| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tool implements a just-in-time compiler for LLVM, allowing direct |
| // execution of LLVM bytecode in an efficient manner. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "JIT.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/System/DynamicLibrary.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| using namespace llvm; |
| |
| #ifdef __APPLE__ |
| #include <AvailabilityMacros.h> |
| #if defined(MAC_OS_X_VERSION_10_4) && \ |
| ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| __APPLE_CC__ >= 5330)) |
| // __dso_handle is resolved by Mac OS X dynamic linker. |
| extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); |
| #endif |
| #endif |
| |
| static struct RegisterJIT { |
| RegisterJIT() { JIT::Register(); } |
| } JITRegistrator; |
| |
| namespace llvm { |
| void LinkInJIT() { |
| } |
| } |
| |
| JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji) |
| : ExecutionEngine(MP), TM(tm), TJI(tji), state(MP) { |
| setTargetData(TM.getTargetData()); |
| |
| // Initialize MCE |
| MCE = createEmitter(*this); |
| |
| // Add target data |
| MutexGuard locked(lock); |
| FunctionPassManager &PM = state.getPM(locked); |
| PM.add(new TargetData(*TM.getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory that |
| // may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) { |
| cerr << "Target does not support machine code emission!\n"; |
| abort(); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| |
| JIT::~JIT() { |
| delete MCE; |
| delete &TM; |
| } |
| |
| /// run - Start execution with the specified function and arguments. |
| /// |
| GenericValue JIT::runFunction(Function *F, |
| const std::vector<GenericValue> &ArgValues) { |
| assert(F && "Function *F was null at entry to run()"); |
| |
| void *FPtr = getPointerToFunction(F); |
| assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); |
| const FunctionType *FTy = F->getFunctionType(); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) && |
| "Too many arguments passed into function!"); |
| assert(FTy->getNumParams() == ArgValues.size() && |
| "This doesn't support passing arguments through varargs (yet)!"); |
| |
| // Handle some common cases first. These cases correspond to common `main' |
| // prototypes. |
| if (RetTy == Type::Int32Ty || RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { |
| switch (ArgValues.size()) { |
| case 3: |
| if ((FTy->getParamType(0) == Type::Int32Ty || |
| FTy->getParamType(0) == Type::Int32Ty) && |
| isa<PointerType>(FTy->getParamType(1)) && |
| isa<PointerType>(FTy->getParamType(2))) { |
| int (*PF)(int, char **, const char **) = |
| (int(*)(int, char **, const char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.Int32Val = PF(ArgValues[0].Int32Val, (char **)GVTOP(ArgValues[1]), |
| (const char **)GVTOP(ArgValues[2])); |
| return rv; |
| } |
| break; |
| case 2: |
| if ((FTy->getParamType(0) == Type::Int32Ty || |
| FTy->getParamType(0) == Type::Int32Ty) && |
| isa<PointerType>(FTy->getParamType(1))) { |
| int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.Int32Val = PF(ArgValues[0].Int32Val, (char **)GVTOP(ArgValues[1])); |
| return rv; |
| } |
| break; |
| case 1: |
| if (FTy->getNumParams() == 1 && |
| (FTy->getParamType(0) == Type::Int32Ty || |
| FTy->getParamType(0) == Type::Int32Ty)) { |
| GenericValue rv; |
| int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; |
| rv.Int32Val = PF(ArgValues[0].Int32Val); |
| return rv; |
| } |
| break; |
| } |
| } |
| |
| // Handle cases where no arguments are passed first. |
| if (ArgValues.empty()) { |
| GenericValue rv; |
| switch (RetTy->getTypeID()) { |
| default: assert(0 && "Unknown return type for function call!"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); |
| if (BitWidth == 1) |
| rv.Int1Val = ((bool(*)())(intptr_t)FPtr)(); |
| else if (BitWidth <= 8) |
| rv.Int8Val = ((char(*)())(intptr_t)FPtr)(); |
| else if (BitWidth <= 16) |
| rv.Int16Val = ((short(*)())(intptr_t)FPtr)(); |
