| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineDebugInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include <map> |
| #include <set> |
| #include <iostream> |
| using namespace llvm; |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| #else |
| static const bool ViewISelDAGs = 0; |
| static const bool ViewSchedDAGs = 0; |
| #endif |
| |
| namespace { |
| cl::opt<SchedHeuristics> |
| ISHeuristic( |
| "sched", |
| cl::desc("Choose scheduling style"), |
| cl::init(defaultScheduling), |
| cl::values( |
| clEnumValN(defaultScheduling, "default", |
| "Target preferred scheduling style"), |
| clEnumValN(noScheduling, "none", |
| "No scheduling: breadth first sequencing"), |
| clEnumValN(simpleScheduling, "simple", |
| "Simple two pass scheduling: minimize critical path " |
| "and maximize processor utilization"), |
| clEnumValN(simpleNoItinScheduling, "simple-noitin", |
| "Simple two pass scheduling: Same as simple " |
| "except using generic latency"), |
| clEnumValN(listSchedulingBURR, "list-burr", |
| "Bottom up register reduction list scheduling"), |
| clEnumValEnd)); |
| } // namespace |
| |
| namespace { |
| /// RegsForValue - This struct represents the physical registers that a |
| /// particular value is assigned and the type information about the value. |
| /// This is needed because values can be promoted into larger registers and |
| /// expanded into multiple smaller registers than the value. |
| struct RegsForValue { |
| /// Regs - This list hold the register (for legal and promoted values) |
| /// or register set (for expanded values) that the value should be assigned |
| /// to. |
| std::vector<unsigned> Regs; |
| |
| /// RegVT - The value type of each register. |
| /// |
| MVT::ValueType RegVT; |
| |
| /// ValueVT - The value type of the LLVM value, which may be promoted from |
| /// RegVT or made from merging the two expanded parts. |
| MVT::ValueType ValueVT; |
| |
| RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {} |
| |
| RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt) |
| : RegVT(regvt), ValueVT(valuevt) { |
| Regs.push_back(Reg); |
| } |
| RegsForValue(const std::vector<unsigned> ®s, |
| MVT::ValueType regvt, MVT::ValueType valuevt) |
| : Regs(regs), RegVT(regvt), ValueVT(valuevt) { |
| } |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVT value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| SDOperand getCopyFromRegs(SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag); |
| }; |
| } |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// FunctionLoweringInfo - This contains information that is global to a |
| /// function that is used when lowering a region of the function. |
| class FunctionLoweringInfo { |
| public: |
| TargetLowering &TLI; |
| Function &Fn; |
| MachineFunction &MF; |
| SSARegMap *RegMap; |
| |
| FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); |
| |
| /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. |
| std::map<const BasicBlock*, MachineBasicBlock *> MBBMap; |
| |
| /// ValueMap - Since we emit code for the function a basic block at a time, |
| /// we must remember which virtual registers hold the values for |
| /// cross-basic-block values. |
| std::map<const Value*, unsigned> ValueMap; |
| |
| /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in |
| /// the entry block. This allows the allocas to be efficiently referenced |
| /// anywhere in the function. |
| std::map<const AllocaInst*, int> StaticAllocaMap; |
| |
| unsigned MakeReg(MVT::ValueType VT) { |
| return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| unsigned CreateRegForValue(const Value *V) { |
| MVT::ValueType VT = TLI.getValueType(V->getType()); |
| // The common case is that we will only create one register for this |
| // value. If we have that case, create and return the virtual register. |
| unsigned NV = TLI.getNumElements(VT); |
| if (NV == 1) { |
| // If we are promoting this value, pick the next largest supported type. |
| return MakeReg(TLI.getTypeToTransformTo(VT)); |
| } |
| |
| // If this value is represented with multiple target registers, make sure |
| // to create enough consecutive registers of the right (smaller) type. |
| unsigned NT = VT-1; // Find the type to use. |
| while (TLI.getNumElements((MVT::ValueType)NT) != 1) |
| --NT; |
| |
| unsigned R = MakeReg((MVT::ValueType)NT); |
| for (unsigned i = 1; i != NV; ++i) |
| MakeReg((MVT::ValueType)NT); |
| return R; |
| } |
| |
| unsigned InitializeRegForValue(const Value *V) { |
| unsigned &R = ValueMap[V]; |
| assert(R == 0 && "Already initialized this value register!"); |
| return R = CreateRegForValue(V); |
| } |
| }; |
| } |
| |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
| /// PHI nodes or outside of the basic block that defines it. |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) { |
| if (isa<PHINode>(I)) return true; |
| BasicBlock *BB = I->getParent(); |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) |
| return true; |
| return false; |
| } |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. |
| static bool isOnlyUsedInEntryBlock(Argument *A) { |
| BasicBlock *Entry = A->getParent()->begin(); |
| for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != Entry) |
| return false; // Use not in entry block. |
| return true; |
| } |
| |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, |
| Function &fn, MachineFunction &mf) |
| : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { |
| |
| // Create a vreg for each argument register that is not dead and is used |
| // outside of the entry block for the function. |
| for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); |
| AI != E; ++AI) |
| if (!isOnlyUsedInEntryBlock(AI)) |
| InitializeRegForValue(AI); |
| |
| // Initialize the mapping of values to registers. This is only set up for |
| // instruction values that are used outside of the block that defines |
| // them. |
| Function::iterator BB = Fn.begin(), EB = Fn.end(); |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) { |
| const Type *Ty = AI->getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty), |
| AI->getAlignment()); |
| |
| // If the alignment of the value is smaller than the size of the value, |
| // and if the size of the value is particularly small (<= 8 bytes), |
| // round up to the size of the value for potentially better performance. |
| // |
| // FIXME: This could be made better with a preferred alignment hook in |
| // TargetData. It serves primarily to 8-byte align doubles for X86. |
| if (Align < TySize && TySize <= 8) Align = TySize; |
| TySize *= CUI->getValue(); // Get total allocated size. |
| if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
| StaticAllocaMap[AI] = |
| MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); |
| } |
| |
| for (; BB != EB; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) |
| if (!isa<AllocaInst>(I) || |
| !StaticAllocaMap.count(cast<AllocaInst>(I))) |
| InitializeRegForValue(I); |
| |
| // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
| // also creates the initial PHI MachineInstrs, though none of the input |
| // operands are populated. |
| for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { |
| MachineBasicBlock *MBB = new MachineBasicBlock(BB); |
| MBBMap[BB] = MBB; |
| MF.getBasicBlockList().push_back(MBB); |
| |
| // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
| // appropriate. |
| PHINode *PN; |
| for (BasicBlock::iterator I = BB->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) |
| if (!PN->use_empty()) { |
| unsigned NumElements = |
| TLI.getNumElements(TLI.getValueType(PN->getType())); |
| unsigned PHIReg = ValueMap[PN]; |
| assert(PHIReg &&"PHI node does not have an assigned virtual register!"); |
| for (unsigned i = 0; i != NumElements; ++i) |
| BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// SelectionDAGLowering - This is the common target-independent lowering |
| /// implementation that is parameterized by a TargetLowering object. |
| /// Also, targets can overload any lowering method. |
| /// |
| namespace llvm { |
| class SelectionDAGLowering { |
| MachineBasicBlock *CurMBB; |
| |
| std::map<const Value*, SDOperand> NodeMap; |
| |
| /// PendingLoads - Loads are not emitted to the program immediately. We bunch |
| /// them up and then emit token factor nodes when possible. This allows us to |
| /// get simple disambiguation between loads without worrying about alias |
| /// analysis. |
| std::vector<SDOperand> PendingLoads; |
| |
| public: |
| // TLI - This is information that describes the available target features we |
| // need for lowering. This indicates when operations are unavailable, |
| // implemented with a libcall, etc. |
| TargetLowering &TLI; |
| SelectionDAG &DAG; |
| const TargetData &TD; |
| |
| /// FuncInfo - Information about the function as a whole. |
| /// |
| FunctionLoweringInfo &FuncInfo; |
| |
| SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, |
| FunctionLoweringInfo &funcinfo) |
| : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), |
| FuncInfo(funcinfo) { |
| } |
| |
| /// getRoot - Return the current virtual root of the Selection DAG. |
| /// |
| SDOperand getRoot() { |
| if (PendingLoads.empty()) |
| return DAG.getRoot(); |
| |
| if (PendingLoads.size() == 1) { |
| SDOperand Root = PendingLoads[0]; |
| DAG.setRoot(Root); |
| PendingLoads.clear(); |
| return Root; |
| } |
| |
| // Otherwise, we have to make a token factor node. |
| SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads); |
