| // Cannot handle SETEQ/SETNE. |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); |
| |
| MVT::ValueType ResVT = Op.getValueType(); |
| MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); |
| SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3); |
| |
| // If the RHS of the comparison is a 0.0, we don't need to do the |
| // subtraction at all. |
| if (isFloatingPointZero(RHS)) |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETUGE: |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETULE: |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, ResVT, |
| DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); |
| } |
| |
| SDOperand Cmp; |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); |
| case ISD::SETUGE: |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); |
| case ISD::SETULE: |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); |
| } |
| return SDOperand(); |
| } |
| |
| static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { |
| assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); |
| SDOperand Src = Op.getOperand(0); |
| if (Src.getValueType() == MVT::f32) |
| Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); |
| |
| SDOperand Tmp; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); |
| case MVT::i32: |
| Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); |
| break; |
| case MVT::i64: |
| Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); |
| break; |
| } |
| |
| // Convert the FP value to an int value through memory. |
| SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp); |
| if (Op.getValueType() == MVT::i32) |
| Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits); |
| return Bits; |
| } |
| |
| static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| if (Op.getOperand(0).getValueType() == MVT::i64) { |
| SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); |
| SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); |
| return FP; |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::i32 && |
| "Unhandled SINT_TO_FP type in custom expander!"); |
| // Since we only generate this in 64-bit mode, we can take advantage of |
| // 64-bit registers. In particular, sign extend the input value into the |
| // 64-bit register with extsw, store the WHOLE 64-bit value into the stack |
| // then lfd it and fcfid it. |
| MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(8, 8); |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, |
| Op.getOperand(0)); |
| |
| // STD the extended value into the stack slot. |
| SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, |
| DAG.getEntryNode(), Ext64, FIdx, |
| DAG.getSrcValue(NULL)); |
| // Load the value as a double. |
| SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0); |
| |
| // FCFID it and return it. |
| SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); |
| return FP; |
| } |
| |
| static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); |
| |
| // Expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDOperand Lo = Op.getOperand(0); |
| SDOperand Hi = Op.getOperand(1); |
| SDOperand Amt = Op.getOperand(2); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5); |
| SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); |
| SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt); |
| SDOperand OutOps[] = { OutLo, OutHi }; |
| return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), |
| OutOps, 2); |
| } |
| |
| static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!"); |
| |
| // Otherwise, expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDOperand Lo = Op.getOperand(0); |
| SDOperand Hi = Op.getOperand(1); |
| SDOperand Amt = Op.getOperand(2); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5); |
| SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); |
| SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt); |
| SDOperand OutOps[] = { OutLo, OutHi }; |
| return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), |
| OutOps, 2); |
| } |
| |
| static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!"); |
| |
| // Otherwise, expand into a bunch of logical ops, followed by a select_cc. |
| SDOperand Lo = Op.getOperand(0); |
| SDOperand Hi = Op.getOperand(1); |
| SDOperand Amt = Op.getOperand(2); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5); |
| SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt); |
| SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32), |
| Tmp4, Tmp6, ISD::SETLE); |
| SDOperand OutOps[] = { OutLo, OutHi }; |
| return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), |
| OutOps, 2); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector related lowering. |
| // |
| |
| // If this is a vector of constants or undefs, get the bits. A bit in |
| // UndefBits is set if the corresponding element of the vector is an |
| // ISD::UNDEF value. For undefs, the corresponding VectorBits values are |
| // zero. Return true if this is not an array of constants, false if it is. |
| // |
| static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], |
| uint64_t UndefBits[2]) { |
| // Start with zero'd results. |
| VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; |
| |
| unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); |
| for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { |
| SDOperand OpVal = BV->getOperand(i); |
| |
| unsigned PartNo = i >= e/2; // In the upper 128 bits? |
| unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t. |
| |
| uint64_t EltBits = 0; |
| if (OpVal.getOpcode() == ISD::UNDEF) { |
| uint64_t EltUndefBits = ~0U >> (32-EltBitSize); |
| UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); |
| continue; |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { |
| EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { |
| assert(CN->getValueType(0) == MVT::f32 && |
| "Only one legal FP vector type!"); |
| EltBits = FloatToBits(CN->getValue()); |
| } else { |
| // Nonconstant element. |
| return true; |
| } |
| |
| VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); |
| } |
| |
| //printf("%llx %llx %llx %llx\n", |
| // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); |
| return false; |
| } |
| |
| // If this is a splat (repetition) of a value across the whole vector, return |
| // the smallest size that splats it. For example, "0x01010101010101..." is a |
| // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and |
| // SplatSize = 1 byte. |
| static bool isConstantSplat(const uint64_t Bits128[2], |
| const uint64_t Undef128[2], |
| unsigned &SplatBits, unsigned &SplatUndef, |
| unsigned &SplatSize) { |
| |
| // Don't let undefs prevent splats from matching. See if the top 64-bits are |
| // the same as the lower 64-bits, ignoring undefs. |
| if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) |
| return false; // Can't be a splat if two pieces don't match. |
| |
| uint64_t Bits64 = Bits128[0] | Bits128[1]; |
| uint64_t Undef64 = Undef128[0] & Undef128[1]; |
| |
| // Check that the top 32-bits are the same as the lower 32-bits, ignoring |
| // undefs. |
| if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) |
| return false; // Can't be a splat if two pieces don't match. |
| |
| uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32); |
| uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); |
| |
| // If the top 16-bits are different than the lower 16-bits, ignoring |
| // undefs, we have an i32 splat. |
| if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { |
| SplatBits = Bits32; |
| SplatUndef = Undef32; |
| SplatSize = 4; |
| return true; |
| } |
| |
| uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16); |
| uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); |
| |
| // If the top 8-bits are different than the lower 8-bits, ignoring |
| // undefs, we have an i16 splat. |
| if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { |
| SplatBits = Bits16; |
| SplatUndef = Undef16; |
| SplatSize = 2; |
| return true; |
| } |
| |
| // Otherwise, we have an 8-bit splat. |
| SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8); |
| SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); |
| SplatSize = 1; |
| return true; |
| } |
| |
| /// BuildSplatI - Build a canonical splati of Val with an element size of |
| /// SplatSize. Cast the result to VT. |
| static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, |
| SelectionDAG &DAG) { |
| assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); |
| |
| static const MVT::ValueType VTys[] = { // canonical VT to use for each size. |
| MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 |
| }; |
| |
| MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; |
| |
| // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. |
| if (Val == -1) |
| SplatSize = 1; |
| |
| MVT::ValueType CanonicalVT = VTys[SplatSize-1]; |
| |
| // Build a canonical splat for this value. |
| SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT)); |
| SmallVector<SDOperand, 8> Ops; |
| Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt); |
| SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, |
| &Ops[0], Ops.size()); |
| return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res); |
| } |
| |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS, |
| SelectionDAG &DAG, |
| MVT::ValueType DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = LHS.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, |
| DAG.getConstant(IID, MVT::i32), LHS, RHS); |
| } |
| |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1, |
| SDOperand Op2, SelectionDAG &DAG, |
| MVT::ValueType DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = Op0.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, |
| DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); |
| } |
| |
| |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified |
| /// amount. The result has the specified value type. |
| static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, |
| MVT::ValueType VT, SelectionDAG &DAG) { |
| // Force LHS/RHS to be the right type. |
| LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); |
| RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); |
| |
| SDOperand Ops[16]; |
| for (unsigned i = 0; i != 16; ++i) |
| Ops[i] = DAG.getConstant(i+Amt, MVT::i32); |
| SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, |
| DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16)); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, T); |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. If we CAN select this case, and if it |
| // selects to a single instruction, return Op. Otherwise, if we can codegen |
| // this case more efficiently than a constant pool load, lower it to the |
| // sequence of ops that should be used. |
| static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| // If this is a vector of constants or undefs, get the bits. A bit in |
| // UndefBits is set if the corresponding element of the vector is an |
| // ISD::UNDEF value. For undefs, the corresponding VectorBits values are |
| // zero. |
| uint64_t VectorBits[2]; |
| uint64_t UndefBits[2]; |
| if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) |
| return SDOperand(); // Not a constant vector. |
| |
| // If this is a splat (repetition) of a value across the whole vector, return |
| // the smallest size that splats it. For example, "0x01010101010101..." is a |
| // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and |
| // SplatSize = 1 byte. |
| unsigned SplatBits, SplatUndef, SplatSize; |
| if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ |
| bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; |
| |
| // First, handle single instruction cases. |
| |
| // All zeros? |
| if (SplatBits == 0) { |
| // Canonicalize all zero vectors to be v4i32. |
| if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { |
| SDOperand Z = DAG.getConstant(0, MVT::i32); |
| Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); |
| Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); |
| } |
| return Op; |
| } |
| |
| // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. |
| int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); |
| if (SextVal >= -16 && SextVal <= 15) |
| return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); |
| |
| |
| // Two instruction sequences. |
| |
| // If this value is in the range [-32,30] and is even, use: |
| // tmp = VSPLTI[bhw], result = add tmp, tmp |
| if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { |
| Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); |
| return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); |
| } |
| |
| // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is |
| // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important |
| // for fneg/fabs. |
| if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { |
| // Make -1 and vspltisw -1: |
| SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); |
| |
| // Make the VSLW intrinsic, computing 0x8000_0000. |
| SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, |
| OnesV, DAG); |
| |
| // xor by OnesV to invert it. |
| Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); |
| } |
| |
| // Check to see if this is a wide variety of vsplti*, binop self cases. |
| unsigned SplatBitSize = SplatSize*8; |
| static const char SplatCsts[] = { |
| -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, |
| -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 |
| }; |
| |
| for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){ |
| // Indirect through the SplatCsts array so that we favor 'vsplti -1' for |
| // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' |
| int i = SplatCsts[idx]; |
| |
| // Figure out what shift amount will be used by altivec if shifted by i in |
| // this splat size. |
| unsigned TypeShiftAmt = i & (SplatBitSize-1); |
| |
| // vsplti + shl self. |
| if (SextVal == (i << (int)TypeShiftAmt)) { |
| SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, |
| Intrinsic::ppc_altivec_vslw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); |
| } |
| |
| // vsplti + srl self. |
| if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { |
| SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, |
| Intrinsic::ppc_altivec_vsrw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); |
| } |
| |
| // vsplti + sra self. |
| if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { |
| SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, |
| Intrinsic::ppc_altivec_vsraw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); |
| } |
| |
| // vsplti + rol self. |
| if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | |
| ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { |
| SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, |
| Intrinsic::ppc_altivec_vrlw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); |
| } |
| |
| // t = vsplti c, result = vsldoi t, t, 1 |
| if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { |
| SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); |
| return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); |
| } |
| // t = vsplti c, result = vsldoi t, t, 2 |
| if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { |
| SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); |
| return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); |
| } |
| // t = vsplti c, result = vsldoi t, t, 3 |
| if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { |
| SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); |
| return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); |
| } |
| } |
| |
