| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CodeGenDAGPatterns class, which is used to read and |
| // represent the patterns present in a .td file for instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenDAGPatterns.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Streams.h" |
| #include <set> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Helpers for working with extended types. |
| |
| /// FilterVTs - Filter a list of VT's according to a predicate. |
| /// |
| template<typename T> |
| static std::vector<MVT::ValueType> |
| FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { |
| std::vector<MVT::ValueType> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| if (Filter(InVTs[i])) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| template<typename T> |
| static std::vector<unsigned char> |
| FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { |
| std::vector<unsigned char> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| if (Filter((MVT::ValueType)InVTs[i])) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| static std::vector<unsigned char> |
| ConvertVTs(const std::vector<MVT::ValueType> &InVTs) { |
| std::vector<unsigned char> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, |
| const std::vector<unsigned char> &RHS) { |
| if (LHS.size() > RHS.size()) return false; |
| for (unsigned i = 0, e = LHS.size(); i != e; ++i) |
| if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) |
| return false; |
| return true; |
| } |
| |
| /// isExtIntegerVT - Return true if the specified extended value type vector |
| /// contains isInt or an integer value type. |
| namespace llvm { |
| namespace MVT { |
| bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { |
| assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty()); |
| } |
| |
| /// isExtFloatingPointVT - Return true if the specified extended value type |
| /// vector contains isFP or a FP value type. |
| bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { |
| assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty()); |
| } |
| } // end namespace MVT. |
| } // end namespace llvm. |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| } else if (R->isSubClassOf("SDTCisPtrTy")) { |
| ConstraintType = SDTCisPtrTy; |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| ConstraintType = SDTCisOpSmallerThanOp; |
| x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| R->getValueAsInt("BigOperandNum"); |
| } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { |
| ConstraintType = SDTCisIntVectorOfSameSize; |
| x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOpNum"); |
| } else { |
| cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, which has NumResults results. |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, |
| TreePatternNode *N, |
| unsigned NumResults) const { |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| |
| if (OpNo >= (NumResults + N->getNumChildren())) { |
| cerr << "Invalid operand number " << OpNo << " "; |
| N->dump(); |
| cerr << '\n'; |
| exit(1); |
| } |
| |
| if (OpNo < NumResults) |
| return N; // FIXME: need value # |
| else |
| return N->getChild(OpNo-NumResults); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| |
| // Check that the number of operands is sane. Negative operands -> varargs. |
| if (NodeInfo.getNumOperands() >= 0) { |
| if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) |
| TP.error(N->getOperator()->getName() + " node requires exactly " + |
| itostr(NodeInfo.getNumOperands()) + " operands!"); |
| } |
| |
| const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo(); |
| |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); |
| |
| switch (ConstraintType) { |
| default: assert(0 && "Unknown constraint type!"); |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); |
| case SDTCisPtrTy: { |
| // Operand must be same as target pointer type. |
| return NodeToApply->UpdateNodeType(MVT::iPTR, TP); |
| } |
| case SDTCisInt: { |
| // If there is only one integer type supported, this must be it. |
| std::vector<MVT::ValueType> IntVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); |
| |
| // If we found exactly one supported integer type, apply it. |
| if (IntVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(IntVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| } |
| case SDTCisFP: { |
| // If there is only one FP type supported, this must be it. |
| std::vector<MVT::ValueType> FPVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); |
| |
| // If we found exactly one supported FP type, apply it. |
| if (FPVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(FPVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| } |
| case SDTCisSameAs: { |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); |
| return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | |
| OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| MVT::ValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| if (!MVT::isInteger(VT)) |
| TP.error(N->getOperator()->getName() + " VT operand must be integer!"); |
| |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); |
| |
| // It must be integer. |
| bool MadeChange = false; |
| MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); |
| |
| // This code only handles nodes that have one type set. Assert here so |
| // that we can change this if we ever need to deal with multiple value |
| // types at this point. |
| assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); |
| if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) |
| OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. |
| return false; |
| } |
| case SDTCisOpSmallerThanOp: { |
| TreePatternNode *BigOperand = |
| getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); |
| |
| // Both operands must be integer or FP, but we don't care which. |
| bool MadeChange = false; |
| |
| // This code does not currently handle nodes which have multiple types, |
| // where some types are integer, and some are fp. Assert that this is not |
| // the case. |
| assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) && |
| MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && |
| !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) && |
| MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) && |
| "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); |
| if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); |
| else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); |
| if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| |
| std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); |
| |
| if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) { |
| VTs = FilterVTs(VTs, MVT::isInteger); |
| } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { |
| VTs = FilterVTs(VTs, MVT::isFloatingPoint); |
| } else { |
| VTs.clear(); |
| } |
| |
| switch (VTs.size()) { |
| default: // Too many VT's to pick from. |
| case 0: break; // No info yet. |
| case 1: |
| // Only one VT of this flavor. Cannot ever satisify the constraints. |
| return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw |
| case 2: |
| // If we have exactly two possible types, the little operand must be the |
| // small one, the big operand should be the big one. Common with |
| // float/double for example. |
| assert(VTs[0] < VTs[1] && "Should be sorted!"); |
| MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); |
| MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); |
| break; |
| } |
| return MadeChange; |
| } |
| case SDTCisIntVectorOfSameSize: { |
| TreePatternNode *OtherOperand = |
| getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, |
| N, NumResults); |
| if (OtherOperand->hasTypeSet()) { |
| if (!MVT::isVector(OtherOperand->getTypeNum(0))) |
| TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); |
| MVT::ValueType IVT = OtherOperand->getTypeNum(0); |
| IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); |
| return NodeToApply->UpdateNodeType(IVT, TP); |
| } |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the properties. |