| PendingLoads.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| void visit(Instruction &I) { visit(I.getOpcode(), I); } |
| |
| void visit(unsigned Opcode, User &I) { |
| switch (Opcode) { |
| default: assert(0 && "Unknown instruction type encountered!"); |
| abort(); |
| // Build the switch statement using the Instruction.def file. |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); |
| #include "llvm/Instruction.def" |
| } |
| } |
| |
| void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } |
| |
| |
| SDOperand getIntPtrConstant(uint64_t Val) { |
| return DAG.getConstant(Val, TLI.getPointerTy()); |
| } |
| |
| SDOperand getValue(const Value *V) { |
| SDOperand &N = NodeMap[V]; |
| if (N.Val) return N; |
| |
| const Type *VTy = V->getType(); |
| MVT::ValueType VT = TLI.getValueType(VTy); |
| if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| visit(CE->getOpcode(), *CE); |
| assert(N.Val && "visit didn't populate the ValueMap!"); |
| return N; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { |
| return N = DAG.getGlobalAddress(GV, VT); |
| } else if (isa<ConstantPointerNull>(C)) { |
| return N = DAG.getConstant(0, TLI.getPointerTy()); |
| } else if (isa<UndefValue>(C)) { |
| return N = DAG.getNode(ISD::UNDEF, VT); |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| return N = DAG.getConstantFP(CFP->getValue(), VT); |
| } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) { |
| unsigned NumElements = PTy->getNumElements(); |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); |
| |
| // Now that we know the number and type of the elements, push a |
| // Constant or ConstantFP node onto the ops list for each element of |
| // the packed constant. |
| std::vector<SDOperand> Ops; |
| if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) { |
| if (MVT::isFloatingPoint(PVT)) { |
| for (unsigned i = 0; i != NumElements; ++i) { |
| const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i)); |
| Ops.push_back(DAG.getConstantFP(El->getValue(), PVT)); |
| } |
| } else { |
| for (unsigned i = 0; i != NumElements; ++i) { |
| const ConstantIntegral *El = |
| cast<ConstantIntegral>(CP->getOperand(i)); |
| Ops.push_back(DAG.getConstant(El->getRawValue(), PVT)); |
| } |
| } |
| } else { |
| assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!"); |
| SDOperand Op; |
| if (MVT::isFloatingPoint(PVT)) |
| Op = DAG.getConstantFP(0, PVT); |
| else |
| Op = DAG.getConstant(0, PVT); |
| Ops.assign(NumElements, Op); |
| } |
| |
| // Handle the case where we have a 1-element vector, in which |
| // case we want to immediately turn it into a scalar constant. |
| if (Ops.size() == 1) { |
| return N = Ops[0]; |
| } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { |
| return N = DAG.getNode(ISD::ConstantVec, TVT, Ops); |
| } else { |
| // If the packed type isn't legal, then create a ConstantVec node with |
| // generic Vector type instead. |
| return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops); |
| } |
| } else { |
| // Canonicalize all constant ints to be unsigned. |
| return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT); |
| } |
| |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| std::map<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) |
| return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); |
| } |
| |
| std::map<const Value*, unsigned>::const_iterator VMI = |
| FuncInfo.ValueMap.find(V); |
| assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); |
| |
| unsigned InReg = VMI->second; |
| |
| // If this type is not legal, make it so now. |
| MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT); |
| |
| N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); |
| if (DestVT < VT) { |
| // Source must be expanded. This input value is actually coming from the |
| // register pair VMI->second and VMI->second+1. |
| N = DAG.getNode(ISD::BUILD_PAIR, VT, N, |
| DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT)); |
| } else { |
| if (DestVT > VT) { // Promotion case |
| if (MVT::isFloatingPoint(VT)) |
| N = DAG.getNode(ISD::FP_ROUND, VT, N); |
| else |
| N = DAG.getNode(ISD::TRUNCATE, VT, N); |
| } |
| } |
| |
| return N; |
| } |
| |
| const SDOperand &setValue(const Value *V, SDOperand NewN) { |
| SDOperand &N = NodeMap[V]; |
| assert(N.Val == 0 && "Already set a value for this node!"); |
| return N = NewN; |
| } |
| |
| RegsForValue GetRegistersForValue(const std::string &ConstrCode, |
| MVT::ValueType VT, |
| bool OutReg, bool InReg, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs); |
| |
| // Terminator instructions. |
| void visitRet(ReturnInst &I); |
| void visitBr(BranchInst &I); |
| void visitUnreachable(UnreachableInst &I) { /* noop */ } |
| |
| // These all get lowered before this pass. |
| void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); } |
| void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); } |
| void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); } |
| void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } |
| void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } |
| |
| // |
| void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp); |
| void visitShift(User &I, unsigned Opcode); |
| void visitAdd(User &I) { |
| visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); |
| } |
| void visitSub(User &I); |
| void visitMul(User &I) { |
| visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); |
| } |
| void visitDiv(User &I) { |
| const Type *Ty = I.getType(); |
| visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0); |
| } |
| void visitRem(User &I) { |
| const Type *Ty = I.getType(); |
| visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0); |
| } |
| void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); } |
| void visitOr (User &I) { visitBinary(I, ISD::OR, 0, 0); } |
| void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); } |
| void visitShl(User &I) { visitShift(I, ISD::SHL); } |
| void visitShr(User &I) { |
| visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA); |
| } |
| |
| void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); |
| void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } |
| void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } |
| void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } |
| void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } |
| void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } |
| void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } |
| |
| void visitGetElementPtr(User &I); |
| void visitCast(User &I); |
| void visitSelect(User &I); |
| // |
| |
| void visitMalloc(MallocInst &I); |
| void visitFree(FreeInst &I); |
| void visitAlloca(AllocaInst &I); |
| void visitLoad(LoadInst &I); |
| void visitStore(StoreInst &I); |
| void visitPHI(PHINode &I) { } // PHI nodes are handled specially. |
| void visitCall(CallInst &I); |
| void visitInlineAsm(CallInst &I); |
| const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); |
| |
| void visitVAStart(CallInst &I); |
| void visitVAArg(VAArgInst &I); |
| void visitVAEnd(CallInst &I); |
| void visitVACopy(CallInst &I); |
| void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); |
| |
| void visitMemIntrinsic(CallInst &I, unsigned Op); |
| |
| void visitUserOp1(Instruction &I) { |
| assert(0 && "UserOp1 should not exist at instruction selection time!"); |
| abort(); |
| } |
| void visitUserOp2(Instruction &I) { |
| assert(0 && "UserOp2 should not exist at instruction selection time!"); |
| abort(); |
| } |
| }; |
| } // end namespace llvm |
| |
| void SelectionDAGLowering::visitRet(ReturnInst &I) { |
| if (I.getNumOperands() == 0) { |
| DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); |
| return; |
| } |
| std::vector<SDOperand> NewValues; |
| NewValues.push_back(getRoot()); |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| SDOperand RetOp = getValue(I.getOperand(i)); |
| |
| // If this is an integer return value, we need to promote it ourselves to |
| // the full width of a register, since LegalizeOp will use ANY_EXTEND rather |
| // than sign/zero. |
| if (MVT::isInteger(RetOp.getValueType()) && |
| RetOp.getValueType() < MVT::i64) { |
| MVT::ValueType TmpVT; |
| if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) |
| TmpVT = TLI.getTypeToTransformTo(MVT::i32); |
| else |
| TmpVT = MVT::i32; |
| |
| if (I.getOperand(i)->getType()->isSigned()) |
| RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp); |
| else |
| RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp); |
| } |
| NewValues.push_back(RetOp); |
| } |
| DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues)); |
| } |
| |
| void SelectionDAGLowering::visitBr(BranchInst &I) { |
| // Update machine-CFG edges. |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| if (I.isUnconditional()) { |
| // If this is not a fall-through branch, emit the branch. |
| if (Succ0MBB != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), |
| DAG.getBasicBlock(Succ0MBB))); |
| } else { |
| MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| SDOperand Cond = getValue(I.getCondition()); |
| if (Succ1MBB == NextBlock) { |
| // If the condition is false, fall through. This means we should branch |
| // if the condition is true to Succ #0. |
| DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), |
| Cond, DAG.getBasicBlock(Succ0MBB))); |
| } else if (Succ0MBB == NextBlock) { |
| // If the condition is true, fall through. This means we should branch if |