| // Three instruction sequences. |
| |
| // Odd, in range [17,31]: (vsplti C)-(vsplti -16). |
| if (SextVal >= 0 && SextVal <= 31) { |
| SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG); |
| SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); |
| LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); |
| } |
| // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). |
| if (SextVal >= -31 && SextVal <= 0) { |
| SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG); |
| SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); |
| LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, |
| SDOperand RHS, SelectionDAG &DAG) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VMRGHW, |
| OP_VMRGLW, |
| OP_VSPLTISW0, |
| OP_VSPLTISW1, |
| OP_VSPLTISW2, |
| OP_VSPLTISW3, |
| OP_VSLDOI4, |
| OP_VSLDOI8, |
| OP_VSLDOI12 |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDOperand OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); |
| |
| unsigned ShufIdxs[16]; |
| switch (OpNum) { |
| default: assert(0 && "Unknown i32 permute!"); |
| case OP_VMRGHW: |
| ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; |
| ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; |
| ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; |
| ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; |
| break; |
| case OP_VMRGLW: |
| ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; |
| ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; |
| ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; |
| ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; |
| break; |
| case OP_VSPLTISW0: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+0; |
| break; |
| case OP_VSPLTISW1: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+4; |
| break; |
| case OP_VSPLTISW2: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+8; |
| break; |
| case OP_VSPLTISW3: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+12; |
| break; |
| case OP_VSLDOI4: |
| return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); |
| case OP_VSLDOI8: |
| return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); |
| case OP_VSLDOI12: |
| return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); |
| } |
| SDOperand Ops[16]; |
| for (unsigned i = 0; i != 16; ++i) |
| Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32); |
| |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, |
| DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); |
| } |
| |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this |
| /// is a shuffle we can handle in a single instruction, return it. Otherwise, |
| /// return the code it can be lowered into. Worst case, it can always be |
| /// lowered into a vperm. |
| static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand PermMask = Op.getOperand(2); |
| |
| // Cases that are handled by instructions that take permute immediates |
| // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be |
| // selected by the instruction selector. |
| if (V2.getOpcode() == ISD::UNDEF) { |
| if (PPC::isSplatShuffleMask(PermMask.Val, 1) || |
| PPC::isSplatShuffleMask(PermMask.Val, 2) || |
| PPC::isSplatShuffleMask(PermMask.Val, 4) || |
| PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || |
| PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || |
| PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { |
| return Op; |
| } |
| } |
| |
| // Altivec has a variety of "shuffle immediates" that take two vector inputs |
| // and produce a fixed permutation. If any of these match, do not lower to |
| // VPERM. |
| if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || |
| PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || |
| PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) |
| return Op; |
| |
| // Check to see if this is a shuffle of 4-byte values. If so, we can use our |
| // perfect shuffle table to emit an optimal matching sequence. |
| unsigned PFIndexes[4]; |
| bool isFourElementShuffle = true; |
| for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number |
| unsigned EltNo = 8; // Start out undef. |
| for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. |
| if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) |
| continue; // Undef, ignore it. |
| |
| unsigned ByteSource = |
| cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue(); |
| if ((ByteSource & 3) != j) { |
| isFourElementShuffle = false; |
| break; |
| } |
| |
| if (EltNo == 8) { |
| EltNo = ByteSource/4; |
| } else if (EltNo != ByteSource/4) { |
| isFourElementShuffle = false; |
| break; |
| } |
| } |
| PFIndexes[i] = EltNo; |
| } |
| |
| // If this shuffle can be expressed as a shuffle of 4-byte elements, use the |
| // perfect shuffle vector to determine if it is cost effective to do this as |
| // discrete instructions, or whether we should use a vperm. |
| if (isFourElementShuffle) { |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| // Determining when to avoid vperm is tricky. Many things affect the cost |
| // of vperm, particularly how many times the perm mask needs to be computed. |
| // For example, if the perm mask can be hoisted out of a loop or is already |
