| //===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is part of the ARM Disassembler. |
| // It contains the tablegen backend that emits the decoder functions for ARM and |
| // Thumb. The disassembler core includes the auto-generated file, invokes the |
| // decoder functions, and builds up the MCInst based on the decoded Opcode. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-decoder-emitter" |
| |
| #include "ARMDecoderEmitter.h" |
| #include "CodeGenTarget.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include <vector> |
| #include <map> |
| #include <string> |
| |
| using namespace llvm; |
| |
| ///////////////////////////////////////////////////// |
| // // |
| // Enums and Utilities for ARM Instruction Format // |
| // // |
| ///////////////////////////////////////////////////// |
| |
| #define ARM_FORMATS \ |
| ENTRY(ARM_FORMAT_PSEUDO, 0) \ |
| ENTRY(ARM_FORMAT_MULFRM, 1) \ |
| ENTRY(ARM_FORMAT_BRFRM, 2) \ |
| ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ |
| ENTRY(ARM_FORMAT_DPFRM, 4) \ |
| ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ |
| ENTRY(ARM_FORMAT_LDFRM, 6) \ |
| ENTRY(ARM_FORMAT_STFRM, 7) \ |
| ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ |
| ENTRY(ARM_FORMAT_STMISCFRM, 9) \ |
| ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ |
| ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \ |
| ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \ |
| ENTRY(ARM_FORMAT_SATFRM, 13) \ |
| ENTRY(ARM_FORMAT_EXTFRM, 14) \ |
| ENTRY(ARM_FORMAT_VFPUNARYFRM, 15) \ |
| ENTRY(ARM_FORMAT_VFPBINARYFRM, 16) \ |
| ENTRY(ARM_FORMAT_VFPCONV1FRM, 17) \ |
| ENTRY(ARM_FORMAT_VFPCONV2FRM, 18) \ |
| ENTRY(ARM_FORMAT_VFPCONV3FRM, 19) \ |
| ENTRY(ARM_FORMAT_VFPCONV4FRM, 20) \ |
| ENTRY(ARM_FORMAT_VFPCONV5FRM, 21) \ |
| ENTRY(ARM_FORMAT_VFPLDSTFRM, 22) \ |
| ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \ |
| ENTRY(ARM_FORMAT_VFPMISCFRM, 24) \ |
| ENTRY(ARM_FORMAT_THUMBFRM, 25) \ |
| ENTRY(ARM_FORMAT_MISCFRM, 26) \ |
| ENTRY(ARM_FORMAT_NEONGETLNFRM, 27) \ |
| ENTRY(ARM_FORMAT_NEONSETLNFRM, 28) \ |
| ENTRY(ARM_FORMAT_NEONDUPFRM, 29) \ |
| ENTRY(ARM_FORMAT_NLdSt, 30) \ |
| ENTRY(ARM_FORMAT_N1RegModImm, 31) \ |
| ENTRY(ARM_FORMAT_N2Reg, 32) \ |
| ENTRY(ARM_FORMAT_NVCVT, 33) \ |
| ENTRY(ARM_FORMAT_NVecDupLn, 34) \ |
| ENTRY(ARM_FORMAT_N2RegVecShL, 35) \ |
| ENTRY(ARM_FORMAT_N2RegVecShR, 36) \ |
| ENTRY(ARM_FORMAT_N3Reg, 37) \ |
| ENTRY(ARM_FORMAT_N3RegVecSh, 38) \ |
| ENTRY(ARM_FORMAT_NVecExtract, 39) \ |
| ENTRY(ARM_FORMAT_NVecMulScalar, 40) \ |
| ENTRY(ARM_FORMAT_NVTBL, 41) |
| |
| // ARM instruction format specifies the encoding used by the instruction. |
| #define ENTRY(n, v) n = v, |
| typedef enum { |
| ARM_FORMATS |
| ARM_FORMAT_NA |
| } ARMFormat; |
| #undef ENTRY |
| |
| // Converts enum to const char*. |
| static const char *stringForARMFormat(ARMFormat form) { |
| #define ENTRY(n, v) case n: return #n; |
| switch(form) { |
| ARM_FORMATS |
| case ARM_FORMAT_NA: |
| default: |
| return ""; |
| } |
| #undef ENTRY |
| } |
| |
| enum { |
| IndexModeNone = 0, |
| IndexModePre = 1, |
| IndexModePost = 2, |
| IndexModeUpd = 3 |
| }; |
| |
| ///////////////////////// |
| // // |
| // Utility functions // |
| // // |
| ///////////////////////// |
| |
| /// byteFromBitsInit - Return the byte value from a BitsInit. |
| /// Called from getByteField(). |
| static uint8_t byteFromBitsInit(BitsInit &init) { |
| int width = init.getNumBits(); |
| |
| assert(width <= 8 && "Field is too large for uint8_t!"); |
| |
| int index; |
| uint8_t mask = 0x01; |
| |
| uint8_t ret = 0; |
| |
| for (index = 0; index < width; index++) { |
| if (static_cast<BitInit*>(init.getBit(index))->getValue()) |
| ret |= mask; |
| |
| mask <<= 1; |
| } |
| |
| return ret; |
| } |
| |
| static uint8_t getByteField(const Record &def, const char *str) { |
| BitsInit *bits = def.getValueAsBitsInit(str); |
| return byteFromBitsInit(*bits); |
| } |
| |
| static BitsInit &getBitsField(const Record &def, const char *str) { |
| BitsInit *bits = def.getValueAsBitsInit(str); |
| return *bits; |
| } |
| |
| /// sameStringExceptSuffix - Return true if the two strings differ only in RHS's |
| /// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true. |
| static |
| bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS, |
| const StringRef Suffix) { |
| |
| if (RHS.startswith(LHS) && RHS.endswith(Suffix)) |
| return RHS.size() == LHS.size() + Suffix.size(); |
| |
| return false; |
| } |
| |
| /// thumbInstruction - Determine whether we have a Thumb instruction. |
| /// See also ARMInstrFormats.td. |
| static bool thumbInstruction(uint8_t Form) { |
| return Form == ARM_FORMAT_THUMBFRM; |
| } |
| |
| // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system |
| // for a bit value. |
| // |
| // BIT_UNFILTERED is used as the init value for a filter position. It is used |
| // only for filter processings. |
| typedef enum { |
| BIT_TRUE, // '1' |
| BIT_FALSE, // '0' |
| BIT_UNSET, // '?' |
| BIT_UNFILTERED // unfiltered |
| } bit_value_t; |
| |
| static bool ValueSet(bit_value_t V) { |
| return (V == BIT_TRUE || V == BIT_FALSE); |
| } |
| static bool ValueNotSet(bit_value_t V) { |
| return (V == BIT_UNSET); |
| } |
| static int Value(bit_value_t V) { |
| return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); |
| } |
| static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { |
| if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) |
| return bit->getValue() ? BIT_TRUE : BIT_FALSE; |
| |
| // The bit is uninitialized. |
| return BIT_UNSET; |
| } |
| // Prints the bit value for each position. |
| static void dumpBits(raw_ostream &o, BitsInit &bits) { |
| unsigned index; |
| |
| for (index = bits.getNumBits(); index > 0; index--) { |
| switch (bitFromBits(bits, index - 1)) { |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| default: |
| assert(0 && "unexpected return value from bitFromBits"); |
| } |
| } |
| } |
| |
| // Enums for the available target names. |
| typedef enum { |
| TARGET_ARM = 0, |
| TARGET_THUMB |
| } TARGET_NAME_t; |
| |
| // FIXME: Possibly auto-detected? |
| #define BIT_WIDTH 32 |
| |
| // Forward declaration. |
| class ARMFilterChooser; |
| |
| // Representation of the instruction to work on. |
| typedef bit_value_t insn_t[BIT_WIDTH]; |
| |
| /// Filter - Filter works with FilterChooser to produce the decoding tree for |
| /// the ISA. |
| /// |
| /// It is useful to think of a Filter as governing the switch stmts of the |
| /// decoding tree in a certain level. Each case stmt delegates to an inferior |
| /// FilterChooser to decide what further decoding logic to employ, or in another |
| /// words, what other remaining bits to look at. The FilterChooser eventually |
| /// chooses a best Filter to do its job. |
| /// |
| /// This recursive scheme ends when the number of Opcodes assigned to the |
| /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when |
| /// the Filter/FilterChooser combo does not know how to distinguish among the |
| /// Opcodes assigned. |
| /// |