| else if (BitWidth <= 32) |
| rv.Int32Val = ((int(*)())(intptr_t)FPtr)(); |
| else if (BitWidth <= 64) |
| rv.Int64Val = ((int64_t(*)())(intptr_t)FPtr)(); |
| else |
| assert(0 && "Integer types > 64 bits not supported"); |
| return rv; |
| } |
| case Type::VoidTyID: |
| rv.Int32Val = ((int(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::FloatTyID: |
| rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::DoubleTyID: |
| rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::PointerTyID: |
| return PTOGV(((void*(*)())(intptr_t)FPtr)()); |
| } |
| } |
| |
| // Okay, this is not one of our quick and easy cases. Because we don't have a |
| // full FFI, we have to codegen a nullary stub function that just calls the |
| // function we are interested in, passing in constants for all of the |
| // arguments. Make this function and return. |
| |
| // First, create the function. |
| FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false); |
| Function *Stub = new Function(STy, Function::InternalLinkage, "", |
| F->getParent()); |
| |
| // Insert a basic block. |
| BasicBlock *StubBB = new BasicBlock("", Stub); |
| |
| // Convert all of the GenericValue arguments over to constants. Note that we |
| // currently don't support varargs. |
| SmallVector<Value*, 8> Args; |
| for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { |
| Constant *C = 0; |
| const Type *ArgTy = FTy->getParamType(i); |
| const GenericValue &AV = ArgValues[i]; |
| switch (ArgTy->getTypeID()) { |
| default: assert(0 && "Unknown argument type for function call!"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(ArgTy)->getBitWidth(); |
| if (BitWidth == 1) |
| C = ConstantInt::get(ArgTy, AV.Int1Val); |
| else if (BitWidth <= 8) |
| C = ConstantInt::get(ArgTy, AV.Int8Val); |
| else if (BitWidth <= 16) |
| C = ConstantInt::get(ArgTy, AV.Int16Val); |
| else if (BitWidth <= 32) |
| C = ConstantInt::get(ArgTy, AV.Int32Val); |
| else if (BitWidth <= 64) |
| C = ConstantInt::get(ArgTy, AV.Int64Val); |
| else |
| assert(0 && "Integer types > 64 bits not supported"); |
| break; |
| } |
| case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break; |
| case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break; |
| case Type::PointerTyID: |
| void *ArgPtr = GVTOP(AV); |
| if (sizeof(void*) == 4) { |
| C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr); |
| } else { |
| C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr); |
| } |
| C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer |
| break; |
| } |
| Args.push_back(C); |
| } |
| |
| CallInst *TheCall = new CallInst(F, &Args[0], Args.size(), "", StubBB); |
| TheCall->setTailCall(); |
| if (TheCall->getType() != Type::VoidTy) |
| new ReturnInst(TheCall, StubBB); // Return result of the call. |
| else |
| new ReturnInst(StubBB); // Just return void. |
| |
| // Finally, return the value returned by our nullary stub function. |
| return runFunction(Stub, std::vector<GenericValue>()); |
| } |
| |
| /// runJITOnFunction - Run the FunctionPassManager full of |
| /// just-in-time compilation passes on F, hopefully filling in |
| /// GlobalAddress[F] with the address of F's machine code. |
| /// |
| void JIT::runJITOnFunction(Function *F) { |
| static bool isAlreadyCodeGenerating = false; |
| assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); |
| |
| MutexGuard locked(lock); |
| |
| // JIT the function |
| isAlreadyCodeGenerating = true; |
| state.getPM(locked).run(*F); |
| isAlreadyCodeGenerating = false; |
| |
| // If the function referred to a global variable that had not yet been |
| // emitted, it allocates memory for the global, but doesn't emit it yet. Emit |
| // all of these globals now. |
| while (!state.getPendingGlobals(locked).empty()) { |
| const GlobalVariable *GV = state.getPendingGlobals(locked).back(); |
| state.getPendingGlobals(locked).pop_back(); |
| EmitGlobalVariable(GV); |
| } |
| } |
| |
| /// getPointerToFunction - This method is used to get the address of the |