| // used (perhaps because there are multiple permutes with the same shuffle |
| // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of |
| // the loop requires an extra register. |
| // |
| // As a compromise, we only emit discrete instructions if the shuffle can be |
| // generated in 3 or fewer operations. When we have loop information |
| // available, if this block is within a loop, we should avoid using vperm |
| // for 3-operation perms and use a constant pool load instead. |
| if (Cost < 3) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); |
| } |
| |
| // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant |
| // vector that will get spilled to the constant pool. |
| if (V2.getOpcode() == ISD::UNDEF) V2 = V1; |
| |
| // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except |
| // that it is in input element units, not in bytes. Convert now. |
| MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType()); |
| unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; |
| |
| SmallVector<SDOperand, 16> ResultMask; |
| for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { |
| unsigned SrcElt; |
| if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) |
| SrcElt = 0; |
| else |
| SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); |
| |
| for (unsigned j = 0; j != BytesPerElement; ++j) |
| ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, |
| MVT::i8)); |
| } |
| |
| SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, |
| &ResultMask[0], ResultMask.size()); |
| return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); |
| } |
| |
| /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an |
| /// altivec comparison. If it is, return true and fill in Opc/isDot with |
| /// information about the intrinsic. |
| static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc, |
| bool &isDot) { |
| unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue(); |
| CompareOpc = -1; |
| isDot = false; |
| switch (IntrinsicID) { |
| default: return false; |
| // Comparison predicates. |
| case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; |
| |
| // Normal Comparisons. |
| case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; |
| } |
| return true; |
| } |
| |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom |
| /// lower, do it, otherwise return null. |
| static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { |
| // If this is a lowered altivec predicate compare, CompareOpc is set to the |
| // opcode number of the comparison. |
| int CompareOpc; |
| bool isDot; |
| if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) |
| return SDOperand(); // Don't custom lower most intrinsics. |
| |
| // If this is a non-dot comparison, make the VCMP node and we are done. |
| if (!isDot) { |
| SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), |
| Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(CompareOpc, MVT::i32)); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); |
| } |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| SDOperand Ops[] = { |
| Op.getOperand(2), // LHS |
| Op.getOperand(3), // RHS |
| DAG.getConstant(CompareOpc, MVT::i32) |
| }; |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(Op.getOperand(2).getValueType()); |
| VTs.push_back(MVT::Flag); |
| SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); |
| |
| // Now that we have the comparison, emit a copy from the CR to a GPR. |
| // This is flagged to the above dot comparison. |
| SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| CompNode.getValue(1)); |
| |
| // Unpack the result based on how the target uses it. |
| unsigned BitNo; // Bit # of CR6. |
| bool InvertBit; // Invert result? |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Return the value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = false; |
| break; |
| case 1: // Return the inverted value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = true; |
| break; |
| case 2: // Return the value of the LT bit of CR6. |
| BitNo = 2; InvertBit = false; |
| break; |
| case 3: // Return the inverted value of the LT bit of CR6. |
| BitNo = 2; InvertBit = true; |
| break; |
| } |
| |
| // Shift the bit into the low position. |
| Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, |
| DAG.getConstant(8-(3-BitNo), MVT::i32)); |
| // Isolate the bit. |
| Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| |
| // If we are supposed to, toggle the bit. |
| if (InvertBit) |
| Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| return Flags; |
| } |
| |
| static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| // Create a stack slot that is 16-byte aligned. |
| MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(16, 16); |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| // Store the input value into Value#0 of the stack slot. |
| SDOperand Store = DAG.getStore(DAG.getEntryNode(), |
| Op.getOperand(0), FIdx, NULL, 0); |
| // Load it out. |
| return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0); |
| } |
| |
| static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) { |
| if (Op.getValueType() == MVT::v4i32) { |
| SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG); |
| SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. |