| Properties = 0; |
| std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| for (unsigned i = 0, e = PropList.size(); i != e; ++i) { |
| if (PropList[i]->getName() == "SDNPCommutative") { |
| Properties |= 1 << SDNPCommutative; |
| } else if (PropList[i]->getName() == "SDNPAssociative") { |
| Properties |= 1 << SDNPAssociative; |
| } else if (PropList[i]->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (PropList[i]->getName() == "SDNPOutFlag") { |
| Properties |= 1 << SDNPOutFlag; |
| } else if (PropList[i]->getName() == "SDNPInFlag") { |
| Properties |= 1 << SDNPInFlag; |
| } else if (PropList[i]->getName() == "SDNPOptInFlag") { |
| Properties |= 1 << SDNPOptInFlag; |
| } else if (PropList[i]->getName() == "SDNPMayStore") { |
| Properties |= 1 << SDNPMayStore; |
| } else { |
| cerr << "Unknown SD Node property '" << PropList[i]->getName() |
| << "' on node '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| |
| // Parse the type constraints. |
| std::vector<Record*> ConstraintList = |
| TypeProfile->getValueAsListOfDefs("Constraints"); |
| TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then throw an |
| /// exception. This returns true if any information was updated. |
| /// |
| bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, |
| TreePattern &TP) { |
| assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); |
| |
| if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) |
| return false; |
| if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| |
| if (getExtTypeNum(0) == MVT::iPTR) { |
| if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) |
| return false; |
| if (MVT::isExtIntegerInVTs(ExtVTs)) { |
| std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger); |
| if (FVTs.size()) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| } |
| } |
| |
| if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) { |
| assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| if (getExtTypes() == FVTs) |
| return false; |
| setTypes(FVTs); |
| return true; |
| } |
| if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) { |
| //assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| if (getExtTypes() == FVTs) |
| return false; |
| if (FVTs.size()) { |
| setTypes(FVTs); |
| return true; |
| } |
| } |
| if (ExtVTs[0] == MVT::isFP && MVT::isExtFloatingPointInVTs(getExtTypes())) { |
| assert(hasTypeSet() && "should be handled above!"); |
| std::vector<unsigned char> FVTs = |
| FilterEVTs(getExtTypes(), MVT::isFloatingPoint); |
| if (getExtTypes() == FVTs) |
| return false; |
| setTypes(FVTs); |
| return true; |
| } |
| |
| // If we know this is an int or fp type, and we are told it is a specific one, |
| // take the advice. |
| // |
| // Similarly, we should probably set the type here to the intersection of |
| // {isInt|isFP} and ExtVTs |
| if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) || |
| (getExtTypeNum(0) == MVT::isFP && MVT::isExtFloatingPointInVTs(ExtVTs))){ |
| setTypes(ExtVTs); |
| return true; |
| } |
| if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { |
| setTypes(ExtVTs); |
| return true; |
| } |
| |
| if (isLeaf()) { |
| dump(); |
| cerr << " "; |
| TP.error("Type inference contradiction found in node!"); |
| } else { |
| TP.error("Type inference contradiction found in node " + |
| getOperator()->getName() + "!"); |
| } |
| return true; // unreachable |
| } |
| |
| |
| void TreePatternNode::print(std::ostream &OS) const { |
| if (isLeaf()) { |
| OS << *getLeafValue(); |
| } else { |
| OS << "(" << getOperator()->getName(); |
| } |
| |
| // FIXME: At some point we should handle printing all the value types for |
| // nodes that are multiply typed. |
| switch (getExtTypeNum(0)) { |
| case MVT::Other: OS << ":Other"; break; |
| case MVT::isInt: OS << ":isInt"; break; |
| case MVT::isFP : OS << ":isFP"; break; |
| case MVT::isUnknown: ; /*OS << ":?";*/ break; |
| case MVT::iPTR: OS << ":iPTR"; break; |
| default: { |
| std::string VTName = llvm::getName(getTypeNum(0)); |
| // Strip off MVT:: prefix if present. |
| if (VTName.substr(0,5) == "MVT::") |
| VTName = VTName.substr(5); |
| OS << ":" << VTName; |
| break; |
| } |
| } |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| if (!PredicateFn.empty()) |
| OS << "<<P:" << PredicateFn << ">>"; |
| if (TransformFn) |
| OS << "<<X:" << TransformFn->getName() << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(*cerr.stream()); |
| } |
| |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| /// the specified node. For this comparison, all of the state of the node |
| /// is considered, except for the assigned name. Nodes with differing names |
| /// that are otherwise identical are considered isomorphic. |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { |
| if (N == this) return true; |
| if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || |
| getPredicateFn() != N->getPredicateFn() || |
| getTransformFn() != N->getTransformFn()) |
| return false; |
| |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) |
| if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) |
| return DI->getDef() == NDI->getDef(); |
| return getLeafValue() == N->getLeafValue(); |
| } |
| |
| if (N->getOperator() != getOperator() || |
| N->getNumChildren() != getNumChildren()) return false; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->isIsomorphicTo(N->getChild(i))) |
| return false; |
| return true; |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren); |
| } |
| New->setName(getName()); |
| New->setTypes(getExtTypes()); |
| New->setPredicateFn(getPredicateFn()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| if (dynamic_cast<DefInit*>(Val) && |
| static_cast<DefInit*>(Val)->getDef()->getName() == "node") { |
| // We found a use of a formal argument, replace it with its value. |
| Child = ArgMap[Child->getName()]; |
| assert(Child && "Couldn't find formal argument!"); |
| setChild(i, Child); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (isLeaf()) return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| setChild(i, getChild(i)->InlinePatternFragments(TP)); |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| FragTree->UpdateNodeType(getExtTypes(), TP); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| return FragTree; |
| } |
| |
| /// getImplicitType - Check to see if the specified record has an implicit |
| /// type which should be applied to it. This infer the type of register |
| /// references from the register file information, for example. |
| /// |
| static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, |
| TreePattern &TP) { |
| // Some common return values |
| std::vector<unsigned char> Unknown(1, MVT::isUnknown); |
| std::vector<unsigned char> Other(1, MVT::Other); |
| |
| // Check to see if this is a register or a register class... |
| if (R->isSubClassOf("RegisterClass")) { |
| if (NotRegisters) |
| return Unknown; |
| const CodeGenRegisterClass &RC = |
| TP.getDAGPatterns().getTargetInfo().getRegisterClass(R); |
| return ConvertVTs(RC.getValueTypes()); |
| } else if (R->isSubClassOf("PatFrag")) { |
| // Pattern fragment types will be resolved when they are inlined. |
| return Unknown; |
| } else if (R->isSubClassOf("Register")) { |
| if (NotRegisters) |
| return Unknown; |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return T.getRegisterVTs(R); |
| } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { |
| // Using a VTSDNode or CondCodeSDNode. |
| return Other; |
| } else if (R->isSubClassOf("ComplexPattern")) { |
| if (NotRegisters) |
| return Unknown; |
| std::vector<unsigned char> |
| ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType()); |
| return ComplexPat; |
| } else if (R->getName() == "ptr_rc") { |
| Other[0] = MVT::iPTR; |
| return Other; |
| } else if (R->getName() == "node" || R->getName() == "srcvalue" || |
| R->getName() == "zero_reg") { |
| // Placeholder. |
| return Unknown; |
| } |
| |
| TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| return Other; |
| } |
| |
| |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