| /// An example of a conflict is |
| /// |
| /// Conflict: |
| /// 111101000.00........00010000.... |
| /// 111101000.00........0001........ |
| /// 1111010...00........0001........ |
| /// 1111010...00.................... |
| /// 1111010......................... |
| /// 1111............................ |
| /// ................................ |
| /// VST4q8a 111101000_00________00010000____ |
| /// VST4q8b 111101000_00________00010000____ |
| /// |
| /// The Debug output shows the path that the decoding tree follows to reach the |
| /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced |
| /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. |
| /// |
| /// The encoding info in the .td files does not specify this meta information, |
| /// which could have been used by the decoder to resolve the conflict. The |
| /// decoder could try to decode the even/odd register numbering and assign to |
| /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" |
| /// version and return the Opcode since the two have the same Asm format string. |
| class ARMFilter { |
| protected: |
| ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter |
| unsigned StartBit; // the starting bit position |
| unsigned NumBits; // number of bits to filter |
| bool Mixed; // a mixed region contains both set and unset bits |
| |
| // Map of well-known segment value to the set of uid's with that value. |
| std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; |
| |
| // Set of uid's with non-constant segment values. |
| std::vector<unsigned> VariableInstructions; |
| |
| // Map of well-known segment value to its delegate. |
| std::map<unsigned, ARMFilterChooser*> FilterChooserMap; |
| |
| // Number of instructions which fall under FilteredInstructions category. |
| unsigned NumFiltered; |
| |
| // Keeps track of the last opcode in the filtered bucket. |
| unsigned LastOpcFiltered; |
| |
| // Number of instructions which fall under VariableInstructions category. |
| unsigned NumVariable; |
| |
| public: |
| unsigned getNumFiltered() { return NumFiltered; } |
| unsigned getNumVariable() { return NumVariable; } |
| unsigned getSingletonOpc() { |
| assert(NumFiltered == 1); |
| return LastOpcFiltered; |
| } |
| // Return the filter chooser for the group of instructions without constant |
| // segment values. |
| ARMFilterChooser &getVariableFC() { |
| assert(NumFiltered == 1); |
| assert(FilterChooserMap.size() == 1); |
| return *(FilterChooserMap.find((unsigned)-1)->second); |
| } |
| |
| ARMFilter(const ARMFilter &f); |
| ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits, |
| bool mixed); |
| |
| ~ARMFilter(); |
| |
| // Divides the decoding task into sub tasks and delegates them to the |
| // inferior FilterChooser's. |
| // |
| // A special case arises when there's only one entry in the filtered |
| // instructions. In order to unambiguously decode the singleton, we need to |
| // match the remaining undecoded encoding bits against the singleton. |
| void recurse(); |
| |
| // Emit code to decode instructions given a segment or segments of bits. |
| void emit(raw_ostream &o, unsigned &Indentation); |
| |
| // Returns the number of fanout produced by the filter. More fanout implies |
| // the filter distinguishes more categories of instructions. |
| unsigned usefulness() const; |
| }; // End of class Filter |
| |
| // These are states of our finite state machines used in FilterChooser's |
| // filterProcessor() which produces the filter candidates to use. |
| typedef enum { |
| ATTR_NONE, |
| ATTR_FILTERED, |
| ATTR_ALL_SET, |
| ATTR_ALL_UNSET, |
| ATTR_MIXED |
| } bitAttr_t; |
| |
| /// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters |
| /// in order to perform the decoding of instructions at the current level. |
| /// |
| /// Decoding proceeds from the top down. Based on the well-known encoding bits |
| /// of instructions available, FilterChooser builds up the possible Filters that |
| /// can further the task of decoding by distinguishing among the remaining |
| /// candidate instructions. |
| /// |
| /// Once a filter has been chosen, it is called upon to divide the decoding task |
| /// into sub-tasks and delegates them to its inferior FilterChoosers for further |
| /// processings. |
| /// |
| /// It is useful to think of a Filter as governing the switch stmts of the |
| /// decoding tree. And each case is delegated to an inferior FilterChooser to |
| /// decide what further remaining bits to look at. |
| class ARMFilterChooser { |
| static TARGET_NAME_t TargetName; |
| |
| protected: |
| friend class ARMFilter; |
| |
| // Vector of codegen instructions to choose our filter. |
| const std::vector<const CodeGenInstruction*> &AllInstructions; |
| |
| // Vector of uid's for this filter chooser to work on. |
| const std::vector<unsigned> Opcodes; |
| |
| // Vector of candidate filters. |
| std::vector<ARMFilter> Filters; |
| |
| // Array of bit values passed down from our parent. |
| // Set to all BIT_UNFILTERED's for Parent == NULL. |
| bit_value_t FilterBitValues[BIT_WIDTH]; |
| |
| // Links to the FilterChooser above us in the decoding tree. |
| ARMFilterChooser *Parent; |
| |
| // Index of the best filter from Filters. |
| int BestIndex; |
| |
| public: |
| static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } |
| |
| ARMFilterChooser(const ARMFilterChooser &FC) : |
| AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), |
| Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) { |
| memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); |
| } |
| |
| ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs) : |
| AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL), |
| BestIndex(-1) { |
| for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| FilterBitValues[i] = BIT_UNFILTERED; |
| |
| doFilter(); |
| } |
| |
| ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs, |
| bit_value_t (&ParentFilterBitValues)[BIT_WIDTH], |
| ARMFilterChooser &parent) : |
| AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent), |
| BestIndex(-1) { |
| for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| FilterBitValues[i] = ParentFilterBitValues[i]; |
| |
| doFilter(); |
| } |
| |
| // The top level filter chooser has NULL as its parent. |
| bool isTopLevel() { return Parent == NULL; } |
| |
| // This provides an opportunity for target specific code emission. |
| void emitTopHook(raw_ostream &o); |
| |
| // Emit the top level typedef and decodeInstruction() function. |
| void emitTop(raw_ostream &o, unsigned &Indentation); |
| |
| // This provides an opportunity for target specific code emission after |
| // emitTop(). |
| void emitBot(raw_ostream &o, unsigned &Indentation); |
| |
| protected: |
| // Populates the insn given the uid. |
| void insnWithID(insn_t &Insn, unsigned Opcode) const { |
| BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); |
| |
| for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| Insn[i] = bitFromBits(Bits, i); |
| |
| // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd. |