| // the condition is false to Succ #1. Invert the condition first. |
| SDOperand True = DAG.getConstant(1, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); |
| DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), |
| Cond, DAG.getBasicBlock(Succ1MBB))); |
| } else { |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| // If the false case is the current basic block, then this is a self |
| // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it |
| // adds an extra instruction in the loop. Instead, invert the |
| // condition and emit "Loop: ... br!cond Loop; br Out. |
| if (CurMBB == Succ1MBB) { |
| std::swap(Succ0MBB, Succ1MBB); |
| SDOperand True = DAG.getConstant(1, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); |
| } |
| Ops.push_back(Cond); |
| Ops.push_back(DAG.getBasicBlock(Succ0MBB)); |
| Ops.push_back(DAG.getBasicBlock(Succ1MBB)); |
| DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops)); |
| } |
| } |
| } |
| |
| void SelectionDAGLowering::visitSub(User &I) { |
| // -0.0 - X --> fneg |
| if (I.getType()->isFloatingPoint()) { |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) |
| if (CFP->isExactlyValue(-0.0)) { |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); |
| return; |
| } |
| } |
| visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB); |
| } |
| |
| void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, |
| unsigned VecOp) { |
| const Type *Ty = I.getType(); |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| |
| if (Ty->isIntegral()) { |
| setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2)); |
| } else if (Ty->isFloatingPoint()) { |
| setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2)); |
| } else { |
| const PackedType *PTy = cast<PackedType>(Ty); |
| unsigned NumElements = PTy->getNumElements(); |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); |
| |
| // Immediately scalarize packed types containing only one element, so that |
| // the Legalize pass does not have to deal with them. Similarly, if the |
| // abstract vector is going to turn into one that the target natively |
| // supports, generate that type now so that Legalize doesn't have to deal |
| // with that either. These steps ensure that Legalize only has to handle |
| // vector types in its Expand case. |
| unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp; |
| if (NumElements == 1) { |
| setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2)); |
| } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { |
| setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2)); |
| } else { |
| SDOperand Num = DAG.getConstant(NumElements, MVT::i32); |
| SDOperand Typ = DAG.getValueType(PVT); |
| setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ)); |
| } |
| } |
| } |
| |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); |
| |
| setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, |
| ISD::CondCode UnsignedOpcode) { |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Opcode = SignedOpcode; |
| if (I.getOperand(0)->getType()->isUnsigned()) |
| Opcode = UnsignedOpcode; |
| setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); |
| } |
| |
| void SelectionDAGLowering::visitSelect(User &I) { |
| SDOperand Cond = getValue(I.getOperand(0)); |
| SDOperand TrueVal = getValue(I.getOperand(1)); |
| SDOperand FalseVal = getValue(I.getOperand(2)); |
| setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, |
| TrueVal, FalseVal)); |
| } |
| |
| void SelectionDAGLowering::visitCast(User &I) { |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType()); |
| MVT::ValueType DestTy = TLI.getValueType(I.getType()); |
| |
| if (N.getValueType() == DestTy) { |
| setValue(&I, N); // noop cast. |
| } else if (DestTy == MVT::i1) { |
| // Cast to bool is a comparison against zero, not truncation to zero. |
| SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) : |
| DAG.getConstantFP(0.0, N.getValueType()); |
| setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE)); |
| } else if (isInteger(SrcTy)) { |
| if (isInteger(DestTy)) { // Int -> Int cast |
| if (DestTy < SrcTy) // Truncating cast? |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N)); |
| else if (I.getOperand(0)->getType()->isSigned()) |
| setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N)); |
| else |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N)); |
| } else { // Int -> FP cast |
| if (I.getOperand(0)->getType()->isSigned()) |
| setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N)); |
| else |
| setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N)); |
| } |
| } else { |
| assert(isFloatingPoint(SrcTy) && "Unknown value type!"); |
| if (isFloatingPoint(DestTy)) { // FP -> FP cast |
| if (DestTy < SrcTy) // Rounding cast? |
| setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N)); |
| else |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N)); |
| } else { // FP -> Int cast. |
| if (I.getType()->isSigned()) |
| setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N)); |
| else |
| setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N)); |
| } |
| } |
| } |
| |
| void SelectionDAGLowering::visitGetElementPtr(User &I) { |
| SDOperand N = getValue(I.getOperand(0)); |
| const Type *Ty = I.getOperand(0)->getType(); |
| const Type *UIntPtrTy = TD.getIntPtrType(); |
| |
| for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); |
| OI != E; ++OI) { |
| Value *Idx = *OI; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantUInt>(Idx)->getValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field]; |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, |
| getIntPtrConstant(Offset)); |
| } |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->getRawValue() == 0) continue; |
| |
| uint64_t Offs; |
| if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI)) |
| Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue(); |
| else |
| Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue(); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| uint64_t ElementSize = TD.getTypeSize(Ty); |
| SDOperand IdxN = getValue(Idx); |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend |
| // it. |
| if (IdxN.getValueType() < N.getValueType()) { |
| if (Idx->getType()->isSigned()) |
| IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); |
| else |
| IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN); |
| } else if (IdxN.getValueType() > N.getValueType()) |
| IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); |
| |
| // If this is a multiply by a power of two, turn it into a shl |
| // immediately. This is a very common case. |
| if (isPowerOf2_64(ElementSize)) { |
| unsigned Amt = Log2_64(ElementSize); |
| IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, |
| DAG.getConstant(Amt, TLI.getShiftAmountTy())); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); |
| continue; |
| } |
| |
| SDOperand Scale = getIntPtrConstant(ElementSize); |
| IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); |
| } |
| } |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) { |
| // If this is a fixed sized alloca in the entry block of the function, |
| // allocate it statically on the stack. |
| if (FuncInfo.StaticAllocaMap.count(&I)) |
| return; // getValue will auto-populate this. |
| |
| const Type *Ty = I.getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); |
| unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty), |
| I.getAlignment()); |
| |
| SDOperand AllocSize = getValue(I.getArraySize()); |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| if (IntPtr < AllocSize.getValueType()) |
| AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); |
| else if (IntPtr > AllocSize.getValueType()) |
| AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); |
| |
| AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, |
| getIntPtrConstant(TySize)); |
| |
| // Handle alignment. If the requested alignment is less than or equal to the |
| // stack alignment, ignore it and round the size of the allocation up to the |
| // stack alignment size. If the size is greater than the stack alignment, we |
| // note this in the DYNAMIC_STACKALLOC node. |
| unsigned StackAlign = |
| TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (Align <= StackAlign) { |
| Align = 0; |
| // Add SA-1 to the size. |
| AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, |
| getIntPtrConstant(StackAlign-1)); |
| // Mask out the low bits for alignment purposes. |
| AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, |
| getIntPtrConstant(~(uint64_t)(StackAlign-1))); |
| } |
| |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(AllocSize.getValueType()); |
| VTs.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| Ops.push_back(AllocSize); |
| Ops.push_back(getIntPtrConstant(Align)); |
| SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); |
| DAG.setRoot(setValue(&I, DSA).getValue(1)); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| /// getStringValue - Turn an LLVM constant pointer that eventually points to a |
| /// global into a string value. Return an empty string if we can't do it. |
| /// |
| static std::string getStringValue(GlobalVariable *GV, unsigned Offset = 0) { |
| if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) { |
| ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); |
| if (Init->isString()) { |
| std::string Result = Init->getAsString(); |
| if (Offset < Result.size()) { |
| // If we are pointing INTO The string, erase the beginning... |