| const CodeGenIntrinsic *TreePatternNode:: |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { |
| if (getOperator() != CDP.get_intrinsic_void_sdnode() && |
| getOperator() != CDP.get_intrinsic_w_chain_sdnode() && |
| getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) |
| return 0; |
| |
| unsigned IID = |
| dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); |
| return &CDP.getIntrinsicInfo(IID); |
| } |
| |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevent to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { |
| // If it's a regclass or something else known, include the type. |
| return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); |
| } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { |
| // Int inits are always integers. :) |
| bool MadeChange = UpdateNodeType(MVT::isInt, TP); |
| |
| if (hasTypeSet()) { |
| // At some point, it may make sense for this tree pattern to have |
| // multiple types. Assert here that it does not, so we revisit this |
| // code when appropriate. |
| assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); |
| MVT::ValueType VT = getTypeNum(0); |
| for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) |
| assert(getTypeNum(i) == VT && "TreePattern has too many types!"); |
| |
| VT = getTypeNum(0); |
| if (VT != MVT::iPTR) { |
| unsigned Size = MVT::getSizeInBits(VT); |
| // Make sure that the value is representable for this type. |
| if (Size < 32) { |
| int Val = (II->getValue() << (32-Size)) >> (32-Size); |
| if (Val != II->getValue()) |
| TP.error("Sign-extended integer value '" + itostr(II->getValue())+ |
| "' is out of range for type '" + |
| getEnumName(getTypeNum(0)) + "'!"); |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| return false; |
| } |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert (getNumChildren() >= 2 && "Missing RHS of a set?"); |
| unsigned NC = getNumChildren(); |
| bool MadeChange = false; |
| for (unsigned i = 0; i < NC-1; ++i) { |
| MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| // Types of operands must match. |
| MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), |
| TP); |
| MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), |
| TP); |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| } |
| return MadeChange; |
| } else if (getOperator()->getName() == "implicit" || |
| getOperator()->getName() == "parallel") { |
| bool MadeChange = false; |
| for (unsigned i = 0; i < getNumChildren(); ++i) |
| MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| return MadeChange; |
| } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { |
| bool MadeChange = false; |
| |
| // Apply the result type to the node. |
| MadeChange = UpdateNodeType(Int->ArgVTs[0], TP); |
| |
| if (getNumChildren() != Int->ArgVTs.size()) |
| TP.error("Intrinsic '" + Int->Name + "' expects " + |
| utostr(Int->ArgVTs.size()-1) + " operands, not " + |
| utostr(getNumChildren()-1) + " operands!"); |
| |
| // Apply type info to the intrinsic ID. |
| MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); |
| |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| MVT::ValueType OpVT = Int->ArgVTs[i]; |
| MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("SDNode")) { |
| const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| // Branch, etc. do not produce results and top-level forms in instr pattern |
| // must have void types. |
| if (NI.getNumResults() == 0) |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| |
| // If this is a vector_shuffle operation, apply types to the build_vector |
| // operation. The types of the integers don't matter, but this ensures they |
| // won't get checked. |
| if (getOperator()->getName() == "vector_shuffle" && |
| getChild(2)->getOperator()->getName() == "build_vector") { |
| TreePatternNode *BV = getChild(2); |
| const std::vector<MVT::ValueType> &LegalVTs |
| = CDP.getTargetInfo().getLegalValueTypes(); |
| MVT::ValueType LegalIntVT = MVT::Other; |
| for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) |
| if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { |
| LegalIntVT = LegalVTs[i]; |
| break; |
| } |
| assert(LegalIntVT != MVT::Other && "No legal integer VT?"); |
| |
| for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) |
| MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); |
| } |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = CDP.getInstruction(getOperator()); |
| bool MadeChange = false; |
| unsigned NumResults = Inst.getNumResults(); |
| |
| assert(NumResults <= 1 && |
| "Only supports zero or one result instrs!"); |
| |
| CodeGenInstruction &InstInfo = |
| CDP.getTargetInfo().getInstruction(getOperator()->getName()); |
| // Apply the result type to the node |
| if (NumResults == 0 || InstInfo.NumDefs == 0) { |
| MadeChange = UpdateNodeType(MVT::isVoid, TP); |
| } else { |
| Record *ResultNode = Inst.getResult(0); |
| |
| if (ResultNode->getName() == "ptr_rc") { |
| std::vector<unsigned char> VT; |
| VT.push_back(MVT::iPTR); |
| MadeChange = UpdateNodeType(VT, TP); |
| } else { |
| assert(ResultNode->isSubClassOf("RegisterClass") && |
| "Operands should be register classes!"); |
| |
| const CodeGenRegisterClass &RC = |
| CDP.getTargetInfo().getRegisterClass(ResultNode); |
| MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); |
| } |
| } |
| |
| unsigned ChildNo = 0; |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { |
| Record *OperandNode = Inst.getOperand(i); |
| |
| // If the instruction expects a predicate or optional def operand, we |
| // codegen this by setting the operand to it's default value if it has a |
| // non-empty DefaultOps field. |
| if ((OperandNode->isSubClassOf("PredicateOperand") || |
| OperandNode->isSubClassOf("OptionalDefOperand")) && |
| !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) |
| continue; |
| |
| // Verify that we didn't run out of provided operands. |
| if (ChildNo >= getNumChildren()) |
| TP.error("Instruction '" + getOperator()->getName() + |
| "' expects more operands than were provided."); |
| |
| MVT::ValueType VT; |
| TreePatternNode *Child = getChild(ChildNo++); |
| if (OperandNode->isSubClassOf("RegisterClass")) { |
| const CodeGenRegisterClass &RC = |
| CDP.getTargetInfo().getRegisterClass(OperandNode); |
| MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); |
| } else if (OperandNode->isSubClassOf("Operand")) { |
| VT = getValueType(OperandNode->getValueAsDef("Type")); |
| MadeChange |= Child->UpdateNodeType(VT, TP); |
| } else if (OperandNode->getName() == "ptr_rc") { |
| MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); |
| } else { |
| assert(0 && "Unknown operand type!"); |
| abort(); |
| } |
| MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| |
| if (ChildNo != getNumChildren()) |
| TP.error("Instruction '" + getOperator()->getName() + |
| "' was provided too many operands!"); |
| |
| return MadeChange; |
| } else { |
| assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| |
| // Node transforms always take one operand. |
| if (getNumChildren() != 1) |
| TP.error("Node transform '" + getOperator()->getName() + |
| "' requires one operand!"); |
| |
| // If either the output or input of the xform does not have exact |
| // type info. We assume they must be the same. Otherwise, it is perfectly |
| // legal to transform from one type to a completely different type. |
| if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { |
| bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); |
| return MadeChange; |
| } |
| return false; |
| } |
| } |
| |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the |
| /// RHS of a commutative operation, not the on LHS. |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") |
| return true; |
| if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) |
| return true; |
| return false; |
| } |
| |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. This is |
| /// used as a santity check for .td files (to prevent people from writing stuff |
| /// that can never possibly work), and to prevent the pattern permuter from |
