| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "JITDwarfEmitter.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Module.h" |
| #include "llvm/Type.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/System/Disassembler.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled"); |
| STATISTIC(NumRelos, "Number of relocations applied"); |
| static JIT *TheJIT = 0; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| class JITResolverState { |
| private: |
| /// FunctionToStubMap - Keep track of the stub created for a particular |
| /// function so that we can reuse them if necessary. |
| std::map<Function*, void*> FunctionToStubMap; |
| |
| /// StubToFunctionMap - Keep track of the function that each stub |
| /// corresponds to. |
| std::map<void*, Function*> StubToFunctionMap; |
| |
| /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a |
| /// particular GlobalVariable so that we can reuse them if necessary. |
| std::map<GlobalValue*, void*> GlobalToLazyPtrMap; |
| |
| public: |
| std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return FunctionToStubMap; |
| } |
| |
| std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return StubToFunctionMap; |
| } |
| |
| std::map<GlobalValue*, void*>& |
| getGlobalToLazyPtrMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return GlobalToLazyPtrMap; |
| } |
| }; |
| |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| JITResolverState state; |
| |
| /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for |
| /// external functions. |
| std::map<void*, void*> ExternalFnToStubMap; |
| |
| //map addresses to indexes in the GOT |
| std::map<void*, unsigned> revGOTMap; |
| unsigned nextGOTIndex; |
| |
| static JITResolver *TheJITResolver; |
| public: |
| explicit JITResolver(JIT &jit) : nextGOTIndex(0) { |
| TheJIT = &jit; |
| |
| LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| assert(TheJITResolver == 0 && "Multiple JIT resolvers?"); |
| TheJITResolver = this; |
| } |
| |
| ~JITResolver() { |
| TheJITResolver = 0; |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *getFunctionStub(Function *F); |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *getExternalFunctionStub(void *FnAddr); |
| |
| /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified |
| /// GV address. |
| void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress); |
| |
| /// AddCallbackAtLocation - If the target is capable of rewriting an |
| /// instruction without the use of a stub, record the location of the use so |
| /// we know which function is being used at the location. |
| void *AddCallbackAtLocation(Function *F, void *Location) { |
| MutexGuard locked(TheJIT->lock); |
| /// Get the target-specific JIT resolver function. |
| state.getStubToFunctionMap(locked)[Location] = F; |
| return (void*)(intptr_t)LazyResolverFn; |
| } |
| |
| /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| /// an address. This function only manages slots, it does not manage the |
| /// contents of the slots or the memory associated with the GOT. |
| unsigned getGOTIndexForAddr(void *addr); |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| } |
| |
| JITResolver *JITResolver::TheJITResolver = 0; |
| |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ |
| defined(__APPLE__) |
| extern "C" void sys_icache_invalidate(const void *Addr, size_t len); |
| #endif |
| |
| /// synchronizeICache - On some targets, the JIT emitted code must be |
| /// explicitly refetched to ensure correct execution. |
| static void synchronizeICache(const void *Addr, size_t len) { |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ |
| defined(__APPLE__) |
| sys_icache_invalidate(Addr, len); |
| #endif |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getFunctionStub(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = state.getFunctionToStubMap(locked)[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function unless we already KNOW it is an external |
| // function, in which case we just skip the lazy resolution step. |
| void *Actual = (void*)(intptr_t)LazyResolverFn; |
| if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // Otherwise, codegen a new stub. For now, the stub will call the lazy |