| Result.erase(Result.begin(), Result.begin()+Offset); |
| return Result; |
| } |
| } |
| } |
| return ""; |
| } |
| |
| void SelectionDAGLowering::visitLoad(LoadInst &I) { |
| SDOperand Ptr = getValue(I.getOperand(0)); |
| |
| SDOperand Root; |
| if (I.isVolatile()) |
| Root = getRoot(); |
| else { |
| // Do not serialize non-volatile loads against each other. |
| Root = DAG.getRoot(); |
| } |
| |
| const Type *Ty = I.getType(); |
| SDOperand L; |
| |
| if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) { |
| unsigned NumElements = PTy->getNumElements(); |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); |
| |
| // Immediately scalarize packed types containing only one element, so that |
| // the Legalize pass does not have to deal with them. |
| if (NumElements == 1) { |
| L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0))); |
| } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { |
| L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0))); |
| } else { |
| L = DAG.getVecLoad(NumElements, PVT, Root, Ptr, |
| DAG.getSrcValue(I.getOperand(0))); |
| } |
| } else { |
| L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, |
| DAG.getSrcValue(I.getOperand(0))); |
| } |
| setValue(&I, L); |
| |
| if (I.isVolatile()) |
| DAG.setRoot(L.getValue(1)); |
| else |
| PendingLoads.push_back(L.getValue(1)); |
| } |
| |
| |
| void SelectionDAGLowering::visitStore(StoreInst &I) { |
| Value *SrcV = I.getOperand(0); |
| SDOperand Src = getValue(SrcV); |
| SDOperand Ptr = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If |
| /// we want to emit this as a call to a named external function, return the name |
| /// otherwise lower it and return null. |
| const char * |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { |
| switch (Intrinsic) { |
| case Intrinsic::vastart: visitVAStart(I); return 0; |
| case Intrinsic::vaend: visitVAEnd(I); return 0; |
| case Intrinsic::vacopy: visitVACopy(I); return 0; |
| case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0; |
| case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return 0; |
| case Intrinsic::setjmp: |
| return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); |
| break; |
| case Intrinsic::longjmp: |
| return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); |
| break; |
| case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return 0; |
| case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return 0; |
| case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0; |
| |
| case Intrinsic::readport: |
| case Intrinsic::readio: { |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(TLI.getValueType(I.getType())); |
| VTs.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| Ops.push_back(getValue(I.getOperand(1))); |
| SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ? |
| ISD::READPORT : ISD::READIO, VTs, Ops); |
| |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::writeport: |
| case Intrinsic::writeio: |
| DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ? |
| ISD::WRITEPORT : ISD::WRITEIO, MVT::Other, |
| getRoot(), getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)))); |
| return 0; |
| |
| case Intrinsic::dbg_stoppoint: { |
| if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) |
| return "llvm_debugger_stop"; |
| |
| MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); |
| if (DebugInfo && DebugInfo->Verify(I.getOperand(4))) { |
| std::vector<SDOperand> Ops; |
| |
| // Input Chain |
| Ops.push_back(getRoot()); |
| |
| // line number |
| Ops.push_back(getValue(I.getOperand(2))); |
| |
| // column |
| Ops.push_back(getValue(I.getOperand(3))); |
| |
| DebugInfoDesc *DD = DebugInfo->getDescFor(I.getOperand(4)); |
| assert(DD && "Not a debug information descriptor"); |
| CompileUnitDesc *CompileUnit = dyn_cast<CompileUnitDesc>(DD); |
| assert(CompileUnit && "Not a compile unit"); |
| Ops.push_back(DAG.getString(CompileUnit->getFileName())); |
| Ops.push_back(DAG.getString(CompileUnit->getDirectory())); |
| |
| if (Ops.size() == 5) // Found filename/workingdir. |
| DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops)); |
| } |
| |
| setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); |
| return 0; |
| } |
| case Intrinsic::dbg_region_start: |
| if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) |
| return "llvm_dbg_region_start"; |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); |
| return 0; |
| case Intrinsic::dbg_region_end: |
| if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) |
| return "llvm_dbg_region_end"; |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); |
| return 0; |
| case Intrinsic::dbg_func_start: |
| if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) |
| return "llvm_dbg_subprogram"; |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); |
| return 0; |
| case Intrinsic::dbg_declare: |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); |
| return 0; |
| |
| case Intrinsic::isunordered_f32: |
| case Intrinsic::isunordered_f64: |
| setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), ISD::SETUO)); |
| return 0; |
| |
| case Intrinsic::sqrt_f32: |
| case Intrinsic::sqrt_f64: |
| setValue(&I, DAG.getNode(ISD::FSQRT, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::pcmarker: { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::readcyclecounter: { |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(MVT::i64); |
| VTs.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::bswap_i16: |
| case Intrinsic::bswap_i32: |
| case Intrinsic::bswap_i64: |
| setValue(&I, DAG.getNode(ISD::BSWAP, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::cttz_i8: |
| case Intrinsic::cttz_i16: |
| case Intrinsic::cttz_i32: |
| case Intrinsic::cttz_i64: |
| setValue(&I, DAG.getNode(ISD::CTTZ, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::ctlz_i8: |
| case Intrinsic::ctlz_i16: |
| case Intrinsic::ctlz_i32: |
| case Intrinsic::ctlz_i64: |
| setValue(&I, DAG.getNode(ISD::CTLZ, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::ctpop_i8: |
| case Intrinsic::ctpop_i16: |
| case Intrinsic::ctpop_i32: |
| case Intrinsic::ctpop_i64: |
| setValue(&I, DAG.getNode(ISD::CTPOP, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::stacksave: { |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(TLI.getPointerTy()); |
| VTs.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::stackrestore: { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::prefetch: |
| // FIXME: Currently discarding prefetches. |
| return 0; |
| default: |
| std::cerr << I; |
| assert(0 && "This intrinsic is not implemented yet!"); |
| return 0; |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitCall(CallInst &I) { |
| const char *RenameFn = 0; |
| if (Function *F = I.getCalledFunction()) { |
| if (F->isExternal()) |
| if (unsigned IID = F->getIntrinsicID()) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } else { // Not an LLVM intrinsic. |
| const std::string &Name = F->getName(); |
| if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } |
| } |
| } else if (isa<InlineAsm>(I.getOperand(0))) { |
| visitInlineAsm(I); |
| return; |
| } |
| |
| SDOperand Callee; |
| if (!RenameFn) |
| Callee = getValue(I.getOperand(0)); |
| else |
| Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.reserve(I.getNumOperands()); |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { |
| Value *Arg = I.getOperand(i); |
| SDOperand ArgNode = getValue(Arg); |
| Args.push_back(std::make_pair(ArgNode, Arg->getType())); |
| } |
| |
| const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(), |
| I.isTailCall(), Callee, Args, DAG); |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, Result.first); |
| DAG.setRoot(Result.second); |
| } |
| |
| SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag) { |
| SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag); |
| Chain = Val.getValue(1); |
| Flag = Val.getValue(2); |
| |
| // If the result was expanded, copy from the top part. |
| if (Regs.size() > 1) { |
| assert(Regs.size() == 2 && |
| "Cannot expand to more than 2 elts yet!"); |
| SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag); |
| Chain = Val.getValue(1); |
| Flag = Val.getValue(2); |
| return DAG.getNode(ISD::MERGE_VALUES, ValueVT, Val, Hi); |
| } |
| |
| // Otherwise, if the return value was promoted, truncate it to the |
| // appropriate type. |
| if (RegVT == ValueVT) |
| return Val; |
| |
| if (MVT::isInteger(RegVT)) |
| return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); |
| else |
| return DAG.getNode(ISD::FP_ROUND, ValueVT, Val); |
| } |
| |
| |
| |
| /// isAllocatableRegister - If the specified register is safe to allocate, |
| /// i.e. it isn't a stack pointer or some other special register, return the |
| /// register class for the register. Otherwise, return null. |
| static const TargetRegisterClass * |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF, |
| const MRegisterInfo *MRI) { |
| for (MRegisterInfo::regclass_iterator RC = MRI->regclass_begin(), |
| E = MRI->regclass_end(); RC != E; ++RC) { |
| // NOTE: This isn't ideal. In particular, this might allocate the |
| // frame pointer in functions that need it (due to them not being taken |
| // out of allocation, because a variable sized allocation hasn't been seen |
| // yet). This is a slight code pessimization, but should still work. |
| for (TargetRegisterClass::iterator I = (*RC)->allocation_order_begin(MF), |
| E = (*RC)->allocation_order_end(MF); I != E; ++I) |
| if (*I == Reg) |
| return *RC; |