| /// generating stuff that is useless. |
| bool TreePatternNode::canPatternMatch(std::string &Reason, |
| CodeGenDAGPatterns &CDP){ |
| if (isLeaf()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->canPatternMatch(Reason, CDP)) |
| return false; |
| |
| // If this is an intrinsic, handle cases that would make it not match. For |
| // example, if an operand is required to be an immediate. |
| if (getOperator()->isSubClassOf("Intrinsic")) { |
| // TODO: |
| return true; |
| } |
| |
| // If this node is a commutative operator, check that the LHS isn't an |
| // immediate. |
| const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); |
| if (NodeInfo.hasProperty(SDNPCommutative)) { |
| // Scan all of the operands of the node and make sure that only the last one |
| // is a constant node, unless the RHS also is. |
| if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { |
| for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) |
| if (OnlyOnRHSOfCommutative(getChild(i))) { |
| Reason="Immediate value must be on the RHS of commutative operators!"; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ |
| isInputPattern = isInput; |
| for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) |
| Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ |
| isInputPattern = isInput; |
| Trees.push_back(ParseTreePattern(Pat)); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ |
| isInputPattern = isInput; |
| Trees.push_back(Pat); |
| } |
| |
| |
| |
| void TreePattern::error(const std::string &Msg) const { |
| dump(); |
| throw "In " + TheRecord->getName() + ": " + Msg; |
| } |
| |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { |
| DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); |
| if (!OpDef) error("Pattern has unexpected operator type!"); |
| Record *Operator = OpDef->getDef(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only takes one operand!"); |
| |
| Init *Arg = Dag->getArg(0); |
| TreePatternNode *New; |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DI->getDef(); |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(0, new DagInit(DI, |
| std::vector<std::pair<Init*, std::string> >())); |
| return ParseTreePattern(Dag); |
| } |
| New = new TreePatternNode(DI); |
| } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| New = ParseTreePattern(DI); |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| New = new TreePatternNode(II); |
| if (!Dag->getArgName(0).empty()) |
| error("Constant int argument should not have a name!"); |
| } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(new IntRecTy()); |
| if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| error("Bits value must be constants!"); |
| |
| New = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| if (!Dag->getArgName(0).empty()) |
| error("Constant int argument should not have a name!"); |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| return 0; |
| } |
| |
| // Apply the type cast. |
| New->UpdateNodeType(getValueType(Operator), *this); |
| New->setName(Dag->getArgName(0)); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && |
| !Operator->isSubClassOf("Instruction") && |
| !Operator->isSubClassOf("SDNodeXForm") && |
| !Operator->isSubClassOf("Intrinsic") && |
| Operator->getName() != "set" && |
| Operator->getName() != "implicit" && |
| Operator->getName() != "parallel") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| // Check to see if this is something that is illegal in an input pattern. |
| if (isInputPattern && (Operator->isSubClassOf("Instruction") || |
| Operator->isSubClassOf("SDNodeXForm"))) |
| error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| |
| std::vector<TreePatternNode*> Children; |
| |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| Init *Arg = Dag->getArg(i); |
| if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| Children.push_back(ParseTreePattern(DI)); |
| if (Children.back()->getName().empty()) |
| Children.back()->setName(Dag->getArgName(i)); |
| } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DefI->getDef(); |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode if its own. |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(i, new DagInit(DefI, |
| std::vector<std::pair<Init*, std::string> >())); |
| --i; // Revisit this node... |
| } else { |
| TreePatternNode *Node = new TreePatternNode(DefI); |
| Node->setName(Dag->getArgName(i)); |
| Children.push_back(Node); |
| |
| // Input argument? |
| if (R->getName() == "node") { |
| if (Dag->getArgName(i).empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(Dag->getArgName(i)); |
| } |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| TreePatternNode *Node = new TreePatternNode(II); |
| if (!Dag->getArgName(i).empty()) |
| error("Constant int argument should not have a name!"); |
| Children.push_back(Node); |
| } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(new IntRecTy()); |
| if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| error("Bits value must be constants!"); |
| |
| TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| if (!Dag->getArgName(i).empty()) |
| error("Constant int argument should not have a name!"); |
| Children.push_back(Node); |
| } else { |
| cerr << '"'; |
| Arg->dump(); |
| cerr << "\": "; |
| error("Unknown leaf value for tree pattern!"); |
| } |
| } |
| |
| // If the operator is an intrinsic, then this is just syntactic sugar for for |
| // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
| // convert the intrinsic name to a number. |
| if (Operator->isSubClassOf("Intrinsic")) { |
| const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); |
| unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; |
| |
| // If this intrinsic returns void, it must have side-effects and thus a |
| // chain. |
| if (Int.ArgVTs[0] == MVT::isVoid) { |
| Operator = getDAGPatterns().get_intrinsic_void_sdnode(); |
| } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { |
| // Has side-effects, requires chain. |
| Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); |
| } else { |
| // Otherwise, no chain. |
| Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); |
| } |
| |
| TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); |
| Children.insert(Children.begin(), IIDNode); |
| } |
| |
| return new TreePatternNode(Operator, Children); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are infered, false |
| /// otherwise. Throw an exception if a type contradiction is found. |
| bool TreePattern::InferAllTypes() { |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(std::ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| OS << "\t"; |
| Trees[i]->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(*cerr.stream()); } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenDAGPatterns implementation |
| // |
| |
| // FIXME: REMOVE OSTREAM ARGUMENT |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { |
| Intrinsics = LoadIntrinsics(Records); |
| ParseNodeInfo(); |
| ParseNodeTransforms(); |
| ParseComplexPatterns(); |
| ParsePatternFragments(); |
| ParseDefaultOperands(); |
| ParseInstructions(); |
| ParsePatterns(); |
| |
| // Generate variants. For example, commutative patterns can match |
| // multiple ways. Add them to PatternsToMatch as well. |
| GenerateVariants(); |
| } |
| |
| CodeGenDAGPatterns::~CodeGenDAGPatterns() { |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) |
| delete I->second; |
| } |
| |
| |
| Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { |
| Record *N = Records.getDef(Name); |
| if (!N || !N->isSubClassOf("SDNode")) { |
| cerr << "Error getting SDNode '" << Name << "'!\n"; |
| exit(1); |
| } |
| return N; |
| } |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void CodeGenDAGPatterns::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_back(); |
| } |
| |
| // Get the buildin intrinsic nodes. |
| intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); |
| intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); |
| intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); |