| |
| SDOperand RHSSwap = // = vrlw RHS, 16 |
| BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); |
| |
| // Shrinkify inputs to v8i16. |
| LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); |
| RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); |
| RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); |
| |
| // Low parts multiplied together, generating 32-bit results (we ignore the |
| // top parts). |
| SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, |
| LHS, RHS, DAG, MVT::v4i32); |
| |
| SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, |
| LHS, RHSSwap, Zero, DAG, MVT::v4i32); |
| // Shift the high parts up 16 bits. |
| HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); |
| return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); |
| } else if (Op.getValueType() == MVT::v8i16) { |
| SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); |
| |
| return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, |
| LHS, RHS, Zero, DAG); |
| } else if (Op.getValueType() == MVT::v16i8) { |
| SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| // Multiply the even 8-bit parts, producing 16-bit sums. |
| SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, |
| LHS, RHS, DAG, MVT::v8i16); |
| EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); |
| |
| // Multiply the odd 8-bit parts, producing 16-bit sums. |
| SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, |
| LHS, RHS, DAG, MVT::v8i16); |
| OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); |
| |
| // Merge the results together. |
| SDOperand Ops[16]; |
| for (unsigned i = 0; i != 8; ++i) { |
| Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8); |
| Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8); |
| } |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, |
| DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); |
| } else { |
| assert(0 && "Unknown mul to lower!"); |
| abort(); |
| } |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Wasn't expecting to be able to lower this!"); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); |
| case ISD::FORMAL_ARGUMENTS: |
| return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, PPCSubTarget); |
| case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget); |
| case ISD::RET: return LowerRET(Op, DAG, getTargetMachine()); |
| case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); |
| |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| |
| // Lower 64-bit shifts. |
| case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); |
| case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); |
| case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); |
| |
| // Vector-related lowering. |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| |
| // Frame & Return address. Currently unimplemented |
| case ISD::RETURNADDR: break; |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| } |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| assert((MI->getOpcode() == PPC::SELECT_CC_I4 || |
| MI->getOpcode() == PPC::SELECT_CC_I8 || |
| MI->getOpcode() == PPC::SELECT_CC_F4 || |
| MI->getOpcode() == PPC::SELECT_CC_F8 || |
| MI->getOpcode() == PPC::SELECT_CC_VRRC) && |
| "Unexpected instr type to insert"); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the diamond |
| // control-flow pattern. The incoming instruction knows the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| unsigned SelectPred = MI->getOperand(4).getImm(); |
| BuildMI(BB, TII->get(PPC::BCC)) |
| .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| TargetMachine &TM = getTargetMachine(); |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case PPCISD::SHL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->getValue() == 0) // 0 << V -> 0. |
| return N->getOperand(0); |
| } |
| break; |
| case PPCISD::SRL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->getValue() == 0) // 0 >>u V -> 0. |
| return N->getOperand(0); |
| } |
| break; |
| case PPCISD::SRA: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->getValue() == 0 || // 0 >>s V -> 0. |
| C->isAllOnesValue()) // -1 >>s V -> -1. |
| return N->getOperand(0); |
| } |
| break; |
| |
| case ISD::SINT_TO_FP: |
| if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { |
| if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { |
| // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. |
| // We allow the src/dst to be either f32/f64, but the intermediate |
| // type must be i64. |
| if (N->getOperand(0).getValueType() == MVT::i64) { |
| SDOperand Val = N->getOperand(0).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| |
| Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| if (N->getValueType(0) == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| return Val; |
| } else if (N->getOperand(0).getValueType() == MVT::i32) { |
| // If the intermediate type is i32, we can avoid the load/store here |
| // too. |
| } |
| } |
| } |
| break; |
| case ISD::STORE: |
| // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). |
| if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && |
| N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && |
| N->getOperand(1).getValueType() == MVT::i32) { |
| SDOperand Val = N->getOperand(1).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| |
| Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, |
| N->getOperand(2), N->getOperand(3)); |
| DCI.AddToWorklist(Val.Val); |
| return Val; |
| } |
| |
| // Turn STORE (BSWAP) -> sthbrx/stwbrx. |
| if (N->getOperand(1).getOpcode() == ISD::BSWAP && |
| N->getOperand(1).Val->hasOneUse() && |
| (N->getOperand(1).getValueType() == MVT::i32 || |
| N->getOperand(1).getValueType() == MVT::i16)) { |
| SDOperand BSwapOp = N->getOperand(1).getOperand(0); |
| // Do an any-extend to 32-bits if this is a half-word input. |
| if (BSwapOp.getValueType() == MVT::i16) |
| BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp); |
| |
| return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp, |
| N->getOperand(2), N->getOperand(3), |
| DAG.getValueType(N->getOperand(1).getValueType())); |
| } |
| break; |
| case ISD::BSWAP: |
| // Turn BSWAP (LOAD) -> lhbrx/lwbrx. |
| if (ISD::isNON_EXTLoad(N->getOperand(0).Val) && |
| N->getOperand(0).hasOneUse() && |
| (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { |
| SDOperand Load = N->getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(Load); |
| // Create the byte-swapping load. |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(MVT::i32); |
| VTs.push_back(MVT::Other); |
| SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset()); |
| SDOperand Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr(), // Ptr |
| SV, // SrcValue |
| DAG.getValueType(N->getValueType(0)) // VT |
| }; |
| SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4); |
| |
| // If this is an i16 load, insert the truncate. |
| SDOperand ResVal = BSLoad; |
| if (N->getValueType(0) == MVT::i16) |
| ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad); |
| |
| // First, combine the bswap away. This makes the value produced by the |
| // load dead. |
| DCI.CombineTo(N, ResVal); |
| |
| // Next, combine the load away, we give it a bogus result value but a real |
| // chain result. The result value is dead because the bswap is dead. |
| DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1)); |
| |
| // Return N so it doesn't get rechecked! |
| return SDOperand(N, 0); |
| } |
| |
| break; |
| case PPCISD::VCMP: { |
| // If a VCMPo node already exists with exactly the same operands as this |
| // node, use its result instead of this node (VCMPo computes both a CR6 and |
| // a normal output). |
| // |
| if (!N->getOperand(0).hasOneUse() && |
| !N->getOperand(1).hasOneUse() && |
| !N->getOperand(2).hasOneUse()) { |
| |
| // Scan all of the users of the LHS, looking for VCMPo's that match. |
| SDNode *VCMPoNode = 0; |
| |
| SDNode *LHSN = N->getOperand(0).Val; |
| for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); |
| UI != E; ++UI) |
| if ((*UI)->getOpcode() == PPCISD::VCMPo && |
| (*UI)->getOperand(1) == N->getOperand(1) && |
| (*UI)->getOperand(2) == N->getOperand(2) && |
| (*UI)->getOperand(0) == N->getOperand(0)) { |
| VCMPoNode = *UI; |
| break; |
| } |
| |
| // If there is no VCMPo node, or if the flag value has a single use, don't |
| // transform this. |
| if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) |
| break; |
| |
| // Look at the (necessarily single) use of the flag value. If it has a |
| // chain, this transformation is more complex. Note that multiple things |
| // could use the value result, which we should ignore. |
| SDNode *FlagUser = 0; |
| for (SDNode::use_iterator UI = VCMPoNode->use_begin(); |
| FlagUser == 0; ++UI) { |
| assert(UI != VCMPoNode->use_end() && "Didn't find user!"); |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) { |
| FlagUser = User; |
| break; |
| } |
| } |
| } |
| |
| // If the user is a MFCR instruction, we know this is safe. Otherwise we |
| // give up for right now. |
| if (FlagUser->getOpcode() == PPCISD::MFCR) |
| return SDOperand(VCMPoNode, 0); |
| } |
| break; |
| } |
| case ISD::BR_CC: { |
| // If this is a branch on an altivec predicate comparison, lower this so |
| // that we don't have to do a MFCR: instead, branch directly on CR6. This |
| // lowering is done pre-legalize, because the legalizer lowers the predicate |
| // compare down to code that is difficult to reassemble. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3); |
| int CompareOpc; |
| bool isDot; |
| |
| if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && |
| getAltivecCompareInfo(LHS, CompareOpc, isDot)) { |
| assert(isDot && "Can't compare against a vector result!"); |
| |
| // If this is a comparison against something other than 0/1, then we know |
| // that the condition is never/always true. |
| unsigned Val = cast<ConstantSDNode>(RHS)->getValue(); |
| if (Val != 0 && Val != 1) { |
| if (CC == ISD::SETEQ) // Cond never true, remove branch. |
| return N->getOperand(0); |
| // Always !=, turn it into an unconditional branch. |
| return DAG.getNode(ISD::BR, MVT::Other, |
| N->getOperand(0), N->getOperand(4)); |
| } |
| |
| bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| std::vector<MVT::ValueType> VTs; |
| SDOperand Ops[] = { |
| LHS.getOperand(2), // LHS of compare |
| LHS.getOperand(3), // RHS of compare |