| Record *R = AllInstructions[Opcode]->TheDef; |
| if (R->getValue("IndexModeBits") && |
| getByteField(*R, "IndexModeBits") == IndexModeUpd) |
| Insn[21] = BIT_TRUE; |
| } |
| |
| // Returns the record name. |
| const std::string &nameWithID(unsigned Opcode) const { |
| return AllInstructions[Opcode]->TheDef->getName(); |
| } |
| |
| // Populates the field of the insn given the start position and the number of |
| // consecutive bits to scan for. |
| // |
| // Returns false if there exists any uninitialized bit value in the range. |
| // Returns true, otherwise. |
| bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, |
| unsigned NumBits) const; |
| |
| /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| /// filter array as a series of chars. |
| void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]); |
| |
| /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| /// dumpFilterArray on each filter chooser up to the top level one. |
| void dumpStack(raw_ostream &o, const char *prefix); |
| |
| ARMFilter &bestFilter() { |
| assert(BestIndex != -1 && "BestIndex not set"); |
| return Filters[BestIndex]; |
| } |
| |
| // Called from Filter::recurse() when singleton exists. For debug purpose. |
| void SingletonExists(unsigned Opc); |
| |
| bool PositionFiltered(unsigned i) { |
| return ValueSet(FilterBitValues[i]); |
| } |
| |
| // Calculates the island(s) needed to decode the instruction. |
| // This returns a lit of undecoded bits of an instructions, for example, |
| // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| // decoded bits in order to verify that the instruction matches the Opcode. |
| unsigned getIslands(std::vector<unsigned> &StartBits, |
| std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| insn_t &Insn); |
| |
| // The purpose of this function is for the API client to detect possible |
| // Load/Store Coprocessor instructions. If the coprocessor number is of |
| // the instruction is either 10 or 11, the decoder should not report the |
| // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or |
| // VFP instructions. |
| bool LdStCopEncoding1(unsigned Opc) { |
| const std::string &Name = nameWithID(Opc); |
| if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || |
| Name == "LDC_POST" || Name == "LDC_PRE" || |
| Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || |
| Name == "LDCL_POST" || Name == "LDCL_PRE" || |
| Name == "STC_OFFSET" || Name == "STC_OPTION" || |
| Name == "STC_POST" || Name == "STC_PRE" || |
| Name == "STCL_OFFSET" || Name == "STCL_OPTION" || |
| Name == "STCL_POST" || Name == "STCL_PRE") |
| return true; |
| else |
| return false; |
| } |
| |
| // Emits code to decode the singleton. Return true if we have matched all the |
| // well-known bits. |
| bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); |
| |
| // Emits code to decode the singleton, and then to decode the rest. |
| void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| ARMFilter &Best); |
| |
| // Assign a single filter and run with it. |
| void runSingleFilter(ARMFilterChooser &owner, unsigned startBit, |
| unsigned numBit, bool mixed); |
| |
| // reportRegion is a helper function for filterProcessor to mark a region as |
| // eligible for use as a filter region. |
| void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, |
| bool AllowMixed); |
| |
| // FilterProcessor scans the well-known encoding bits of the instructions and |
| // builds up a list of candidate filters. It chooses the best filter and |
| // recursively descends down the decoding tree. |
| bool filterProcessor(bool AllowMixed, bool Greedy = true); |
| |
| // Decides on the best configuration of filter(s) to use in order to decode |
| // the instructions. A conflict of instructions may occur, in which case we |
| // dump the conflict set to the standard error. |
| void doFilter(); |
| |
| // Emits code to decode our share of instructions. Returns true if the |
| // emitted code causes a return, which occurs if we know how to decode |
| // the instruction at this level or the instruction is not decodeable. |
| bool emit(raw_ostream &o, unsigned &Indentation); |
| }; |
| |
| /////////////////////////// |
| // // |
| // Filter Implmenetation // |
| // // |
| /////////////////////////// |
| |
| ARMFilter::ARMFilter(const ARMFilter &f) : |
| Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), |
| FilteredInstructions(f.FilteredInstructions), |
| VariableInstructions(f.VariableInstructions), |
| FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), |
| LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { |
| } |
| |
| ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits, |
| bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), |
| Mixed(mixed) { |
| assert(StartBit + NumBits - 1 < BIT_WIDTH); |
| |
| NumFiltered = 0; |
| LastOpcFiltered = 0; |
| NumVariable = 0; |
| |
| for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { |
| insn_t Insn; |
| |
| // Populates the insn given the uid. |
| Owner->insnWithID(Insn, Owner->Opcodes[i]); |
| |
| uint64_t Field; |
| // Scans the segment for possibly well-specified encoding bits. |
| bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); |
| |
| if (ok) { |
| // The encoding bits are well-known. Lets add the uid of the |
| // instruction into the bucket keyed off the constant field value. |
| LastOpcFiltered = Owner->Opcodes[i]; |
| FilteredInstructions[Field].push_back(LastOpcFiltered); |
| ++NumFiltered; |
| } else { |
| // Some of the encoding bit(s) are unspecfied. This contributes to |
| // one additional member of "Variable" instructions. |
| VariableInstructions.push_back(Owner->Opcodes[i]); |
| ++NumVariable; |
| } |
| } |
| |
| assert((FilteredInstructions.size() + VariableInstructions.size() > 0) |
| && "Filter returns no instruction categories"); |
| } |
| |
| ARMFilter::~ARMFilter() { |
| std::map<unsigned, ARMFilterChooser*>::iterator filterIterator; |
| for (filterIterator = FilterChooserMap.begin(); |
| filterIterator != FilterChooserMap.end(); |
| filterIterator++) { |
| delete filterIterator->second; |
| } |
| } |
| |
| // Divides the decoding task into sub tasks and delegates them to the |
| // inferior FilterChooser's. |
| // |
| // A special case arises when there's only one entry in the filtered |
| // instructions. In order to unambiguously decode the singleton, we need to |
| // match the remaining undecoded encoding bits against the singleton. |
| void ARMFilter::recurse() { |
| std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; |
| |
| bit_value_t BitValueArray[BIT_WIDTH]; |
| // Starts by inheriting our parent filter chooser's filter bit values. |
| memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); |
| |
| unsigned bitIndex; |
| |
| if (VariableInstructions.size()) { |
| // Conservatively marks each segment position as BIT_UNSET. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) |
| BitValueArray[StartBit + bitIndex] = BIT_UNSET; |
| |
| // Delegates to an inferior filter chooser for futher processing on this |