| } |
| |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| /// map, and emit them to the file as functions. |
| void CodeGenDAGPatterns::ParseNodeTransforms() { |
| std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| while (!Xforms.empty()) { |
| Record *XFormNode = Xforms.back(); |
| Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| std::string Code = XFormNode->getValueAsCode("XFormFunction"); |
| SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); |
| |
| Xforms.pop_back(); |
| } |
| } |
| |
| void CodeGenDAGPatterns::ParseComplexPatterns() { |
| std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); |
| while (!AMs.empty()) { |
| ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); |
| AMs.pop_back(); |
| } |
| } |
| |
| |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
| /// file, building up the PatternFragments map. After we've collected them all, |
| /// inline fragments together as necessary, so that there are no references left |
| /// inside a pattern fragment to a pattern fragment. |
| /// |
| void CodeGenDAGPatterns::ParsePatternFragments() { |
| std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| |
| // First step, parse all of the fragments. |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); |
| TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); |
| PatternFragments[Fragments[i]] = P; |
| |
| // Validate the argument list, converting it to set, to discard duplicates. |
| std::vector<std::string> &Args = P->getArgList(); |
| std::set<std::string> OperandsSet(Args.begin(), Args.end()); |
| |
| if (OperandsSet.count("")) |
| P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| |
| // Parse the operands list. |
| DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); |
| // Special cases: ops == outs == ins. Different names are used to |
| // improve readibility. |
| if (!OpsOp || |
| (OpsOp->getDef()->getName() != "ops" && |
| OpsOp->getDef()->getName() != "outs" && |
| OpsOp->getDef()->getName() != "ins")) |
| P->error("Operands list should start with '(ops ... '!"); |
| |
| // Copy over the arguments. |
| Args.clear(); |
| for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || |
| static_cast<DefInit*>(OpsList->getArg(j))-> |
| getDef()->getName() != "node") |
| P->error("Operands list should all be 'node' values."); |
| if (OpsList->getArgName(j).empty()) |
| P->error("Operands list should have names for each operand!"); |
| if (!OperandsSet.count(OpsList->getArgName(j))) |
| P->error("'" + OpsList->getArgName(j) + |
| "' does not occur in pattern or was multiply specified!"); |
| OperandsSet.erase(OpsList->getArgName(j)); |
| Args.push_back(OpsList->getArgName(j)); |
| } |
| |
| if (!OperandsSet.empty()) |
| P->error("Operands list does not contain an entry for operand '" + |
| *OperandsSet.begin() + "'!"); |
| |
| // If there is a code init for this fragment, keep track of the fact that |
| // this fragment uses it. |
| std::string Code = Fragments[i]->getValueAsCode("Predicate"); |
| if (!Code.empty()) |
| P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); |
| |
| // If there is a node transformation corresponding to this, keep track of |
| // it. |
| Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| P->getOnlyTree()->setTransformFn(Transform); |
| } |
| |
| // Now that we've parsed all of the tree fragments, do a closure on them so |
| // that there are not references to PatFrags left inside of them. |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) { |
| TreePattern *ThePat = I->second; |
| ThePat->InlinePatternFragments(); |
| |
| // Infer as many types as possible. Don't worry about it if we don't infer |
| // all of them, some may depend on the inputs of the pattern. |
| try { |
| ThePat->InferAllTypes(); |
| } catch (...) { |
| // If this pattern fragment is not supported by this target (no types can |
| // satisfy its constraints), just ignore it. If the bogus pattern is |
| // actually used by instructions, the type consistency error will be |
| // reported there. |
| } |
| |
| // If debugging, print out the pattern fragment result. |
| DEBUG(ThePat->dump()); |
| } |
| } |
| |
| void CodeGenDAGPatterns::ParseDefaultOperands() { |
| std::vector<Record*> DefaultOps[2]; |
| DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); |
| DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); |
| |
| // Find some SDNode. |
| assert(!SDNodes.empty() && "No SDNodes parsed?"); |
| Init *SomeSDNode = new DefInit(SDNodes.begin()->first); |
| |
| for (unsigned iter = 0; iter != 2; ++iter) { |
| for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { |
| DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); |
| |
| // Clone the DefaultInfo dag node, changing the operator from 'ops' to |
| // SomeSDnode so that we can parse this. |
| std::vector<std::pair<Init*, std::string> > Ops; |
| for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) |
| Ops.push_back(std::make_pair(DefaultInfo->getArg(op), |
| DefaultInfo->getArgName(op))); |
| DagInit *DI = new DagInit(SomeSDNode, Ops); |
| |
| // Create a TreePattern to parse this. |
| TreePattern P(DefaultOps[iter][i], DI, false, *this); |
| assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); |
| |
| // Copy the operands over into a DAGDefaultOperand. |
| DAGDefaultOperand DefaultOpInfo; |
| |
| TreePatternNode *T = P.getTree(0); |
| for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { |
| TreePatternNode *TPN = T->getChild(op); |
| while (TPN->ApplyTypeConstraints(P, false)) |
| /* Resolve all types */; |
| |
| if (TPN->ContainsUnresolvedType()) |
| if (iter == 0) |
| throw "Value #" + utostr(i) + " of PredicateOperand '" + |
| DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; |
| else |
| throw "Value #" + utostr(i) + " of OptionalDefOperand '" + |
| DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; |
| |
| DefaultOpInfo.DefaultOps.push_back(TPN); |
| } |
| |
| // Insert it into the DefaultOperands map so we can find it later. |
| DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; |
| } |
| } |
| } |
| |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| /// instruction input. Return true if this is a real use. |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::vector<Record*> &InstImpInputs) { |
| // No name -> not interesting. |
| if (Pat->getName().empty()) { |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf("RegisterClass")) |
| I->error("Input " + DI->getDef()->getName() + " must be named!"); |
| else if (DI && DI->getDef()->isSubClassOf("Register")) |
| InstImpInputs.push_back(DI->getDef()); |
| ; |
| } |
| return false; |
| } |
| |
| Record *Rec; |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| Rec = DI->getDef(); |
| } else { |
| assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); |
| Rec = Pat->getOperator(); |
| } |
| |
| // SRCVALUE nodes are ignored. |
| if (Rec->getName() == "srcvalue") |
| return false; |
| |
| TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| if (!Slot) { |
| Slot = Pat; |
| } else { |
| Record *SlotRec; |
| if (Slot->isLeaf()) { |
| SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); |
| } else { |
| assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| SlotRec = Slot->getOperator(); |
| } |
| |
| // Ensure that the inputs agree if we've already seen this input. |
| if (Rec != SlotRec) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| if (Slot->getExtTypes() != Pat->getExtTypes()) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| } |
| return true; |
| } |
| |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| /// part of "I", the instruction), computing the set of inputs and outputs of |
| /// the pattern. Report errors if we see anything naughty. |
| void CodeGenDAGPatterns:: |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::map<std::string, TreePatternNode*>&InstResults, |
| std::vector<Record*> &InstImpInputs, |
| std::vector<Record*> &InstImpResults) { |
| if (Pat->isLeaf()) { |
| bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } else if (Pat->getOperator()->getName() == "implicit") { |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("implicitly defined value should be a register!"); |
| |
| DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| if (!Val || !Val->getDef()->isSubClassOf("Register")) |
| I->error("implicitly defined value should be a register!"); |
| InstImpResults.push_back(Val->getDef()); |
| } |
| return; |
| } else if (Pat->getOperator()->getName() != "set") { |
| // If this is not a set, verify that the children nodes are not void typed, |
| // and recurse. |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) |
| I->error("Cannot have void nodes inside of patterns!"); |
| FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| // If this is a non-leaf node with no children, treat it basically as if |
| // it were a leaf. This handles nodes like (imm). |
| bool isUse = false; |
| if (Pat->getNumChildren() == 0) |
| isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } |
| |
| // Otherwise, this is a set, validate and collect instruction results. |
| if (Pat->getNumChildren() == 0) |
| I->error("set requires operands!"); |
| |
| if (Pat->getTransformFn()) |
| I->error("Cannot specify a transform function on a set node!"); |
| |
| // Check the set destinations. |
| unsigned NumDests = Pat->getNumChildren()-1; |
| for (unsigned i = 0; i != NumDests; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("set destination should be a register!"); |
| |
| DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| if (!Val) |
| I->error("set destination should be a register!"); |
| |
| if (Val->getDef()->isSubClassOf("RegisterClass") || |
| Val->getDef()->getName() == "ptr_rc") { |
| if (Dest->getName().empty()) |
| I->error("set destination must have a name!"); |
| if (InstResults.count(Dest->getName())) |
| I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| InstResults[Dest->getName()] = Dest; |
| } else if (Val->getDef()->isSubClassOf("Register")) { |
| InstImpResults.push_back(Val->getDef()); |
| } else { |
| I->error("set destination should be a register!"); |
| } |
| } |
| |
| // Verify and collect info from the computation. |
| FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), |
| InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving |
| /// any fragments involved. This populates the Instructions list with fully |
| /// resolved instructions. |
| void CodeGenDAGPatterns::ParseInstructions() { |
| std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| ListInit *LI = 0; |
| |
| if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) |
| LI = Instrs[i]->getValueAsListInit("Pattern"); |
| |
| // If there is no pattern, only collect minimal information about the |
| // instruction for its operand list. We have to assume that there is one |
| // result, as we have no detailed info. |
| if (!LI || LI->getSize() == 0) { |
| std::vector<Record*> Results; |
| std::vector<Record*> Operands; |
| |
| CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); |
| |
| if (InstInfo.OperandList.size() != 0) { |
| if (InstInfo.NumDefs == 0) { |
| // These produce no results |
| for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) |
| Operands.push_back(InstInfo.OperandList[j].Rec); |
| } else { |
| // Assume the first operand is the result. |
| Results.push_back(InstInfo.OperandList[0].Rec); |
| |
| // The rest are inputs. |
| for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) |
| Operands.push_back(InstInfo.OperandList[j].Rec); |
| } |
| } |
| |
| // Create and insert the instruction. |
| std::vector<Record*> ImpResults; |
| std::vector<Record*> ImpOperands; |
| Instructions.insert(std::make_pair(Instrs[i], |
| DAGInstruction(0, Results, Operands, ImpResults, |
| ImpOperands))); |
| continue; // no pattern. |
| } |
| |
| // Parse the instruction. |
| TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); |
| // Inline pattern fragments into it. |
| I->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this instruction pattern: report it to the user. |
| if (!I->InferAllTypes()) |
| I->error("Could not infer all types in pattern!"); |
| |
| // InstInputs - Keep track of all of the inputs of the instruction, along |
| // with the record they are declared as. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| |
| // InstResults - Keep track of all the virtual registers that are 'set' |
| // in the instruction, including what reg class they are. |
| std::map<std::string, TreePatternNode*> InstResults; |
| |
| std::vector<Record*> InstImpInputs; |
| std::vector<Record*> InstImpResults; |
| |
| // Verify that the top-level forms in the instruction are of void type, and |
| // fill in the InstResults map. |
| for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| TreePatternNode *Pat = I->getTree(j); |
| if (Pat->getExtTypeNum(0) != MVT::isVoid) |
| I->error("Top-level forms in instruction pattern should have" |
| " void types"); |
| |
| // Find inputs and outputs, and verify the structure of the uses/defs. |
| FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| } |
| |
| // Now that we have inputs and outputs of the pattern, inspect the operands |
| // list for the instruction. This determines the order that operands are |
| // added to the machine instruction the node corresponds to. |
| unsigned NumResults = InstResults.size(); |
| |
| // Parse the operands list from the (ops) list, validating it. |
| assert(I->getArgList().empty() && "Args list should still be empty here!"); |
| CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); |
| |
| // Check that all of the results occur first in the list. |
| std::vector<Record*> Results; |
| TreePatternNode *Res0Node = NULL; |
| for (unsigned i = 0; i != NumResults; ++i) { |
| if (i == CGI.OperandList.size()) |
| I->error("'" + InstResults.begin()->first + |
| "' set but does not appear in operand list!"); |
| const std::string &OpName = CGI.OperandList[i].Name; |
| |
| // Check that it exists in InstResults. |
| TreePatternNode *RNode = InstResults[OpName]; |
| if (RNode == 0) |
| I->error("Operand $" + OpName + " does not exist in operand list!"); |
| |
| if (i == 0) |
| Res0Node = RNode; |
| Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); |
| if (R == 0) |
| I->error("Operand $" + OpName + " should be a set destination: all " |
| "outputs must occur before inputs in operand list!"); |
| |
| if (CGI.OperandList[i].Rec != R) |
| I->error("Operand $" + OpName + " class mismatch!"); |
| |
| // Remember the return type. |
| Results.push_back(CGI.OperandList[i].Rec); |
| |
| // Okay, this one checks out. |
| InstResults.erase(OpName); |
| } |
| |
| // Loop over the inputs next. Make a copy of InstInputs so we can destroy |
| // the copy while we're checking the inputs. |
| std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); |
| |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| std::vector<Record*> Operands; |
| for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { |
| CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; |
| const std::string &OpName = Op.Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| if (!InstInputsCheck.count(OpName)) { |
| // If this is an predicate operand or optional def operand with an |
| // DefaultOps set filled in, we can ignore this. When we codegen it, |
| // we will do so as always executed. |
| if (Op.Rec->isSubClassOf("PredicateOperand") || |
| Op.Rec->isSubClassOf("OptionalDefOperand")) { |
| // Does it have a non-empty DefaultOps field? If so, ignore this |
| // operand. |
| if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) |
| continue; |
| } |
| I->error("Operand $" + OpName + |
| " does not appear in the instruction pattern"); |
| } |
| TreePatternNode *InVal = InstInputsCheck[OpName]; |
| InstInputsCheck.erase(OpName); // It occurred, remove from map. |
| |
| if (InVal->isLeaf() && |
| dynamic_cast<DefInit*>(InVal->getLeafValue())) { |
| Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); |
| if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) |
| I->error("Operand $" + OpName + "'s register class disagrees" |