| // resolver function. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, |
| *TheJIT->getCodeEmitter()); |
| |
| if (Actual != (void*)(intptr_t)LazyResolverFn) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| DOUT << "JIT: Stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"; |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| state.getStubToFunctionMap(locked)[Stub] = F; |
| return Stub; |
| } |
| |
| /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified |
| /// GV address. |
| void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this global variable, recycle it. |
| void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV]; |
| if (LazyPtr) return LazyPtr; |
| |
| // Otherwise, codegen a new lazy pointer. |
| LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GVAddress, |
| *TheJIT->getCodeEmitter()); |
| |
| DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '" |
| << GV->getName() << "'\n"; |
| |
| return LazyPtr; |
| } |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = ExternalFnToStubMap[FnAddr]; |
| if (Stub) return Stub; |
| |
| Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, |
| *TheJIT->getCodeEmitter()); |
| |
| DOUT << "JIT: Stub emitted at [" << Stub |
| << "] for external function at '" << FnAddr << "'\n"; |
| return Stub; |
| } |
| |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| unsigned idx = revGOTMap[addr]; |
| if (!idx) { |
| idx = ++nextGOTIndex; |
| revGOTMap[addr] = idx; |
| DOUT << "Adding GOT entry " << idx |
| << " for addr " << addr << "\n"; |
| } |
| return idx; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = *TheJITResolver; |
| |
| MutexGuard locked(TheJIT->lock); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| std::map<void*, Function*>::iterator I = |
| JR.state.getStubToFunctionMap(locked).upper_bound(Stub); |
| assert(I != JR.state.getStubToFunctionMap(locked).begin() && |
| "This is not a known stub!"); |
| Function *F = (--I)->second; |
| |
| // If we have already code generated the function, just return the address. |
| void *Result = TheJIT->getPointerToGlobalIfAvailable(F); |
| |
| if (!Result) { |
| // Otherwise we don't have it, do lazy compilation now. |
| |
| // If lazy compilation is disabled, emit a useful error message and abort. |
| if (TheJIT->isLazyCompilationDisabled()) { |
| cerr << "LLVM JIT requested to do lazy compilation of function '" |
| << F->getName() << "' when lazy compiles are disabled!\n"; |
| abort(); |
| } |
| |
| // We might like to remove the stub from the StubToFunction map. |
| // We can't do that! Multiple threads could be stuck, waiting to acquire the |
| // lock above. As soon as the 1st function finishes compiling the function, |
| // the next one will be released, and needs to be able to find the function |
| // it needs to call. |
| //JR.state.getStubToFunctionMap(locked).erase(I); |
| |
| DOUT << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << I->first << "\n"; |
| |
| Result = TheJIT->getPointerToFunction(F); |
| } |
| |
| // We don't need to reuse this stub in the future, as F is now compiled. |
| JR.state.getFunctionToStubMap(locked).erase(F); |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| |
| // What we will do is set the compiled function address to map to the |
| // same GOT entry as the stub so that later clients may update the GOT |
| // if they see it still using the stub address. |
| // Note: this is done so the Resolver doesn't have to manage GOT memory |
| // Do this without allocating map space if the target isn't using a GOT |
| if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function Index Support |
| |
| // On MacOS we generate an index of currently JIT'd functions so that |
| // performance tools can determine a symbol name and accurate code range for a |
| // PC value. Because performance tools are generally asynchronous, the code |
| // below is written with the hope that it could be interrupted at any time and |
| // have useful answers. However, we don't go crazy with atomic operations, we |
| // just do a "reasonable effort". |
| #ifdef __APPLE__ |
| #define ENABLE_JIT_SYMBOL_TABLE 1 |
| #endif |
| |
| /// JitSymbolEntry - Each function that is JIT compiled results in one of these |