| // group of instructions whose segment values are variable. |
| FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>( |
| (unsigned)-1, |
| new ARMFilterChooser(Owner->AllInstructions, |
| VariableInstructions, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| |
| // No need to recurse for a singleton filtered instruction. |
| // See also Filter::emit(). |
| if (getNumFiltered() == 1) { |
| //Owner->SingletonExists(LastOpcFiltered); |
| assert(FilterChooserMap.size() == 1); |
| return; |
| } |
| |
| // Otherwise, create sub choosers. |
| for (mapIterator = FilteredInstructions.begin(); |
| mapIterator != FilteredInstructions.end(); |
| mapIterator++) { |
| |
| // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { |
| if (mapIterator->first & (1ULL << bitIndex)) |
| BitValueArray[StartBit + bitIndex] = BIT_TRUE; |
| else |
| BitValueArray[StartBit + bitIndex] = BIT_FALSE; |
| } |
| |
| // Delegates to an inferior filter chooser for futher processing on this |
| // category of instructions. |
| FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>( |
| mapIterator->first, |
| new ARMFilterChooser(Owner->AllInstructions, |
| mapIterator->second, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| } |
| |
| // Emit code to decode instructions given a segment or segments of bits. |
| void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) { |
| o.indent(Indentation) << "// Check Inst{"; |
| |
| if (NumBits > 1) |
| o << (StartBit + NumBits - 1) << '-'; |
| |
| o << StartBit << "} ...\n"; |
| |
| o.indent(Indentation) << "switch (fieldFromInstruction(insn, " |
| << StartBit << ", " << NumBits << ")) {\n"; |
| |
| std::map<unsigned, ARMFilterChooser*>::iterator filterIterator; |
| |
| bool DefaultCase = false; |
| for (filterIterator = FilterChooserMap.begin(); |
| filterIterator != FilterChooserMap.end(); |
| filterIterator++) { |
| |
| // Field value -1 implies a non-empty set of variable instructions. |
| // See also recurse(). |
| if (filterIterator->first == (unsigned)-1) { |
| DefaultCase = true; |
| |
| o.indent(Indentation) << "default:\n"; |
| o.indent(Indentation) << " break; // fallthrough\n"; |
| |
| // Closing curly brace for the switch statement. |
| // This is unconventional because we want the default processing to be |
| // performed for the fallthrough cases as well, i.e., when the "cases" |
| // did not prove a decoded instruction. |
| o.indent(Indentation) << "}\n"; |
| |
| } else |
| o.indent(Indentation) << "case " << filterIterator->first << ":\n"; |
| |
| // We arrive at a category of instructions with the same segment value. |
| // Now delegate to the sub filter chooser for further decodings. |
| // The case may fallthrough, which happens if the remaining well-known |
| // encoding bits do not match exactly. |
| if (!DefaultCase) { ++Indentation; ++Indentation; } |
| |
| bool finished = filterIterator->second->emit(o, Indentation); |
| // For top level default case, there's no need for a break statement. |
| if (Owner->isTopLevel() && DefaultCase) |
| break; |
| if (!finished) |
| o.indent(Indentation) << "break;\n"; |
| |
| if (!DefaultCase) { --Indentation; --Indentation; } |
| } |
| |
| // If there is no default case, we still need to supply a closing brace. |
| if (!DefaultCase) { |
| // Closing curly brace for the switch statement. |
| o.indent(Indentation) << "}\n"; |
| } |
| } |
| |
| // Returns the number of fanout produced by the filter. More fanout implies |
| // the filter distinguishes more categories of instructions. |
| unsigned ARMFilter::usefulness() const { |
| if (VariableInstructions.size()) |
| return FilteredInstructions.size(); |
| else |
| return FilteredInstructions.size() + 1; |
| } |
| |
| ////////////////////////////////// |
| // // |
| // Filterchooser Implementation // |
| // // |
| ////////////////////////////////// |
| |
| // Define the symbol here. |
| TARGET_NAME_t ARMFilterChooser::TargetName; |
| |
| // This provides an opportunity for target specific code emission. |
| void ARMFilterChooser::emitTopHook(raw_ostream &o) { |
| if (TargetName == TARGET_ARM) { |
| // Emit code that references the ARMFormat data type. |
| o << "static const ARMFormat ARMFormats[] = {\n"; |
| for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { |
| const Record &Def = *(AllInstructions[i]->TheDef); |
| const std::string &Name = Def.getName(); |
| if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) |
| o.indent(2) << |
| stringForARMFormat((ARMFormat)getByteField(Def, "Form")); |
| else |
| o << " ARM_FORMAT_NA"; |
| |
| o << ",\t// Inst #" << i << " = " << Name << '\n'; |
| } |
| o << " ARM_FORMAT_NA\t// Unreachable.\n"; |
| o << "};\n\n"; |
| } |
| } |
| |
| // Emit the top level typedef and decodeInstruction() function. |
| void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) { |
| // Run the target specific emit hook. |
| emitTopHook(o); |
| |
| switch (BIT_WIDTH) { |
| case 8: |
| o.indent(Indentation) << "typedef uint8_t field_t;\n"; |
| break; |
| case 16: |
| o.indent(Indentation) << "typedef uint16_t field_t;\n"; |
| break; |
| case 32: |
| o.indent(Indentation) << "typedef uint32_t field_t;\n"; |
| break; |
| case 64: |
| o.indent(Indentation) << "typedef uint64_t field_t;\n"; |
| break; |
| default: |
| assert(0 && "Unexpected instruction size!"); |
| } |
| |
| o << '\n'; |
| |
| o.indent(Indentation) << "static field_t " << |
| "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; |
| |
| o.indent(Indentation) << "{\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH |
| << " && \"Instruction field out of bounds!\");\n"; |
| o << '\n'; |
| o.indent(Indentation) << "field_t fieldMask;\n"; |
| o << '\n'; |
| o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "fieldMask = (field_t)-1;\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "else\n"; |
| |
| ++Indentation; ++Indentation; |
| o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; |
| --Indentation; --Indentation; |
| |
| o << '\n'; |
| o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "}\n"; |
| |
| o << '\n'; |
| |
| o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n"; |
| |
| ++Indentation; ++Indentation; |
| // Emits code to decode the instructions. |
| emit(o, Indentation); |
| |
| o << '\n'; |
| o.indent(Indentation) << "return 0;\n"; |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "}\n"; |
| |
| o << '\n'; |
| } |
| |
| // This provides an opportunity for target specific code emission after |
| // emitTop(). |
| void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) { |
| if (TargetName != TARGET_THUMB) return; |
| |
| // Emit code that decodes the Thumb ISA. |
| o.indent(Indentation) |
| << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; |
| |
| ++Indentation; ++Indentation; |
| |
| // Emits code to decode the instructions. |
| emit(o, Indentation); |
| |
| o << '\n'; |
| o.indent(Indentation) << "return 0;\n"; |
| |
| --Indentation; --Indentation; |
| |
| o.indent(Indentation) << "}\n"; |
| } |
| |