| /// specified function, compiling it if neccesary. |
| /// |
| void *JIT::getPointerToFunction(Function *F) { |
| MutexGuard locked(lock); |
| |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; // Check if function already code gen'd |
| |
| // Make sure we read in the function if it exists in this Module. |
| if (F->hasNotBeenReadFromBytecode()) { |
| // Determine the module provider this function is provided by. |
| Module *M = F->getParent(); |
| ModuleProvider *MP = 0; |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| if (Modules[i]->getModule() == M) { |
| MP = Modules[i]; |
| break; |
| } |
| } |
| assert(MP && "Function isn't in a module we know about!"); |
| |
| std::string ErrorMsg; |
| if (MP->materializeFunction(F, &ErrorMsg)) { |
| cerr << "Error reading function '" << F->getName() |
| << "' from bytecode file: " << ErrorMsg << "\n"; |
| abort(); |
| } |
| } |
| |
| if (F->isDeclaration()) { |
| void *Addr = getPointerToNamedFunction(F->getName()); |
| addGlobalMapping(F, Addr); |
| return Addr; |
| } |
| |
| runJITOnFunction(F); |
| |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| return Addr; |
| } |
| |
| /// getOrEmitGlobalVariable - Return the address of the specified global |
| /// variable, possibly emitting it to memory if needed. This is used by the |
| /// Emitter. |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { |
| MutexGuard locked(lock); |
| |
| void *Ptr = getPointerToGlobalIfAvailable(GV); |
| if (Ptr) return Ptr; |
| |
| // If the global is external, just remember the address. |
| if (GV->isDeclaration()) { |
| #if defined(__APPLE__) && defined(MAC_OS_X_VERSION_10_4) && \ |
| ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| __APPLE_CC__ >= 5330)) |
| // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead |
| // of atexit). It passes the address of linker generated symbol __dso_handle |
| // to the function. |
| // This configuration change happened at version 5330. |
| if (GV->getName() == "__dso_handle") |
| return (void*)&__dso_handle; |
| #endif |
| Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); |
| if (Ptr == 0) { |
| cerr << "Could not resolve external global address: " |
| << GV->getName() << "\n"; |
| abort(); |
| } |
| } else { |
| // If the global hasn't been emitted to memory yet, allocate space. We will |
| // actually initialize the global after current function has finished |
| // compilation. |
| const Type *GlobalType = GV->getType()->getElementType(); |
| size_t S = getTargetData()->getTypeSize(GlobalType); |
| size_t A = getTargetData()->getTypeAlignmentPref(GlobalType); |
| if (A <= 8) { |
| Ptr = malloc(S); |
| } else { |
| // Allocate S+A bytes of memory, then use an aligned pointer within that |
| // space. |
| Ptr = malloc(S+A); |
| unsigned MisAligned = ((intptr_t)Ptr & (A-1)); |
| Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0); |
| } |
| state.getPendingGlobals(locked).push_back(GV); |
| } |
| addGlobalMapping(GV, Ptr); |
| return Ptr; |
| } |
| |
| |
| /// recompileAndRelinkFunction - This method is used to force a function |
| /// which has already been compiled, to be compiled again, possibly |
| /// after it has been modified. Then the entry to the old copy is overwritten |
| /// with a branch to the new copy. If there was no old copy, this acts |
| /// just like JIT::getPointerToFunction(). |
| /// |
| void *JIT::recompileAndRelinkFunction(Function *F) { |
| void *OldAddr = getPointerToGlobalIfAvailable(F); |
| |
| // If it's not already compiled there is no reason to patch it up. |
| if (OldAddr == 0) { return getPointerToFunction(F); } |
| |
| // Delete the old function mapping. |
| addGlobalMapping(F, 0); |
| |
| // Recodegen the function |
| runJITOnFunction(F); |
| |
| // Update state, forward the old function to the new function. |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| TJI.replaceMachineCodeForFunction(OldAddr, Addr); |
| return Addr; |
| } |
| |