| /// being added to an array of symbols. This indicates the name of the function |
| /// as well as the address range it occupies. This allows the client to map |
| /// from a PC value to the name of the function. |
| struct JitSymbolEntry { |
| const char *FnName; // FnName - a strdup'd string. |
| void *FnStart; |
| intptr_t FnSize; |
| }; |
| |
| |
| struct JitSymbolTable { |
| /// NextPtr - This forms a linked list of JitSymbolTable entries. This |
| /// pointer is not used right now, but might be used in the future. Consider |
| /// it reserved for future use. |
| JitSymbolTable *NextPtr; |
| |
| /// Symbols - This is an array of JitSymbolEntry entries. Only the first |
| /// 'NumSymbols' symbols are valid. |
| JitSymbolEntry *Symbols; |
| |
| /// NumSymbols - This indicates the number entries in the Symbols array that |
| /// are valid. |
| unsigned NumSymbols; |
| |
| /// NumAllocated - This indicates the amount of space we have in the Symbols |
| /// array. This is a private field that should not be read by external tools. |
| unsigned NumAllocated; |
| }; |
| |
| #if ENABLE_JIT_SYMBOL_TABLE |
| JitSymbolTable *__jitSymbolTable; |
| #endif |
| |
| static void AddFunctionToSymbolTable(const char *FnName, |
| void *FnStart, intptr_t FnSize) { |
| assert(FnName != 0 && FnStart != 0 && "Bad symbol to add"); |
| JitSymbolTable **SymTabPtrPtr = 0; |
| #if !ENABLE_JIT_SYMBOL_TABLE |
| return; |
| #else |
| SymTabPtrPtr = &__jitSymbolTable; |
| #endif |
| |
| // If this is the first entry in the symbol table, add the JitSymbolTable |
| // index. |
| if (*SymTabPtrPtr == 0) { |
| JitSymbolTable *New = new JitSymbolTable(); |
| New->NextPtr = 0; |
| New->Symbols = 0; |
| New->NumSymbols = 0; |
| New->NumAllocated = 0; |
| *SymTabPtrPtr = New; |
| } |
| |
| JitSymbolTable *SymTabPtr = *SymTabPtrPtr; |
| |
| // If we have space in the table, reallocate the table. |
| if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) { |
| // If we don't have space, reallocate the table. |
| unsigned NewSize = std::min(64U, SymTabPtr->NumAllocated*2); |
| JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize]; |
| JitSymbolEntry *OldSymbols = SymTabPtr->Symbols; |
| |
| // Copy the old entries over. |
| memcpy(NewSymbols, OldSymbols, |
| SymTabPtr->NumAllocated*sizeof(JitSymbolEntry)); |
| |
| // Swap the new symbols in, delete the old ones. |
| SymTabPtr->Symbols = NewSymbols; |
| SymTabPtr->NumSymbols = NewSize; |
| delete [] OldSymbols; |
| } |
| |
| // Otherwise, we have enough space, just tack it onto the end of the array. |
| JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols]; |
| Entry.FnName = strdup(FnName); |
| Entry.FnStart = FnStart; |
| Entry.FnSize = FnSize; |
| ++SymTabPtr->NumSymbols; |
| } |
| |
| static void RemoveFunctionFromSymbolTable(void *FnStart) { |
| assert(FnStart && "Invalid function pointer"); |
| JitSymbolTable **SymTabPtrPtr = 0; |
| #if !ENABLE_JIT_SYMBOL_TABLE |
| return; |
| #else |
| SymTabPtrPtr = &__jitSymbolTable; |
| #endif |
| |
| JitSymbolTable *SymTabPtr = *SymTabPtrPtr; |
| JitSymbolEntry *Symbols = SymTabPtr->Symbols; |
| |
| // Scan the table to find its index. The table is not sorted, so do a linear |
| // scan. |
| unsigned Index; |
| for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index) |
| assert(Index != SymTabPtr->NumSymbols && "Didn't find function!"); |
| |
| // Once we have an index, we know to nuke this entry, overwrite it with the |
| // entry at the end of the array, making the last entry redundant. |
| const char *OldName = Symbols[Index].FnName; |
| Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1]; |
| free((void*)OldName); |
| |
| // Drop the number of symbols in the table. |
| --SymTabPtr->NumSymbols; |
| |
| // Finally, if we deleted the final symbol, deallocate the table itself. |
| if (SymTabPtr->NumSymbols == 0) |
| return; |
| |
| *SymTabPtrPtr = 0; |
| delete [] Symbols; |
| delete SymTabPtr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| namespace { |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public MachineCodeEmitter { |
| JITMemoryManager *MemMgr; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save BufferBegin/BufferEnd/CurBufferPtr here. |
| unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| |