| // Populates the field of the insn given the start position and the number of |
| // consecutive bits to scan for. |
| // |
| // Returns false if and on the first uninitialized bit value encountered. |
| // Returns true, otherwise. |
| bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, |
| unsigned StartBit, unsigned NumBits) const { |
| Field = 0; |
| |
| for (unsigned i = 0; i < NumBits; ++i) { |
| if (Insn[StartBit + i] == BIT_UNSET) |
| return false; |
| |
| if (Insn[StartBit + i] == BIT_TRUE) |
| Field = Field | (1ULL << i); |
| } |
| |
| return true; |
| } |
| |
| /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| /// filter array as a series of chars. |
| void ARMFilterChooser::dumpFilterArray(raw_ostream &o, |
| bit_value_t (&filter)[BIT_WIDTH]) { |
| unsigned bitIndex; |
| |
| for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) { |
| switch (filter[bitIndex - 1]) { |
| case BIT_UNFILTERED: |
| o << "."; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| } |
| } |
| } |
| |
| /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| /// dumpFilterArray on each filter chooser up to the top level one. |
| void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) { |
| ARMFilterChooser *current = this; |
| |
| while (current) { |
| o << prefix; |
| dumpFilterArray(o, current->FilterBitValues); |
| o << '\n'; |
| current = current->Parent; |
| } |
| } |
| |
| // Called from Filter::recurse() when singleton exists. For debug purpose. |
| void ARMFilterChooser::SingletonExists(unsigned Opc) { |
| insn_t Insn0; |
| insnWithID(Insn0, Opc); |
| |
| errs() << "Singleton exists: " << nameWithID(Opc) |
| << " with its decoding dominating "; |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| if (Opcodes[i] == Opc) continue; |
| errs() << nameWithID(Opcodes[i]) << ' '; |
| } |
| errs() << '\n'; |
| |
| dumpStack(errs(), "\t\t"); |
| for (unsigned i = 0; i < Opcodes.size(); i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| } |
| |
| // Calculates the island(s) needed to decode the instruction. |
| // This returns a list of undecoded bits of an instructions, for example, |
| // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| // decoded bits in order to verify that the instruction matches the Opcode. |
| unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits, |
| std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| insn_t &Insn) { |
| unsigned Num, BitNo; |
| Num = BitNo = 0; |
| |
| uint64_t FieldVal = 0; |
| |
| // 0: Init |
| // 1: Water (the bit value does not affect decoding) |
| // 2: Island (well-known bit value needed for decoding) |
| int State = 0; |
| int Val = -1; |
| |
| for (unsigned i = 0; i < BIT_WIDTH; ++i) { |
| Val = Value(Insn[i]); |
| bool Filtered = PositionFiltered(i); |
| switch (State) { |
| default: |
| assert(0 && "Unreachable code!"); |
| break; |
| case 0: |
| case 1: |
| if (Filtered || Val == -1) |
| State = 1; // Still in Water |
| else { |
| State = 2; // Into the Island |
| BitNo = 0; |
| StartBits.push_back(i); |
| FieldVal = Val; |
| } |
| break; |
| case 2: |
| if (Filtered || Val == -1) { |
| State = 1; // Into the Water |
| EndBits.push_back(i - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } else { |
| State = 2; // Still in Island |
| ++BitNo; |
| FieldVal = FieldVal | Val << BitNo; |
| } |
| break; |
| } |
| } |
| // If we are still in Island after the loop, do some housekeeping. |
| if (State == 2) { |
| EndBits.push_back(BIT_WIDTH - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } |
| |
| assert(StartBits.size() == Num && EndBits.size() == Num && |
| FieldVals.size() == Num); |
| return Num; |
| } |
| |
| // Emits code to decode the singleton. Return true if we have matched all the |
| // well-known bits. |
| bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| unsigned Opc) { |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| insnWithID(Insn, Opc); |
| |
| // This provides a good opportunity to check for possible Ld/St Coprocessor |
| // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP |
| // instruction is disguise. |
| if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { |
| o.indent(Indentation); |
| // A8.6.51 & A8.6.188 |
| // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. |
| o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; |
| } |
| |
| // Look for islands of undecoded bits of the singleton. |
| getIslands(StartBits, EndBits, FieldVals, Insn); |
| |
| unsigned Size = StartBits.size(); |
| unsigned I, NumBits; |
| |
| // If we have matched all the well-known bits, just issue a return. |
| if (Size == 0) { |
| o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc) |
| << '\n'; |
| return true; |
| } |
| |
| // Otherwise, there are more decodings to be done! |
| |
| // Emit code to match the island(s) for the singleton. |
| o.indent(Indentation) << "// Check "; |
| |
| for (I = Size; I != 0; --I) { |
| o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; |
| if (I > 1) |
| o << "&& "; |
| else |
| o << "for singleton decoding...\n"; |
| } |
| |
| o.indent(Indentation) << "if ("; |
| |
| for (I = Size; I != 0; --I) { |
| NumBits = EndBits[I-1] - StartBits[I-1] + 1; |
| o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits |
| << ") == " << FieldVals[I-1]; |
| if (I > 1) |
| o << " && "; |
| else |
| o << ")\n"; |
| } |
| |
| o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc) |
| << '\n'; |
| |
| return false; |
| } |
| |
| // Emits code to decode the singleton, and then to decode the rest. |
| void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, |
| unsigned &Indentation, |
| ARMFilter &Best) { |
| |
| unsigned Opc = Best.getSingletonOpc(); |
| |
| emitSingletonDecoder(o, Indentation, Opc); |
| |
| // Emit code for the rest. |
| o.indent(Indentation) << "else\n"; |
| |
| Indentation += 2; |
| Best.getVariableFC().emit(o, Indentation); |
| Indentation -= 2; |
| } |
| |
| // Assign a single filter and run with it. Top level API client can initialize |
| // with a single filter to start the filtering process. |
| void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner, |
| unsigned startBit, |
| unsigned numBit, bool mixed) { |
| Filters.clear(); |
| ARMFilter F(*this, startBit, numBit, true); |
| Filters.push_back(F); |
| BestIndex = 0; // Sole Filter instance to choose from. |
| bestFilter().recurse(); |
| } |
| |
| // reportRegion is a helper function for filterProcessor to mark a region as |
| // eligible for use as a filter region. |
| void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, |
| unsigned BitIndex, bool AllowMixed) { |
| if (RA == ATTR_MIXED && AllowMixed) |
| Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true)); |
| else if (RA == ATTR_ALL_SET && !AllowMixed) |
| Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false)); |
| } |
| |
| // FilterProcessor scans the well-known encoding bits of the instructions and |
| // builds up a list of candidate filters. It chooses the best filter and |
| // recursively descends down the decoding tree. |
| bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { |
| Filters.clear(); |
| BestIndex = -1; |
| unsigned numInstructions = Opcodes.size(); |
| |
| assert(numInstructions && "Filter created with no instructions"); |
| |
| // No further filtering is necessary. |
| if (numInstructions == 1) |
| return true; |
| |
| // Heuristics. See also doFilter()'s "Heuristics" comment when num of |
| // instructions is 3. |
| if (AllowMixed && !Greedy) { |
| assert(numInstructions == 3); |
| |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| |
| insnWithID(Insn, Opcodes[i]); |
| |
| // Look for islands of undecoded bits of any instruction. |
| if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { |
| // Found an instruction with island(s). Now just assign a filter. |
| runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, |
| true); |
| return true; |
| } |
| } |
| } |
| |
| unsigned BitIndex, InsnIndex; |
| |
| // We maintain BIT_WIDTH copies of the bitAttrs automaton. |
| // The automaton consumes the corresponding bit from each |
| // instruction. |
| // |
| // Input symbols: 0, 1, and _ (unset). |
| // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. |
| // Initial state: NONE. |
| // |
| // (NONE) ------- [01] -> (ALL_SET) |
| // (NONE) ------- _ ----> (ALL_UNSET) |
| // (ALL_SET) ---- [01] -> (ALL_SET) |
| // (ALL_SET) ---- _ ----> (MIXED) |
| // (ALL_UNSET) -- [01] -> (MIXED) |
| // (ALL_UNSET) -- _ ----> (ALL_UNSET) |
| // (MIXED) ------ . ----> (MIXED) |
| // (FILTERED)---- . ----> (FILTERED) |
| |
| bitAttr_t bitAttrs[BIT_WIDTH]; |
| |
| // FILTERED bit positions provide no entropy and are not worthy of pursuing. |
| // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. |
| for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) |
| if (FilterBitValues[BitIndex] == BIT_TRUE || |
| FilterBitValues[BitIndex] == BIT_FALSE) |
| bitAttrs[BitIndex] = ATTR_FILTERED; |
| else |
| bitAttrs[BitIndex] = ATTR_NONE; |
| |
| for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { |
| insn_t insn; |
| |
| insnWithID(insn, Opcodes[InsnIndex]); |
| |
| for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) { |
| switch (bitAttrs[BitIndex]) { |
| case ATTR_NONE: |
| if (insn[BitIndex] == BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_ALL_UNSET; |
| else |
| bitAttrs[BitIndex] = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_SET: |
| if (insn[BitIndex] == BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_ALL_UNSET: |
| if (insn[BitIndex] != BIT_UNSET) |
| bitAttrs[BitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_MIXED: |
| case ATTR_FILTERED: |
| break; |
| } |
| } |
| } |
| |
| // The regionAttr automaton consumes the bitAttrs automatons' state, |
| // lowest-to-highest. |
| // |
| // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) |
| // States: NONE, ALL_SET, MIXED |
| // Initial state: NONE |
| // |
| // (NONE) ----- F --> (NONE) |
| // (NONE) ----- S --> (ALL_SET) ; and set region start |
| // (NONE) ----- U --> (NONE) |
| // (NONE) ----- M --> (MIXED) ; and set region start |
| // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- S --> (ALL_SET) |
| // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region |
| // (MIXED) ---- F --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region |
| // (MIXED) ---- U --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- M --> (MIXED) |
| |
| bitAttr_t RA = ATTR_NONE; |
| unsigned StartBit = 0; |
| |
| for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) { |
| bitAttr_t bitAttr = bitAttrs[BitIndex]; |
| |
| assert(bitAttr != ATTR_NONE && "Bit without attributes"); |
| |
| switch (RA) { |
| case ATTR_NONE: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| StartBit = BitIndex; |
| RA = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| StartBit = BitIndex; |
| RA = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_SET: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| break; |
| case ATTR_ALL_UNSET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_MIXED: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| StartBit = BitIndex; |
| RA = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| RA = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_UNSET: |
| assert(0 && "regionAttr state machine has no ATTR_UNSET state"); |
| case ATTR_FILTERED: |
| assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); |
| } |
| } |
| |
| // At the end, if we're still in ALL_SET or MIXED states, report a region |
| switch (RA) { |
| case ATTR_NONE: |
| break; |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| break; |
| } |
| |
| // We have finished with the filter processings. Now it's time to choose |
| // the best performing filter. |
| BestIndex = 0; |
| bool AllUseless = true; |
| unsigned BestScore = 0; |
| |
| for (unsigned i = 0, e = Filters.size(); i != e; ++i) { |
| unsigned Usefulness = Filters[i].usefulness(); |
| |
| if (Usefulness) |
| AllUseless = false; |
| |
| if (Usefulness > BestScore) { |
| BestIndex = i; |
| BestScore = Usefulness; |
| } |
| } |
| |
| if (!AllUseless) |
| bestFilter().recurse(); |
| |
| return !AllUseless; |
| } // end of FilterChooser::filterProcessor(bool) |
| |
| // Decides on the best configuration of filter(s) to use in order to decode |
| // the instructions. A conflict of instructions may occur, in which case we |
| // dump the conflict set to the standard error. |
| void ARMFilterChooser::doFilter() { |
| unsigned Num = Opcodes.size(); |
| assert(Num && "FilterChooser created with no instructions"); |
| |
| // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA. |
| if (TargetName == TARGET_ARM && Parent == NULL) { |
| runSingleFilter(*this, 28, 4, false); |
| return; |
| } |
| |
| // Try regions of consecutive known bit values first. |
| if (filterProcessor(false)) |
| return; |
| |
| // Then regions of mixed bits (both known and unitialized bit values allowed). |
| if (filterProcessor(true)) |
| return; |
| |
| // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where |
| // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a |
| // well-known encoding pattern. In such case, we backtrack and scan for the |
| // the very first consecutive ATTR_ALL_SET region and assign a filter to it. |
| if (Num == 3 && filterProcessor(true, false)) |
| return; |
| |
| // If we come to here, the instruction decoding has failed. |
| // Set the BestIndex to -1 to indicate so. |
| BestIndex = -1; |
| } |
| |
| // Emits code to decode our share of instructions. Returns true if the |
| // emitted code causes a return, which occurs if we know how to decode |
| // the instruction at this level or the instruction is not decodeable. |
| bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) { |
| if (Opcodes.size() == 1) |
| // There is only one instruction in the set, which is great! |
| // Call emitSingletonDecoder() to see whether there are any remaining |
| // encodings bits. |
| return emitSingletonDecoder(o, Indentation, Opcodes[0]); |
| |
| // Choose the best filter to do the decodings! |