| " between the operand and pattern"); |
| } |
| Operands.push_back(Op.Rec); |
| |
| // Construct the result for the dest-pattern operand list. |
| TreePatternNode *OpNode = InVal->clone(); |
| |
| // No predicate is useful on the result. |
| OpNode->setPredicateFn(""); |
| |
| // Promote the xform function to be an explicit node if set. |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children); |
| } |
| |
| ResultNodeOperands.push_back(OpNode); |
| } |
| |
| if (!InstInputsCheck.empty()) |
| I->error("Input operand $" + InstInputsCheck.begin()->first + |
| " occurs in pattern but not in operands list!"); |
| |
| TreePatternNode *ResultPattern = |
| new TreePatternNode(I->getRecord(), ResultNodeOperands); |
| // Copy fully inferred output node type to instruction result pattern. |
| if (NumResults > 0) |
| ResultPattern->setTypes(Res0Node->getExtTypes()); |
| |
| // Create and insert the instruction. |
| // FIXME: InstImpResults and InstImpInputs should not be part of |
| // DAGInstruction. |
| DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); |
| Instructions.insert(std::make_pair(I->getRecord(), TheInst)); |
| |
| // Use a temporary tree pattern to infer all types and make sure that the |
| // constructed result is correct. This depends on the instruction already |
| // being inserted into the Instructions map. |
| TreePattern Temp(I->getRecord(), ResultPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; |
| TheInsertedInst.setResultPattern(Temp.getOnlyTree()); |
| |
| DEBUG(I->dump()); |
| } |
| |
| // If we can, convert the instructions to be patterns that are matched! |
| for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), |
| E = Instructions.end(); II != E; ++II) { |
| DAGInstruction &TheInst = II->second; |
| const TreePattern *I = TheInst.getPattern(); |
| if (I == 0) continue; // No pattern. |
| |
| // FIXME: Assume only the first tree is the pattern. The others are clobber |
| // nodes. |
| TreePatternNode *Pattern = I->getTree(0); |
| TreePatternNode *SrcPattern; |
| if (Pattern->getOperator()->getName() == "set") { |
| SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); |
| } else{ |
| // Not a set (store or something?) |
| SrcPattern = Pattern; |
| } |
| |
| std::string Reason; |
| if (!SrcPattern->canPatternMatch(Reason, *this)) |
| I->error("Instruction can never match: " + Reason); |
| |
| Record *Instr = II->first; |
| TreePatternNode *DstPattern = TheInst.getResultPattern(); |
| PatternsToMatch. |
| push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), |
| SrcPattern, DstPattern, TheInst.getImpResults(), |
| Instr->getValueAsInt("AddedComplexity"))); |
| } |
| } |
| |
| void CodeGenDAGPatterns::ParsePatterns() { |
| std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); |
| DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator()); |
| Record *Operator = OpDef->getDef(); |
| TreePattern *Pattern; |
| if (Operator->getName() != "parallel") |
| Pattern = new TreePattern(Patterns[i], Tree, true, *this); |
| else { |
| std::vector<Init*> Values; |
| for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) |
| Values.push_back(Tree->getArg(j)); |
| ListInit *LI = new ListInit(Values); |
| Pattern = new TreePattern(Patterns[i], LI, true, *this); |
| } |
| |
| // Inline pattern fragments into it. |
| Pattern->InlinePatternFragments(); |
| |
| ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); |
| if (LI->getSize() == 0) continue; // no pattern. |
| |
| // Parse the instruction. |
| TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); |
| |
| // Inline pattern fragments into it. |
| Result->InlinePatternFragments(); |
| |
| if (Result->getNumTrees() != 1) |
| Result->error("Cannot handle instructions producing instructions " |
| "with temporaries yet!"); |
| |
| bool IterateInference; |
| bool InferredAllPatternTypes, InferredAllResultTypes; |
| do { |
| // Infer as many types as possible. If we cannot infer all of them, we |
| // can never do anything with this pattern: report it to the user. |
| InferredAllPatternTypes = Pattern->InferAllTypes(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we |
| // can never do anything with this pattern: report it to the user. |
| InferredAllResultTypes = Result->InferAllTypes(); |
| |
| // Apply the type of the result to the source pattern. This helps us |
| // resolve cases where the input type is known to be a pointer type (which |
| // is considered resolved), but the result knows it needs to be 32- or |
| // 64-bits. Infer the other way for good measure. |
| IterateInference = Pattern->getTree(0)-> |
| UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result); |
| IterateInference |= Result->getTree(0)-> |
| UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result); |
| } while (IterateInference); |
| |
| // Verify that we inferred enough types that we can do something with the |
| // pattern and result. If these fire the user has to add type casts. |
| if (!InferredAllPatternTypes) |
| Pattern->error("Could not infer all types in pattern!"); |
| if (!InferredAllResultTypes) |
| Result->error("Could not infer all types in pattern result!"); |
| |
| // Validate that the input pattern is correct. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| std::map<std::string, TreePatternNode*> InstResults; |
| std::vector<Record*> InstImpInputs; |
| std::vector<Record*> InstImpResults; |
| for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) |
| FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), |
| InstInputs, InstResults, |
| InstImpInputs, InstImpResults); |
| |
| // Promote the xform function to be an explicit node if set. |
| TreePatternNode *DstPattern = Result->getOnlyTree(); |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { |
| TreePatternNode *OpNode = DstPattern->getChild(ii); |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children); |
| } |
| ResultNodeOperands.push_back(OpNode); |
| } |
| DstPattern = Result->getOnlyTree(); |
| if (!DstPattern->isLeaf()) |
| DstPattern = new TreePatternNode(DstPattern->getOperator(), |
| ResultNodeOperands); |
| DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); |
| TreePattern Temp(Result->getRecord(), DstPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| std::string Reason; |
| if (!Pattern->getTree(0)->canPatternMatch(Reason, *this)) |
| Pattern->error("Pattern can never match: " + Reason); |
| |
| PatternsToMatch. |
| push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), |
| Pattern->getTree(0), |
| Temp.getOnlyTree(), InstImpResults, |
| Patterns[i]->getValueAsInt("AddedComplexity"))); |
| } |
| } |
| |
| /// CombineChildVariants - Given a bunch of permutations of each child of the |
| /// 'operator' node, put them together in all possible ways. |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<std::vector<TreePatternNode*> > &ChildVariants, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP) { |
| // Make sure that each operand has at least one variant to choose from. |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| if (ChildVariants[i].empty()) |
| return; |
| |
| // The end result is an all-pairs construction of the resultant pattern. |
| std::vector<unsigned> Idxs; |
| Idxs.resize(ChildVariants.size()); |
| bool NotDone = true; |
| while (NotDone) { |
| // Create the variant and add it to the output list. |
| std::vector<TreePatternNode*> NewChildren; |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| NewChildren.push_back(ChildVariants[i][Idxs[i]]); |
| TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); |
| |
| // Copy over properties. |
| R->setName(Orig->getName()); |
| R->setPredicateFn(Orig->getPredicateFn()); |
| R->setTransformFn(Orig->getTransformFn()); |
| R->setTypes(Orig->getExtTypes()); |
| |
| // If this pattern cannot every match, do not include it as a variant. |
| std::string ErrString; |
| if (!R->canPatternMatch(ErrString, CDP)) { |
| delete R; |
| } else { |
| bool AlreadyExists = false; |
| |
| // Scan to see if this pattern has already been emitted. We can get |