| } |
| return 0; |
| } |
| |
| RegsForValue SelectionDAGLowering:: |
| GetRegistersForValue(const std::string &ConstrCode, |
| MVT::ValueType VT, bool isOutReg, bool isInReg, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs) { |
| std::pair<unsigned, const TargetRegisterClass*> PhysReg = |
| TLI.getRegForInlineAsmConstraint(ConstrCode, VT); |
| std::vector<unsigned> Regs; |
| |
| unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1; |
| MVT::ValueType RegVT; |
| MVT::ValueType ValueVT = VT; |
| |
| if (PhysReg.first) { |
| if (VT == MVT::Other) |
| ValueVT = *PhysReg.second->vt_begin(); |
| RegVT = VT; |
| |
| // This is a explicit reference to a physical register. |
| Regs.push_back(PhysReg.first); |
| |
| // If this is an expanded reference, add the rest of the regs to Regs. |
| if (NumRegs != 1) { |
| RegVT = *PhysReg.second->vt_begin(); |
| TargetRegisterClass::iterator I = PhysReg.second->begin(); |
| TargetRegisterClass::iterator E = PhysReg.second->end(); |
| for (; *I != PhysReg.first; ++I) |
| assert(I != E && "Didn't find reg!"); |
| |
| // Already added the first reg. |
| --NumRegs; ++I; |
| for (; NumRegs; --NumRegs, ++I) { |
| assert(I != E && "Ran out of registers to allocate!"); |
| Regs.push_back(*I); |
| } |
| } |
| return RegsForValue(Regs, RegVT, ValueVT); |
| } |
| |
| // This is a reference to a register class. Allocate NumRegs consecutive, |
| // available, registers from the class. |
| std::vector<unsigned> RegClassRegs = |
| TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT); |
| |
| const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); |
| MachineFunction &MF = *CurMBB->getParent(); |
| unsigned NumAllocated = 0; |
| for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { |
| unsigned Reg = RegClassRegs[i]; |
| // See if this register is available. |
| if ((isOutReg && OutputRegs.count(Reg)) || // Already used. |
| (isInReg && InputRegs.count(Reg))) { // Already used. |
| // Make sure we find consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Check to see if this register is allocatable (i.e. don't give out the |
| // stack pointer). |
| const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, MRI); |
| if (!RC) { |
| // Make sure we find consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Okay, this register is good, we can use it. |
| ++NumAllocated; |
| |
| // If we allocated enough consecutive |
| if (NumAllocated == NumRegs) { |
| unsigned RegStart = (i-NumAllocated)+1; |
| unsigned RegEnd = i+1; |
| // Mark all of the allocated registers used. |
| for (unsigned i = RegStart; i != RegEnd; ++i) { |
| unsigned Reg = RegClassRegs[i]; |
| Regs.push_back(Reg); |
| if (isOutReg) OutputRegs.insert(Reg); // Mark reg used. |
| if (isInReg) InputRegs.insert(Reg); // Mark reg used. |
| } |
| |
| return RegsForValue(Regs, *RC->vt_begin(), VT); |
| } |
| } |
| |
| // Otherwise, we couldn't allocate enough registers for this. |
| return RegsForValue(); |
| } |
| |
| |
| /// visitInlineAsm - Handle a call to an InlineAsm object. |
| /// |
| void SelectionDAGLowering::visitInlineAsm(CallInst &I) { |
| InlineAsm *IA = cast<InlineAsm>(I.getOperand(0)); |
| |
| SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), |
| MVT::Other); |
| |
| // Note, we treat inline asms both with and without side-effects as the same. |
| // If an inline asm doesn't have side effects and doesn't access memory, we |
| // could not choose to not chain it. |
| bool hasSideEffects = IA->hasSideEffects(); |
| |
| std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); |
| std::vector<MVT::ValueType> ConstraintVTs; |
| |
| /// AsmNodeOperands - A list of pairs. The first element is a register, the |
| /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set |
| /// if it is a def of that register. |
| std::vector<SDOperand> AsmNodeOperands; |
| AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain |
| AsmNodeOperands.push_back(AsmStr); |
| |
| SDOperand Chain = getRoot(); |
| SDOperand Flag; |
| |
| // We fully assign registers here at isel time. This is not optimal, but |
| // should work. For register classes that correspond to LLVM classes, we |
| // could let the LLVM RA do its thing, but we currently don't. Do a prepass |
| // over the constraints, collecting fixed registers that we know we can't use. |
| std::set<unsigned> OutputRegs, InputRegs; |
| unsigned OpNum = 1; |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); |
| std::string &ConstraintCode = Constraints[i].Codes[0]; |
| |
| MVT::ValueType OpVT; |
| |
| // Compute the value type for each operand and add it to ConstraintVTs. |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: |
| if (!Constraints[i].isIndirectOutput) { |
| assert(I.getType() != Type::VoidTy && "Bad inline asm!"); |
| OpVT = TLI.getValueType(I.getType()); |
| } else { |
| Value *CallOperand = I.getOperand(OpNum); |
| const Type *OpTy = CallOperand->getType(); |
| OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType()); |
| OpNum++; // Consumes a call operand. |
| } |
| break; |
| case InlineAsm::isInput: |
| OpVT = TLI.getValueType(I.getOperand(OpNum)->getType()); |
| OpNum++; // Consumes a call operand. |
| break; |
| case InlineAsm::isClobber: |
| OpVT = MVT::Other; |
| break; |
| } |
| |
| ConstraintVTs.push_back(OpVT); |
| |
| if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0) |
| continue; // Not assigned a fixed reg. |
| |
| // Build a list of regs that this operand uses. This always has a single |
| // element for promoted/expanded operands. |
| RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT, |
| false, false, |
| OutputRegs, InputRegs); |
| |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: |
| // We can't assign any other output to this register. |
| OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| // If this is an early-clobber output, it cannot be assigned to the same |
| // value as the input reg. |
| if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| case InlineAsm::isInput: |
| // We can't assign any other input to this register. |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| case InlineAsm::isClobber: |
| // Clobbered regs cannot be used as inputs or outputs. |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| } |
| } |
| |
| // Loop over all of the inputs, copying the operand values into the |
| // appropriate registers and processing the output regs. |
| RegsForValue RetValRegs; |
| std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; |
| OpNum = 1; |
| |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); |
| std::string &ConstraintCode = Constraints[i].Codes[0]; |
| |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: { |
| // If this is an early-clobber output, or if there is an input |
| // constraint that matches this, we need to reserve the input register |
| // so no other inputs allocate to it. |
| bool UsesInputRegister = false; |
| if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) |
| UsesInputRegister = true; |
| |
| // Copy the output from the appropriate register. Find a register that |
| // we can use. |
| RegsForValue Regs = |
| GetRegistersForValue(ConstraintCode, ConstraintVTs[i], |
| true, UsesInputRegister, |
| OutputRegs, InputRegs); |
| assert(!Regs.Regs.empty() && "Couldn't allocate output reg!"); |
| |
| if (!Constraints[i].isIndirectOutput) { |
| assert(RetValRegs.Regs.empty() && |
| "Cannot have multiple output constraints yet!"); |
| assert(I.getType() != Type::VoidTy && "Bad inline asm!"); |
| RetValRegs = Regs; |
| } else { |
| Value *CallOperand = I.getOperand(OpNum); |
| IndirectStoresToEmit.push_back(std::make_pair(Regs, CallOperand)); |
| OpNum++; // Consumes a call operand. |
| } |
| |
| // Add information to the INLINEASM node to know that this register is |
| // set. |
| |
| // FIXME: |
| // FIXME: Handle multiple regs here. |
| // FIXME: |
| unsigned DestReg = Regs.Regs[0]; |
| AsmNodeOperands.push_back(DAG.getRegister(DestReg, Regs.RegVT)); |
| AsmNodeOperands.push_back(DAG.getConstant(2, MVT::i32)); // ISDEF |
| break; |
| } |
| case InlineAsm::isInput: { |
| Value *CallOperand = I.getOperand(OpNum); |
| OpNum++; // Consumes a call operand. |
| |
| SDOperand ResOp; |
| unsigned ResOpType; |
| SDOperand InOperandVal = getValue(CallOperand); |
| |
| if (isdigit(ConstraintCode[0])) { // Matching constraint? |
| // If this is required to match an output register we have already set, |
| // just use its register. |
| unsigned OperandNo = atoi(ConstraintCode.c_str()); |
| unsigned SrcReg; |
| SrcReg = cast<RegisterSDNode>(AsmNodeOperands[OperandNo*2+2])->getReg(); |
| ResOp = DAG.getRegister(SrcReg, ConstraintVTs[i]); |
| ResOpType = 1; |
| |
| Chain = DAG.getCopyToReg(Chain, SrcReg, InOperandVal, Flag); |
| Flag = Chain.getValue(1); |
| } else { |
| TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass; |
| if (ConstraintCode.size() == 1) // not a physreg name. |
| CTy = TLI.getConstraintType(ConstraintCode[0]); |
| |
| switch (CTy) { |
| default: assert(0 && "Unknown constraint type! FAIL!"); |
| case TargetLowering::C_RegisterClass: { |
| // Copy the input into the appropriate registers. |
| RegsForValue InRegs = |
| GetRegistersForValue(ConstraintCode, ConstraintVTs[i], |
| false, true, OutputRegs, InputRegs); |
| // FIXME: should be match fail. |
| assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!"); |
| |
| if (InRegs.Regs.size() == 1) { |
| // If there is a single register and the types differ, this must be |
| // a promotion. |