| if (BestIndex != -1) { |
| ARMFilter &Best = bestFilter(); |
| if (Best.getNumFiltered() == 1) |
| emitSingletonDecoder(o, Indentation, Best); |
| else |
| bestFilter().emit(o, Indentation); |
| return false; |
| } |
| |
| // If we reach here, there is a conflict in decoding. Let's resolve the known |
| // conflicts! |
| if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) && |
| Opcodes.size() == 2) { |
| // Resolve the known conflict sets: |
| // |
| // 1. source registers are identical => VMOVDneon; otherwise => VORRd |
| // 2. source registers are identical => VMOVQ; otherwise => VORRq |
| // 3. LDR, LDRcp => return LDR for now. |
| // FIXME: How can we distinguish between LDR and LDRcp? Do we need to? |
| // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0}, |
| // wback = registers<Rn> = 0 |
| // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD |
| // addressing mode resolution!!! |
| // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts |
| // are resolved returning the non-UPD versions of the instructions if the |
| // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1 |
| // Advanced SIMD addressing mode. |
| const std::string &name1 = nameWithID(Opcodes[0]); |
| const std::string &name2 = nameWithID(Opcodes[1]); |
| if ((name1 == "VMOVDneon" && name2 == "VORRd") || |
| (name1 == "VMOVQ" && name2 == "VORRq")) { |
| // Inserting the opening curly brace for this case block. |
| --Indentation; --Indentation; |
| o.indent(Indentation) << "{\n"; |
| ++Indentation; ++Indentation; |
| |
| o.indent(Indentation) |
| << "field_t N = fieldFromInstruction(insn, 7, 1), " |
| << "M = fieldFromInstruction(insn, 5, 1);\n"; |
| o.indent(Indentation) |
| << "field_t Vn = fieldFromInstruction(insn, 16, 4), " |
| << "Vm = fieldFromInstruction(insn, 0, 4);\n"; |
| o.indent(Indentation) |
| << "return (N == M && Vn == Vm) ? " |
| << Opcodes[0] << " /* " << name1 << " */ : " |
| << Opcodes[1] << " /* " << name2 << " */ ;\n"; |
| |
| // Inserting the closing curly brace for this case block. |
| --Indentation; --Indentation; |
| o.indent(Indentation) << "}\n"; |
| ++Indentation; ++Indentation; |
| |
| return true; |
| } |
| if (name1 == "LDR" && name2 == "LDRcp") { |
| o.indent(Indentation) |
| << "return " << Opcodes[0] |
| << "; // Returning LDR for {LDR, LDRcp}\n"; |
| return true; |
| } |
| if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") { |
| // Inserting the opening curly brace for this case block. |
| --Indentation; --Indentation; |
| o.indent(Indentation) << "{\n"; |
| ++Indentation; ++Indentation; |
| |
| o.indent(Indentation) |
| << "unsigned Rn = fieldFromInstruction(insn, 8, 3), " |
| << "list = fieldFromInstruction(insn, 0, 8);\n"; |
| o.indent(Indentation) |
| << "return ((list >> Rn) & 1) == 0 ? " |
| << Opcodes[1] << " /* " << name2 << " */ : " |
| << Opcodes[0] << " /* " << name1 << " */ ;\n"; |
| |
| // Inserting the closing curly brace for this case block. |
| --Indentation; --Indentation; |
| o.indent(Indentation) << "}\n"; |
| ++Indentation; ++Indentation; |
| |
| return true; |
| } |
| if (sameStringExceptSuffix(name1, name2, "_UPD")) { |
| o.indent(Indentation) |
| << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0] |
| << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2 |
| << " */ ; // Advanced SIMD addressing mode\n"; |
| return true; |
| } |
| |
| // Otherwise, it does not belong to the known conflict sets. |
| } |
| |
| // We don't know how to decode these instructions! Return 0 and dump the |
| // conflict set! |
| o.indent(Indentation) << "return 0;" << " // Conflict set: "; |
| for (int i = 0, N = Opcodes.size(); i < N; ++i) { |
| o << nameWithID(Opcodes[i]); |
| if (i < (N - 1)) |
| o << ", "; |
| else |
| o << '\n'; |
| } |
| |
| // Print out useful conflict information for postmortem analysis. |
| errs() << "Decoding Conflict:\n"; |
| |
| dumpStack(errs(), "\t\t"); |
| |
| for (unsigned i = 0; i < Opcodes.size(); i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| |
| return true; |
| } |
| |
| |
| //////////////////////////////////////////// |
| // // |
| // ARMDEBackend // |
| // (Helper class for ARMDecoderEmitter) // |
| // // |
| //////////////////////////////////////////// |
| |
| class ARMDecoderEmitter::ARMDEBackend { |
| public: |
| ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) : |
| NumberedInstructions(), |
| Opcodes(), |
| Frontend(frontend), |
| Target(Records), |
| FC(NULL) |
| { |
| if (Target.getName() == "ARM") |
| TargetName = TARGET_ARM; |
| else { |
| errs() << "Target name " << Target.getName() << " not recognized\n"; |
| assert(0 && "Unknown target"); |
| } |
| |
| // Populate the instructions for our TargetName. |
| populateInstructions(); |
| } |
| |
| ~ARMDEBackend() { |
| if (FC) { |
| delete FC; |
| FC = NULL; |
| } |
| } |
| |
| void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> |
| &NumberedInstructions) { |
| // We must emit the PHI opcode first... |
| std::string Namespace = Target.getInstNamespace(); |
| assert(!Namespace.empty() && "No instructions defined."); |
| |
| NumberedInstructions = Target.getInstructionsByEnumValue(); |
| } |
| |
| bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN); |
| |
| void populateInstructions(); |
| |
| // Emits disassembler code for instruction decoding. This delegates to the |
| // FilterChooser instance to do the heavy lifting. |
| void emit(raw_ostream &o); |
| |
| protected: |
| std::vector<const CodeGenInstruction*> NumberedInstructions; |
| std::vector<unsigned> Opcodes; |
| // Special case for the ARM chip, which supports ARM and Thumb ISAs. |
| // Opcodes2 will be populated with the Thumb opcodes. |
| std::vector<unsigned> Opcodes2; |
| ARMDecoderEmitter &Frontend; |
| CodeGenTarget Target; |
| ARMFilterChooser *FC; |
| |
| TARGET_NAME_t TargetName; |
| }; |
| |
| bool ARMDecoderEmitter:: |
| ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI, |
| TARGET_NAME_t TN) { |
| const Record &Def = *CGI.TheDef; |
| const StringRef Name = Def.getName(); |
| uint8_t Form = getByteField(Def, "Form"); |
| |
| BitsInit &Bits = getBitsField(Def, "Inst"); |
| |
| // If all the bit positions are not specified; do not decode this instruction. |
| // We are bound to fail! For proper disassembly, the well-known encoding bits |
| // of the instruction must be fully specified. |
| // |
| // This also removes pseudo instructions from considerations of disassembly, |
| // which is a better design and less fragile than the name matchings. |
| if (Bits.allInComplete()) return false; |
| |
| // Ignore "asm parser only" instructions. |
| if (Def.getValueAsBit("isAsmParserOnly")) |
| return false; |
| |
| if (TN == TARGET_ARM) { |
| if (Form == ARM_FORMAT_PSEUDO) |
| return false; |
| if (thumbInstruction(Form)) |
| return false; |
| |
| // Tail calls are other patterns that generate existing instructions. |
| if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" || |
| Name == "TCRETURNri" || Name == "TCRETURNriND" || |
| Name == "TAILJMPd" || Name == "TAILJMPdt" || |