| // duplication due to things like commuting: |
| // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
| // which are the same pattern. Ignore the dups. |
| for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) |
| if (R->isIsomorphicTo(OutVariants[i])) { |
| AlreadyExists = true; |
| break; |
| } |
| |
| if (AlreadyExists) |
| delete R; |
| else |
| OutVariants.push_back(R); |
| } |
| |
| // Increment indices to the next permutation. |
| NotDone = false; |
| // Look for something we can increment without causing a wrap-around. |
| for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { |
| if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { |
| NotDone = true; // Found something to increment. |
| break; |
| } |
| Idxs[IdxsIdx] = 0; |
| } |
| } |
| } |
| |
| /// CombineChildVariants - A helper function for binary operators. |
| /// |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<TreePatternNode*> &LHS, |
| const std::vector<TreePatternNode*> &RHS, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP) { |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.push_back(LHS); |
| ChildVariants.push_back(RHS); |
| CombineChildVariants(Orig, ChildVariants, OutVariants, CDP); |
| } |
| |
| |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, |
| std::vector<TreePatternNode *> &Children) { |
| assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); |
| Record *Operator = N->getOperator(); |
| |
| // Only permit raw nodes. |
| if (!N->getName().empty() || !N->getPredicateFn().empty() || |
| N->getTransformFn()) { |
| Children.push_back(N); |
| return; |
| } |
| |
| if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) |
| Children.push_back(N->getChild(0)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); |
| |
| if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) |
| Children.push_back(N->getChild(1)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); |
| } |
| |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
| /// the (potentially recursive) pattern by using algebraic laws. |
| /// |
| static void GenerateVariantsOf(TreePatternNode *N, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP) { |
| // We cannot permute leaves. |
| if (N->isLeaf()) { |
| OutVariants.push_back(N); |
| return; |
| } |
| |
| // Look up interesting info about the node. |
| const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); |
| |
| // If this node is associative, reassociate. |
| if (NodeInfo.hasProperty(SDNPAssociative)) { |
| // Reassociate by pulling together all of the linked operators |
| std::vector<TreePatternNode*> MaximalChildren; |
| GatherChildrenOfAssociativeOpcode(N, MaximalChildren); |
| |
| // Only handle child sizes of 3. Otherwise we'll end up trying too many |
| // permutations. |
| if (MaximalChildren.size() == 3) { |
| // Find the variants of all of our maximal children. |
| std::vector<TreePatternNode*> AVariants, BVariants, CVariants; |
| GenerateVariantsOf(MaximalChildren[0], AVariants, CDP); |
| GenerateVariantsOf(MaximalChildren[1], BVariants, CDP); |
| GenerateVariantsOf(MaximalChildren[2], CVariants, CDP); |
| |
| // There are only two ways we can permute the tree: |
| // (A op B) op C and A op (B op C) |
| // Within these forms, we can also permute A/B/C. |
| |
| // Generate legal pair permutations of A/B/C. |
| std::vector<TreePatternNode*> ABVariants; |
| std::vector<TreePatternNode*> BAVariants; |
| std::vector<TreePatternNode*> ACVariants; |
| std::vector<TreePatternNode*> CAVariants; |
| std::vector<TreePatternNode*> BCVariants; |
| std::vector<TreePatternNode*> CBVariants; |
| CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP); |
| CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP); |
| CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP); |
| CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP); |
| CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP); |
| CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP); |
| |
| // Combine those into the result: (x op x) op x |
| CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP); |
| CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP); |
| CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP); |
| CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP); |
| CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP); |
| CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP); |
| |
| // Combine those into the result: x op (x op x) |
| CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP); |
| CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP); |
| CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP); |
| CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP); |
| CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP); |
| CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP); |
| return; |
| } |
| } |
| |
| // Compute permutations of all children. |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.resize(N->getNumChildren()); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP); |
| |
| // Build all permutations based on how the children were formed. |
| CombineChildVariants(N, ChildVariants, OutVariants, CDP); |
| |
| // If this node is commutative, consider the commuted order. |
| if (NodeInfo.hasProperty(SDNPCommutative)) { |
| assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); |
| // Don't count children which are actually register references. |
| unsigned NC = 0; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (Child->isLeaf()) |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| Record *RR = DI->getDef(); |
| if (RR->isSubClassOf("Register")) |
| continue; |
| } |
| NC++; |
| } |
| // Consider the commuted order. |
| if (NC == 2) |
| CombineChildVariants(N, ChildVariants[1], ChildVariants[0], |
| OutVariants, CDP); |
| } |
| } |
| |
| |
| // GenerateVariants - Generate variants. For example, commutative patterns can |
| // match multiple ways. Add them to PatternsToMatch as well. |
| void CodeGenDAGPatterns::GenerateVariants() { |
| DOUT << "Generating instruction variants.\n"; |
| |
| // Loop over all of the patterns we've collected, checking to see if we can |
| // generate variants of the instruction, through the exploitation of |
| // identities. This permits the target to provide agressive matching without |
| // the .td file having to contain tons of variants of instructions. |
| // |
| // Note that this loop adds new patterns to the PatternsToMatch list, but we |
| // intentionally do not reconsider these. Any variants of added patterns have |
| // already been added. |
| // |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| std::vector<TreePatternNode*> Variants; |
| GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); |
| |
| assert(!Variants.empty() && "Must create at least original variant!"); |
| Variants.erase(Variants.begin()); // Remove the original pattern. |
| |
| if (Variants.empty()) // No variants for this pattern. |
| continue; |
| |
| DOUT << "FOUND VARIANTS OF: "; |
| DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); |
| DOUT << "\n"; |
| |
| for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
| TreePatternNode *Variant = Variants[v]; |
| |
| DOUT << " VAR#" << v << ": "; |
| DEBUG(Variant->dump()); |
| DOUT << "\n"; |
| |
| // Scan to see if an instruction or explicit pattern already matches this. |
| bool AlreadyExists = false; |
| for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
| // Check to see if this variant already exists. |
| if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { |
| DOUT << " *** ALREADY EXISTS, ignoring variant.\n"; |
| AlreadyExists = true; |
| break; |
| } |
| } |
| // If we already have it, ignore the variant. |
| if (AlreadyExists) continue; |
| |
| // Otherwise, add it to the list of patterns we have. |
| PatternsToMatch. |
| push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), |
| Variant, PatternsToMatch[i].getDstPattern(), |
| PatternsToMatch[i].getDstRegs(), |
| PatternsToMatch[i].getAddedComplexity())); |
| } |
| |
| DOUT << "\n"; |
| } |
| } |
| |