| if (InRegs.RegVT != InRegs.ValueVT) { |
| if (MVT::isInteger(InRegs.RegVT)) |
| InOperandVal = DAG.getNode(ISD::ANY_EXTEND, InRegs.RegVT, |
| InOperandVal); |
| else |
| InOperandVal = DAG.getNode(ISD::FP_EXTEND, InRegs.RegVT, |
| InOperandVal); |
| } |
| Chain = DAG.getCopyToReg(Chain, InRegs.Regs[0], InOperandVal, Flag); |
| Flag = Chain.getValue(1); |
| |
| ResOp = DAG.getRegister(InRegs.Regs[0], InRegs.RegVT); |
| } else { |
| for (unsigned i = 0, e = InRegs.Regs.size(); i != e; ++i) { |
| SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, InRegs.RegVT, |
| InOperandVal, |
| DAG.getConstant(i, MVT::i32)); |
| Chain = DAG.getCopyToReg(Chain, InRegs.Regs[i], Part, Flag); |
| Flag = Chain.getValue(1); |
| } |
| ResOp = DAG.getRegister(InRegs.Regs[0], InRegs.RegVT); |
| } |
| |
| ResOpType = 1; |
| break; |
| } |
| case TargetLowering::C_Other: |
| if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0])) |
| assert(0 && "MATCH FAIL!"); |
| ResOp = InOperandVal; |
| ResOpType = 3; |
| break; |
| } |
| } |
| |
| // Add information to the INLINEASM node to know about this input. |
| AsmNodeOperands.push_back(ResOp); |
| AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); |
| break; |
| } |
| case InlineAsm::isClobber: |
| // Nothing to do. |
| break; |
| } |
| } |
| |
| // Finish up input operands. |
| AsmNodeOperands[0] = Chain; |
| if (Flag.Val) AsmNodeOperands.push_back(Flag); |
| |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(MVT::Other); |
| VTs.push_back(MVT::Flag); |
| Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands); |
| Flag = Chain.getValue(1); |
| |
| // If this asm returns a register value, copy the result from that register |
| // and set it as the value of the call. |
| if (!RetValRegs.Regs.empty()) |
| setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag)); |
| |
| std::vector<std::pair<SDOperand, Value*> > StoresToEmit; |
| |
| // Process indirect outputs, first output all of the flagged copies out of |
| // physregs. |
| for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { |
| RegsForValue &OutRegs = IndirectStoresToEmit[i].first; |
| Value *Ptr = IndirectStoresToEmit[i].second; |
| SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag); |
| StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); |
| } |
| |
| // Emit the non-flagged stores from the physregs. |
| std::vector<SDOperand> OutChains; |
| for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) |
| OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| StoresToEmit[i].first, |
| getValue(StoresToEmit[i].second), |
| DAG.getSrcValue(StoresToEmit[i].second))); |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains); |
| DAG.setRoot(Chain); |
| } |
| |
| |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) { |
| SDOperand Src = getValue(I.getOperand(0)); |
| |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| |
| if (IntPtr < Src.getValueType()) |
| Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); |
| else if (IntPtr > Src.getValueType()) |
| Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); |
| |
| // Scale the source by the type size. |
| uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType()); |
| Src = DAG.getNode(ISD::MUL, Src.getValueType(), |
| Src, getIntPtrConstant(ElementSize)); |
| |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType())); |
| |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true, |
| DAG.getExternalSymbol("malloc", IntPtr), |
| Args, DAG); |
| setValue(&I, Result.first); // Pointers always fit in registers |
| DAG.setRoot(Result.second); |
| } |
| |
| void SelectionDAGLowering::visitFree(FreeInst &I) { |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(getValue(I.getOperand(0)), |
| TLI.getTargetData().getIntPtrType())); |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true, |
| DAG.getExternalSymbol("free", IntPtr), Args, DAG); |
| DAG.setRoot(Result.second); |
| } |
| |
| // InsertAtEndOfBasicBlock - This method should be implemented by targets that |
| // mark instructions with the 'usesCustomDAGSchedInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and the scheduler passes ownership of it to this method. |
| MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *MBB) { |
| std::cerr << "If a target marks an instruction with " |
| "'usesCustomDAGSchedInserter', it must implement " |
| "TargetLowering::InsertAtEndOfBasicBlock!\n"; |
| abort(); |
| return 0; |
| } |
| |
| void SelectionDAGLowering::visitVAStart(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) { |
| SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), |
| getValue(I.getOperand(0)), |
| DAG.getSrcValue(I.getOperand(0))); |
| setValue(&I, V); |
| DAG.setRoot(V.getValue(1)); |
| } |
| |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVACopy(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), |
| DAG.getSrcValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(2)))); |
| } |
| |
| // It is always conservatively correct for llvm.returnaddress and |
| // llvm.frameaddress to return 0. |
| std::pair<SDOperand, SDOperand> |
| TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, |
| unsigned Depth, SelectionDAG &DAG) { |
| return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); |
| } |
| |
| SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| assert(0 && "LowerOperation not implemented for this target!"); |
| abort(); |
| return SDOperand(); |
| } |
| |
| SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, |
| SelectionDAG &DAG) { |
| assert(0 && "CustomPromoteOperation not implemented for this target!"); |
| abort(); |
| return SDOperand(); |
| } |
| |
| void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { |
| unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue(); |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG); |
| setValue(&I, Result.first); |
| DAG.setRoot(Result.second); |
| } |
| |
| /// getMemsetValue - Vectorized representation of the memset value |
| /// operand. |
| static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT, |
| SelectionDAG &DAG) { |
| MVT::ValueType CurVT = VT; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { |
| uint64_t Val = C->getValue() & 255; |
| unsigned Shift = 8; |
| while (CurVT != MVT::i8) { |
| Val = (Val << Shift) | Val; |
| Shift <<= 1; |
| CurVT = (MVT::ValueType)((unsigned)CurVT - 1); |
| } |
| return DAG.getConstant(Val, VT); |
| } else { |
| Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); |
| unsigned Shift = 8; |
| while (CurVT != MVT::i8) { |
| Value = |
| DAG.getNode(ISD::OR, VT, |
| DAG.getNode(ISD::SHL, VT, Value, |
| DAG.getConstant(Shift, MVT::i8)), Value); |
| Shift <<= 1; |
| CurVT = (MVT::ValueType)((unsigned)CurVT - 1); |
| } |
| |
| return Value; |
| } |
| } |
| |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only |
| /// used when a memcpy is turned into a memset when the source is a constant |
| /// string ptr. |
| static SDOperand getMemsetStringVal(MVT::ValueType VT, |
| SelectionDAG &DAG, TargetLowering &TLI, |
| std::string &Str, unsigned Offset) { |
| MVT::ValueType CurVT = VT; |
| uint64_t Val = 0; |
| unsigned MSB = getSizeInBits(VT) / 8; |
| if (TLI.isLittleEndian()) |
| Offset = Offset + MSB - 1; |
| for (unsigned i = 0; i != MSB; ++i) { |
| Val = (Val << 8) | Str[Offset]; |
| Offset += TLI.isLittleEndian() ? -1 : 1; |
| } |
| return DAG.getConstant(Val, VT); |
| } |
| |
| /// getMemBasePlusOffset - Returns base and offset node for the |
| static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| MVT::ValueType VT = Base.getValueType(); |
| return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); |
| } |
| |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required |
| /// to replace the memset / memcpy is below the threshold. It also returns the |
| /// types of the sequence of memory ops to perform memset / memcpy. |
| static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps, |
| unsigned Limit, uint64_t Size, |
| unsigned Align, TargetLowering &TLI) { |
| MVT::ValueType VT; |
| |
| if (TLI.allowsUnalignedMemoryAccesses()) { |
| VT = MVT::i64; |
| } else { |
| switch (Align & 7) { |
| case 0: |
| VT = MVT::i64; |
| break; |
| case 4: |
| VT = MVT::i32; |
| break; |
| case 2: |
| VT = MVT::i16; |
| break; |
| default: |
| VT = MVT::i8; |
| break; |
| } |
| } |
| |
| MVT::ValueType LVT = MVT::i64; |
| while (!TLI.isTypeLegal(LVT)) |
| LVT = (MVT::ValueType)((unsigned)LVT - 1); |
| assert(MVT::isInteger(LVT)); |
| |
| if (VT > LVT) |
| VT = LVT; |
| |
| unsigned NumMemOps = 0; |
| while (Size != 0) { |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| while (VTSize > Size) { |
| VT = (MVT::ValueType)((unsigned)VT - 1); |
| VTSize >>= 1; |
| } |
| assert(MVT::isInteger(VT)); |
| |
| if (++NumMemOps > Limit) |
| return false; |
| MemOps.push_back(VT); |
| Size -= VTSize; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { |
| SDOperand Op1 = getValue(I.getOperand(1)); |
| SDOperand Op2 = getValue(I.getOperand(2)); |
| SDOperand Op3 = getValue(I.getOperand(3)); |
| SDOperand Op4 = getValue(I.getOperand(4)); |
| unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue(); |
| if (Align == 0) Align = 1; |
| |
| if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) { |
| std::vector<MVT::ValueType> MemOps; |
| |
| // Expand memset / memcpy to a series of load / store ops |
| // if the size operand falls below a certain threshold. |
| std::vector<SDOperand> OutChains; |
| switch (Op) { |
| default: break; // Do nothing for now. |