| Name == "TAILJMPdND" || Name == "TAILJMPdNDt" || |
| Name == "TAILJMPr" || Name == "TAILJMPrND" || |
| Name == "MOVr_TC") |
| return false; |
| |
| // Delegate ADR disassembly to the more generic ADDri/SUBri instructions. |
| if (Name == "ADR") |
| return false; |
| |
| // |
| // The following special cases are for conflict resolutions. |
| // |
| |
| // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are |
| // better off using the generic RSCri and RSCrs instructions. |
| if (Name == "RSCSri" || Name == "RSCSrs") return false; |
| |
| // A8-598: VEXT |
| // Vector Extract extracts elements from the bottom end of the second |
| // operand vector and the top end of the first, concatenates them and |
| // places the result in the destination vector. The elements of the |
| // vectors are treated as being 8-bit bitfields. There is no distinction |
| // between data types. The size of the operation can be specified in |
| // assembler as vext.size. If the value is 16, 32, or 64, the syntax is |
| // a pseudo-instruction for a VEXT instruction specifying the equivalent |
| // number of bytes. |
| // |
| // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8; |
| // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8. |
| if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" || |
| Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf") |
| return false; |
| } else if (TN == TARGET_THUMB) { |
| if (!thumbInstruction(Form)) |
| return false; |
| |
| // A8.6.189 STM / STMIA / STMEA -- Encoding T1 |
| // There's only STMIA_UPD for Thumb1. |
| if (Name == "tSTMIA") |
| return false; |
| |
| // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts. |
| if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr") |
| return false; |
| |
| // A8.6.25 BX. Use the generic tBX_Rm, ignore tBX_RET and tBX_RET_vararg. |
| if (Name == "tBX_RET" || Name == "tBX_RET_vararg") |
| return false; |
| |
| // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9. |
| if (Name == "tTPsoft" || Name == "t2TPsoft") |
| return false; |
| |
| // Ignore tADR, prefer tADDrPCi. |
| if (Name == "tADR") |
| return false; |
| |
| // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12 |
| // instructions. |
| if (Name == "t2ADR") |
| return false; |
| |
| // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr. |
| // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s]. |
| // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s]. |
| // Ignore t2ADDrSPi/t2SUBrSPi, which have more generic couterparts. |
| // Ignore t2ADDrSPi12/t2SUBrSPi12, which have more generic couterparts |
| if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" || |
| Name == "t2SUBrSPs" || Name == "t2ADDrSPs" || |
| Name == "t2ADDrSPi" || Name == "t2SUBrSPi" || |
| Name == "t2ADDrSPi12" || Name == "t2SUBrSPi12") |
| return false; |
| |
| // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST. |
| if (Name == "t2LDRDpci") |
| return false; |
| |
| // Resolve conflicts: |
| // |
| // tBfar conflicts with tBLr9 |
| // tPOP_RET/t2LDMIA_RET conflict with tPOP/t2LDM (ditto) |
| // tMOVCCi conflicts with tMOVi8 |
| // tMOVCCr conflicts with tMOVgpr2gpr |
| // tSpill conflicts with tSTRspi |
| // tLDRcp conflicts with tLDRspi |
| // tRestore conflicts with tLDRspi |
| // t2MOVCCi16 conflicts with tMOVi16 |
| if (Name == "tBfar" || |
| Name == "tPOP_RET" || Name == "t2LDMIA_RET" || |
| Name == "tMOVCCi" || Name == "tMOVCCr" || |
| Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" || |
| Name == "t2MOVCCi16") |
| return false; |
| } |
| |
| DEBUG({ |
| // Dumps the instruction encoding format. |
| switch (TargetName) { |
| case TARGET_ARM: |
| case TARGET_THUMB: |
| errs() << Name << " " << stringForARMFormat((ARMFormat)Form); |
| break; |
| } |
| |
| errs() << " "; |
| |
| // Dumps the instruction encoding bits. |
| dumpBits(errs(), Bits); |
| |
| errs() << '\n'; |
| |
| // Dumps the list of operand info. |
| for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; |
| const std::string &OperandName = Info.Name; |
| const Record &OperandDef = *Info.Rec; |
| |
| errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; |
| } |
| }); |
| |
| return true; |
| } |
| |
| void ARMDecoderEmitter::ARMDEBackend::populateInstructions() { |
| getInstructionsByEnumValue(NumberedInstructions); |
| |
| unsigned numUIDs = NumberedInstructions.size(); |
| if (TargetName == TARGET_ARM) { |
| for (unsigned uid = 0; uid < numUIDs; uid++) { |
| // filter out intrinsics |
| if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")) |
| continue; |
| |
| if (populateInstruction(*NumberedInstructions[uid], TargetName)) |
| Opcodes.push_back(uid); |
| } |
| |
| // Special handling for the ARM chip, which supports two modes of execution. |
| // This branch handles the Thumb opcodes. |
| for (unsigned uid = 0; uid < numUIDs; uid++) { |
| // filter out intrinsics |
| if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM") |
| && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb")) |
| continue; |
| |
| if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB)) |
| Opcodes2.push_back(uid); |
| } |
| |
| return; |
| } |
| |
| // For other targets. |
| for (unsigned uid = 0; uid < numUIDs; uid++) { |
| Record *R = NumberedInstructions[uid]->TheDef; |
| if (R->getValueAsString("Namespace") == "TargetOpcode") |
| continue; |
| |
| if (populateInstruction(*NumberedInstructions[uid], TargetName)) |
| Opcodes.push_back(uid); |
| } |
| } |
| |
| // Emits disassembler code for instruction decoding. This delegates to the |
| // FilterChooser instance to do the heavy lifting. |
| void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) { |
| switch (TargetName) { |
| case TARGET_ARM: |
| Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o); |
| break; |
| default: |
| assert(0 && "Unreachable code!"); |
| } |
| |
| o << "#include \"llvm/Support/DataTypes.h\"\n"; |
| o << "#include <assert.h>\n"; |
| o << '\n'; |
| o << "namespace llvm {\n\n"; |
| |
| ARMFilterChooser::setTargetName(TargetName); |
| |
| switch (TargetName) { |
| case TARGET_ARM: { |
| // Emit common utility and ARM ISA decoder. |
| FC = new ARMFilterChooser(NumberedInstructions, Opcodes); |
| // Reset indentation level. |
| unsigned Indentation = 0; |
| FC->emitTop(o, Indentation); |
| delete FC; |
| |
| // Emit Thumb ISA decoder as well. |
| ARMFilterChooser::setTargetName(TARGET_THUMB); |
| FC = new ARMFilterChooser(NumberedInstructions, Opcodes2); |
| // Reset indentation level. |
| Indentation = 0; |
| FC->emitBot(o, Indentation); |
| break; |
| } |
| default: |
| assert(0 && "Unreachable code!"); |
| } |
| |
| o << "\n} // End llvm namespace \n"; |
| } |
| |
| ///////////////////////// |
| // Backend interface // |
| ///////////////////////// |
| |
| void ARMDecoderEmitter::initBackend() |
| { |
| Backend = new ARMDEBackend(*this, Records); |
| } |
| |
| void ARMDecoderEmitter::run(raw_ostream &o) |
| { |
| Backend->emit(o); |
| } |
| |
| void ARMDecoderEmitter::shutdownBackend() |
| { |
| delete Backend; |
| Backend = NULL; |
| } |