| DAG.getConstant(CompareOpc, MVT::i32) |
| }; |
| VTs.push_back(LHS.getOperand(2).getValueType()); |
| VTs.push_back(MVT::Flag); |
| SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); |
| |
| // Unpack the result based on how the target uses it. |
| PPC::Predicate CompOpc; |
| switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Branch on the value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; |
| break; |
| case 1: // Branch on the inverted value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; |
| break; |
| case 2: // Branch on the value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; |
| break; |
| case 3: // Branch on the inverted value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; |
| break; |
| } |
| |
| return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), |
| DAG.getConstant(CompOpc, MVT::i32), |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| N->getOperand(4), CompNode.getValue(1)); |
| } |
| break; |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| unsigned Depth) const { |
| KnownZero = 0; |
| KnownOne = 0; |
| switch (Op.getOpcode()) { |
| default: break; |
| case PPCISD::LBRX: { |
| // lhbrx is known to have the top bits cleared out. |
| if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16) |
| KnownZero = 0xFFFF0000; |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { |
| default: break; |
| case Intrinsic::ppc_altivec_vcmpbfp_p: |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: |
| case Intrinsic::ppc_altivec_vcmpequb_p: |
| case Intrinsic::ppc_altivec_vcmpequh_p: |
| case Intrinsic::ppc_altivec_vcmpequw_p: |
| case Intrinsic::ppc_altivec_vcmpgefp_p: |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: |
| case Intrinsic::ppc_altivec_vcmpgtub_p: |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: |
| KnownZero = ~1U; // All bits but the low one are known to be zero. |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| PPCTargetLowering::ConstraintType |
| PPCTargetLowering::getConstraintType(char ConstraintLetter) const { |
| switch (ConstraintLetter) { |
| default: break; |
| case 'b': |
| case 'r': |
| case 'f': |
| case 'v': |
| case 'y': |
| return C_RegisterClass; |
| } |
| return TargetLowering::getConstraintType(ConstraintLetter); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // GCC RS6000 Constraint Letters |
| switch (Constraint[0]) { |
| case 'b': // R1-R31 |
| case 'r': // R0-R31 |
| if (VT == MVT::i64 && PPCSubTarget.isPPC64()) |
| return std::make_pair(0U, PPC::G8RCRegisterClass); |
| return std::make_pair(0U, PPC::GPRCRegisterClass); |
| case 'f': |
| if (VT == MVT::f32) |
| return std::make_pair(0U, PPC::F4RCRegisterClass); |
| else if (VT == MVT::f64) |
| return std::make_pair(0U, PPC::F8RCRegisterClass); |
| break; |
| case 'v': |
| return std::make_pair(0U, PPC::VRRCRegisterClass); |
| case 'y': // crrc |
| return std::make_pair(0U, PPC::CRRCRegisterClass); |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| |
| // isOperandValidForConstraint |
| SDOperand PPCTargetLowering:: |
| isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) { |
| switch (Letter) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': { |
| if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate. |
| unsigned Value = cast<ConstantSDNode>(Op)->getValue(); |
| switch (Letter) { |
| default: assert(0 && "Unknown constraint letter!"); |
| case 'I': // "I" is a signed 16-bit constant. |
| if ((short)Value == (int)Value) return Op; |
| break; |
| case 'J': // "J" is a constant with only the high-order 16 bits nonzero. |
| case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. |
| if ((short)Value == 0) return Op; |
| break; |
| case 'K': // "K" is a constant with only the low-order 16 bits nonzero. |
| if ((Value >> 16) == 0) return Op; |
| break; |
| case 'M': // "M" is a constant that is greater than 31. |
| if (Value > 31) return Op; |
| break; |
| case 'N': // "N" is a positive constant that is an exact power of two. |
| if ((int)Value > 0 && isPowerOf2_32(Value)) return Op; |
| break; |
| case 'O': // "O" is the constant zero. |
| if (Value == 0) return Op; |
| break; |
| case 'P': // "P" is a constant whose negation is a signed 16-bit constant. |
| if ((short)-Value == (int)-Value) return Op; |
| break; |
| } |
| break; |
| } |
| } |
| |
| // Handle standard constraint letters. |
| return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG); |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ |
| // PPC allows a sign-extended 16-bit immediate field. |
| return (V > -(1 << 16) && V < (1 << 16)-1); |
| } |
| |
| bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { |
| return TargetLowering::isLegalAddressImmediate(GV); |
| } |
| |
| SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) |
| { |
| // Depths > 0 not supported yet! |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) |
| return SDOperand(); |
| |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) |
| && MFI->getStackSize(); |
| |
| if (isPPC64) |
| return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1, |
| MVT::i32); |
| else |
| return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1, |
| MVT::i32); |
| } |