| case ISD::MEMSET: { |
| if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(), |
| Size->getValue(), Align, TLI)) { |
| unsigned NumMemOps = MemOps.size(); |
| unsigned Offset = 0; |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT::ValueType VT = MemOps[i]; |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| SDOperand Value = getMemsetValue(Op2, VT, DAG); |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(), |
| Value, |
| getMemBasePlusOffset(Op1, Offset, DAG, TLI), |
| DAG.getSrcValue(I.getOperand(1), Offset)); |
| OutChains.push_back(Store); |
| Offset += VTSize; |
| } |
| } |
| break; |
| } |
| case ISD::MEMCPY: { |
| if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(), |
| Size->getValue(), Align, TLI)) { |
| unsigned NumMemOps = MemOps.size(); |
| unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0; |
| GlobalAddressSDNode *G = NULL; |
| std::string Str; |
| bool CopyFromStr = false; |
| |
| if (Op2.getOpcode() == ISD::GlobalAddress) |
| G = cast<GlobalAddressSDNode>(Op2); |
| else if (Op2.getOpcode() == ISD::ADD && |
| Op2.getOperand(0).getOpcode() == ISD::GlobalAddress && |
| Op2.getOperand(1).getOpcode() == ISD::Constant) { |
| G = cast<GlobalAddressSDNode>(Op2.getOperand(0)); |
| SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue(); |
| } |
| if (G) { |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal()); |
| if (GV) { |
| Str = getStringValue(GV); |
| if (!Str.empty()) { |
| CopyFromStr = true; |
| SrcOff += SrcDelta; |
| } |
| } |
| } |
| |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT::ValueType VT = MemOps[i]; |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| SDOperand Value, Chain, Store; |
| |
| if (CopyFromStr) { |
| Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); |
| Chain = getRoot(); |
| Store = |
| DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| getMemBasePlusOffset(Op1, DstOff, DAG, TLI), |
| DAG.getSrcValue(I.getOperand(1), DstOff)); |
| } else { |
| Value = DAG.getLoad(VT, getRoot(), |
| getMemBasePlusOffset(Op2, SrcOff, DAG, TLI), |
| DAG.getSrcValue(I.getOperand(2), SrcOff)); |
| Chain = Value.getValue(1); |
| Store = |
| DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| getMemBasePlusOffset(Op1, DstOff, DAG, TLI), |
| DAG.getSrcValue(I.getOperand(1), DstOff)); |
| } |
| OutChains.push_back(Store); |
| SrcOff += VTSize; |
| DstOff += VTSize; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!OutChains.empty()) { |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains)); |
| return; |
| } |
| } |
| |
| std::vector<SDOperand> Ops; |
| Ops.push_back(getRoot()); |
| Ops.push_back(Op1); |
| Ops.push_back(Op2); |
| Ops.push_back(Op3); |
| Ops.push_back(Op4); |
| DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { |
| return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| // FIXME: we only modify the CFG to split critical edges. This |
| // updates dom and loop info. |
| } |
| |
| |
| /// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset, |
| /// casting to the type of GEPI. |
| static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI, |
| Value *Ptr, Value *PtrOffset) { |
| if (V) return V; // Already computed. |
| |
| BasicBlock::iterator InsertPt; |
| if (BB == GEPI->getParent()) { |
| // If insert into the GEP's block, insert right after the GEP. |
| InsertPt = GEPI; |
| ++InsertPt; |
| } else { |
| // Otherwise, insert at the top of BB, after any PHI nodes |
| InsertPt = BB->begin(); |
| while (isa<PHINode>(InsertPt)) ++InsertPt; |
| } |
| |
| // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into |
| // BB so that there is only one value live across basic blocks (the cast |
| // operand). |
| if (CastInst *CI = dyn_cast<CastInst>(Ptr)) |
| if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType())) |
| Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt); |
| |
| // Add the offset, cast it to the right type. |
| Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt); |
| Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt); |
| return V = Ptr; |
| } |
| |
| |
| /// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction |
| /// selection, we want to be a bit careful about some things. In particular, if |
| /// we have a GEP instruction that is used in a different block than it is |
| /// defined, the addressing expression of the GEP cannot be folded into loads or |
| /// stores that use it. In this case, decompose the GEP and move constant |
| /// indices into blocks that use it. |
| static void OptimizeGEPExpression(GetElementPtrInst *GEPI, |
| const TargetData &TD) { |
| // If this GEP is only used inside the block it is defined in, there is no |
| // need to rewrite it. |
| bool isUsedOutsideDefBB = false; |
| BasicBlock *DefBB = GEPI->getParent(); |
| for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); |
| UI != E; ++UI) { |
| if (cast<Instruction>(*UI)->getParent() != DefBB) { |
| isUsedOutsideDefBB = true; |
| break; |
| } |
| } |
| if (!isUsedOutsideDefBB) return; |
| |
| // If this GEP has no non-zero constant indices, there is nothing we can do, |
| // ignore it. |
| bool hasConstantIndex = false; |
| for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, |
| E = GEPI->op_end(); OI != E; ++OI) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) |
| if (CI->getRawValue()) { |
| hasConstantIndex = true; |
| break; |
| } |
| } |
| // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses. |
| if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return; |
| |
| // Otherwise, decompose the GEP instruction into multiplies and adds. Sum the |
| // constant offset (which we now know is non-zero) and deal with it later. |
| uint64_t ConstantOffset = 0; |
| const Type *UIntPtrTy = TD.getIntPtrType(); |
| Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI); |
| const Type *Ty = GEPI->getOperand(0)->getType(); |
| |
| for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, |
| E = GEPI->op_end(); OI != E; ++OI) { |
| Value *Idx = *OI; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantUInt>(Idx)->getValue(); |
| if (Field) |
| ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field]; |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // Handle constant subscripts. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->getRawValue() == 0) continue; |
| |
| if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI)) |
| ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue(); |
| else |
| ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue(); |
| continue; |
| } |
| |
| // Ptr = Ptr + Idx * ElementSize; |
| |
| // Cast Idx to UIntPtrTy if needed. |
| Idx = new CastInst(Idx, UIntPtrTy, "", GEPI); |
| |
| uint64_t ElementSize = TD.getTypeSize(Ty); |
| // Mask off bits that should not be set. |
| ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); |
| Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize); |
| |
| // Multiply by the element size and add to the base. |
| Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI); |
| Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI); |
| } |
| } |
| |
| // Make sure that the offset fits in uintptr_t. |
| ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); |
| Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset); |
| |
| // Okay, we have now emitted all of the variable index parts to the BB that |
| // the GEP is defined in. Loop over all of the using instructions, inserting |
| // an "add Ptr, ConstantOffset" into each block that uses it and update the |
| // instruction to use the newly computed value, making GEPI dead. When the |
| // user is a load or store instruction address, we emit the add into the user |
| // block, otherwise we use a canonical version right next to the gep (these |
| // won't be foldable as addresses, so we might as well share the computation). |
| |
| std::map<BasicBlock*,Value*> InsertedExprs; |
| while (!GEPI->use_empty()) { |
| Instruction *User = cast<Instruction>(GEPI->use_back()); |
| |
| // If this use is not foldable into the addressing mode, use a version |
| // emitted in the GEP block. |
| Value *NewVal; |
| if (!isa<LoadInst>(User) && |
| (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) { |
| NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, |
| Ptr, PtrOffset); |
| } else { |
| // Otherwise, insert the code in the User's block so it can be folded into |
| // any users in that block. |
| NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], |
| User->getParent(), GEPI, |
| Ptr, PtrOffset); |
| } |
| User->replaceUsesOfWith(GEPI, NewVal); |
| } |
| |
| // Finally, the GEP is dead, remove it. |
| GEPI->eraseFromParent(); |
| } |
| |
| bool SelectionDAGISel::runOnFunction(Function &Fn) { |
| MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); |
| RegMap = MF.getSSARegMap(); |
| DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); |
| |
| // First, split all critical edges for PHI nodes with incoming values that are |
| // constants, this way the load of the constant into a vreg will not be placed |
| // into MBBs that are used some other way. |
| // |
| // In this pass we also look for GEP instructions that are used across basic |
| // blocks and rewrites them to improve basic-block-at-a-time selection. |
| // |
| for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { |
| PHINode *PN; |
| BasicBlock::iterator BBI; |
| for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI) |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (isa<Constant>(PN->getIncomingValue(i))) |
| SplitCriticalEdge(PN->getIncomingBlock(i), BB); |
| |
| for (BasicBlock::iterator E = BB->end(); BBI != E; ) |
| if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++)) |
| OptimizeGEPExpression(GEPI, TLI.getTargetData()); |
| } |
| |
| FunctionLoweringInfo FuncInfo(TLI, Fn, MF); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| SelectBasicBlock(I, MF, FuncInfo); |
| |
| return true; |
| } |
| |
| |
| SDOperand SelectionDAGISel:: |
| CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { |
| SDOperand Op = SDL.getValue(V); |
| assert((Op.getOpcode() != ISD::CopyFromReg || |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && |
| "Copy from a reg to the same reg!"); |
| |
| // If this type is not legal, we must make sure to not create an invalid |
| // register use. |
| MVT::ValueType SrcVT = Op.getValueType(); |
| MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT); |
| SelectionDAG &DAG = SDL.DAG; |
| if (SrcVT == DestVT) { |
| return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); |
| } else if (SrcVT < DestVT) { |
| // The src value is promoted to the register. |
| if (MVT::isFloatingPoint(SrcVT)) |
| Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op); |
| else |
| Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op); |
| return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); |
| } else { |
| // The src value is expanded into multiple registers. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, |
| Op, DAG.getConstant(0, MVT::i32)); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, |
| Op, DAG.getConstant(1, MVT::i32)); |
| Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo); |
| return DAG.getCopyToReg(Op, Reg+1, Hi); |
| } |
| } |
| |
| void SelectionDAGISel:: |
| LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL, |
| std::vector<SDOperand> &UnorderedChains) { |
| // If this is the entry block, emit arguments. |
| Function &F = *BB->getParent(); |
| FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; |
| SDOperand OldRoot = SDL.DAG.getRoot(); |
| std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG); |
| |
| unsigned a = 0; |
| for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); |
| AI != E; ++AI, ++a) |
| if (!AI->use_empty()) { |
| SDL.setValue(AI, Args[a]); |
| |
| // If this argument is live outside of the entry block, insert a copy from |
| // whereever we got it to the vreg that other BB's will reference it as. |
| if (FuncInfo.ValueMap.count(AI)) { |
| SDOperand Copy = |
| CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); |
| UnorderedChains.push_back(Copy); |
| } |
| } |
| |
| // Next, if the function has live ins that need to be copied into vregs, |
| // emit the copies now, into the top of the block. |
| MachineFunction &MF = SDL.DAG.getMachineFunction(); |
| if (MF.livein_begin() != MF.livein_end()) { |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo(); |
| for (MachineFunction::livein_iterator LI = MF.livein_begin(), |
| E = MF.livein_end(); LI != E; ++LI) |
| if (LI->second) |
| MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second, |
| LI->first, RegMap->getRegClass(LI->second)); |
| } |
| |
| // Finally, if the target has anything special to do, allow it to do so. |
| EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); |
| } |
| |
| |
| void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, |
| std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, |
| FunctionLoweringInfo &FuncInfo) { |
| SelectionDAGLowering SDL(DAG, TLI, FuncInfo); |
| |
| std::vector<SDOperand> UnorderedChains; |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| if (LLVMBB == &LLVMBB->getParent()->front()) |
| LowerArguments(LLVMBB, SDL, UnorderedChains); |
| |
| BB = FuncInfo.MBBMap[LLVMBB]; |
| SDL.setCurrentBasicBlock(BB); |
| |
| // Lower all of the non-terminator instructions. |
| for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); |
| I != E; ++I) |
| SDL.visit(*I); |
| |
| // Ensure that all instructions which are used outside of their defining |
| // blocks are available as virtual registers. |
| for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) |
| if (!I->use_empty() && !isa<PHINode>(I)) { |
| std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I); |
| if (VMI != FuncInfo.ValueMap.end()) |
| UnorderedChains.push_back( |
| CopyValueToVirtualRegister(SDL, I, VMI->second)); |
| } |
| |
| // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to |
| // ensure constants are generated when needed. Remember the virtual registers |
| // that need to be added to the Machine PHI nodes as input. We cannot just |
| // directly add them, because expansion might result in multiple MBB's for one |
| // BB. As such, the start of the BB might correspond to a different MBB than |
| // the end. |
| // |
| |
| // Emit constants only once even if used by multiple PHI nodes. |
| std::map<Constant*, unsigned> ConstantsOut; |
| |
| // Check successor nodes PHI nodes that expect a constant to be available from |
| // this block. |
| TerminatorInst *TI = LLVMBB->getTerminator(); |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| BasicBlock *SuccBB = TI->getSuccessor(succ); |
| MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); |
| PHINode *PN; |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::iterator I = SuccBB->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) |
| if (!PN->use_empty()) { |
| unsigned Reg; |
| Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| if (Constant *C = dyn_cast<Constant>(PHIOp)) { |
| unsigned &RegOut = ConstantsOut[C]; |
| if (RegOut == 0) { |
| RegOut = FuncInfo.CreateRegForValue(C); |
| UnorderedChains.push_back( |
| CopyValueToVirtualRegister(SDL, C, RegOut)); |
| } |
| Reg = RegOut; |
| } else { |
| Reg = FuncInfo.ValueMap[PHIOp]; |
| if (Reg == 0) { |
| assert(isa<AllocaInst>(PHIOp) && |
| FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && |
| "Didn't codegen value into a register!??"); |
| Reg = FuncInfo.CreateRegForValue(PHIOp); |
| UnorderedChains.push_back( |
| CopyValueToVirtualRegister(SDL, PHIOp, Reg)); |
| } |
| } |
| |
| // Remember that this register needs to added to the machine PHI node as |
| // the input for this MBB. |
| unsigned NumElements = |
| TLI.getNumElements(TLI.getValueType(PN->getType())); |
| for (unsigned i = 0, e = NumElements; i != e; ++i) |
| PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); |
| } |
| } |
| ConstantsOut.clear(); |
| |
| // Turn all of the unordered chains into one factored node. |
| if (!UnorderedChains.empty()) { |
| SDOperand Root = SDL.getRoot(); |
| if (Root.getOpcode() != ISD::EntryToken) { |
| unsigned i = 0, e = UnorderedChains.size(); |
| for (; i != e; ++i) { |
| assert(UnorderedChains[i].Val->getNumOperands() > 1); |
| if (UnorderedChains[i].Val->getOperand(0) == Root) |
| break; // Don't add the root if we already indirectly depend on it. |
| } |
| |
| if (i == e) |
| UnorderedChains.push_back(Root); |
| } |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains)); |
| } |
| |
| // Lower the terminator after the copies are emitted. |
| SDL.visit(*LLVMBB->getTerminator()); |
| |
| // Make sure the root of the DAG is up-to-date. |
| DAG.setRoot(SDL.getRoot()); |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, |
| FunctionLoweringInfo &FuncInfo) { |
| SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>()); |
| CurDAG = &DAG; |
| std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate; |
| |
| // First step, lower LLVM code to some DAG. This DAG may use operations and |
| // types that are not supported by the target. |
| BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| DAG.Combine(false); |
| |
| DEBUG(std::cerr << "Lowered selection DAG:\n"); |
| DEBUG(DAG.dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| DAG.Legalize(); |
| |
| DEBUG(std::cerr << "Legalized selection DAG:\n"); |
| DEBUG(DAG.dump()); |
| |
| // Run the DAG combiner in post-legalize mode. |
| DAG.Combine(true); |
| |
| if (ViewISelDAGs) DAG.viewGraph(); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| InstructionSelectBasicBlock(DAG); |
| |
| DEBUG(std::cerr << "Selected machine code:\n"); |
| DEBUG(BB->dump()); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = PHINodesToUpdate[i].first; |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| PHI->addRegOperand(PHINodesToUpdate[i].second); |
| PHI->addMachineBasicBlockOperand(BB); |
| } |
| |
| // Finally, add the CFG edges from the last selected MBB to the successor |
| // MBBs. |
| TerminatorInst *TI = LLVMBB->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)]; |
| BB->addSuccessor(Succ0MBB); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each |
| /// target node in the graph. |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { |
| if (ViewSchedDAGs) DAG.viewGraph(); |
| ScheduleDAG *SL = NULL; |
| |
| switch (ISHeuristic) { |
| default: assert(0 && "Unrecognized scheduling heuristic"); |
| case defaultScheduling: |
| if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) |
| SL = createSimpleDAGScheduler(noScheduling, DAG, BB); |
| else /* TargetLowering::SchedulingForRegPressure */ |
| SL = createBURRListDAGScheduler(DAG, BB); |
| break; |
| case noScheduling: |
| case simpleScheduling: |
| case simpleNoItinScheduling: |
| SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB); |
| break; |
| case listSchedulingBURR: |
| SL = createBURRListDAGScheduler(DAG, BB); |
| } |
| BB = SL->Run(); |
| delete SL; |
| } |