| /// MBBLocations - This vector is a mapping from MBB ID's to their address. |
| /// It is filled in by the StartMachineBasicBlock callback and queried by |
| /// the getMachineBasicBlockAddress callback. |
| std::vector<intptr_t> MBBLocations; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineConstantPool *ConstantPool; |
| |
| /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| /// |
| void *ConstantPoolBase; |
| |
| /// JumpTable - The jump tables for the current function. |
| /// |
| MachineJumpTableInfo *JumpTable; |
| |
| /// JumpTableBase - A pointer to the first entry in the jump table. |
| /// |
| void *JumpTableBase; |
| |
| /// Resolver - This contains info about the currently resolved functions. |
| JITResolver Resolver; |
| |
| /// DE - The dwarf emitter for the jit. |
| JITDwarfEmitter *DE; |
| |
| /// LabelLocations - This vector is a mapping from Label ID's to their |
| /// address. |
| std::vector<intptr_t> LabelLocations; |
| |
| /// MMI - Machine module info for exception informations |
| MachineModuleInfo* MMI; |
| |
| public: |
| JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) { |
| MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); |
| if (jit.getJITInfo().needsGOT()) { |
| MemMgr->AllocateGOT(); |
| DOUT << "JIT is managing a GOT\n"; |
| } |
| |
| if (ExceptionHandling) DE = new JITDwarfEmitter(jit); |
| } |
| ~JITEmitter() { |
| delete MemMgr; |
| if (ExceptionHandling) delete DE; |
| } |
| |
| JITResolver &getJITResolver() { return Resolver; } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual bool finishFunction(MachineFunction &F); |
| |
| void emitConstantPool(MachineConstantPool *MCP); |
| void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| void emitJumpTableInfo(MachineJumpTableInfo *MJTI); |
| |
| virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1); |
| virtual void* finishFunctionStub(const Function *F); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { |
| if (MBBLocations.size() <= (unsigned)MBB->getNumber()) |
| MBBLocations.resize((MBB->getNumber()+1)*2); |
| MBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| } |
| |
| virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const; |
| virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const; |
| |
| virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { |
| assert(MBBLocations.size() > (unsigned)MBB->getNumber() && |
| MBBLocations[MBB->getNumber()] && "MBB not emitted!"); |
| return MBBLocations[MBB->getNumber()]; |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. |
| void deallocateMemForFunction(Function *F) { |
| MemMgr->deallocateMemForFunction(F); |
| } |
| |
| virtual void emitLabel(uint64_t LabelID) { |
| if (LabelLocations.size() <= LabelID) |
| LabelLocations.resize((LabelID+1)*2); |
| LabelLocations[LabelID] = getCurrentPCValue(); |
| } |
| |
| virtual intptr_t getLabelAddress(uint64_t LabelID) const { |
| assert(LabelLocations.size() > (unsigned)LabelID && |
| LabelLocations[LabelID] && "Label not emitted!"); |
| return LabelLocations[LabelID]; |
| } |
| |
| virtual void setModuleInfo(MachineModuleInfo* Info) { |
| MMI = Info; |
| if (ExceptionHandling) DE->setModuleInfo(Info); |
| } |
| |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); |
| void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference, |
| bool NoNeedStub); |
| }; |
| } |
| |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| /// FIXME: If we straightened things out, this could actually emit the |
| /// global immediately instead of queuing it for codegen later! |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| } |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| if (ResultPtr) return ResultPtr; |
| |
| if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) { |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. |
| if (DoesntNeedStub) |
| return TheJIT->getPointerToFunction(F); |
| |
| return Resolver.getFunctionStub(F); |
| } |
| |
| // Okay, the function has not been compiled yet, if the target callback |
| // mechanism is capable of rewriting the instruction directly, prefer to do |
| // that instead of emitting a stub. |
| if (DoesntNeedStub) |
| return Resolver.AddCallbackAtLocation(F, Reference); |
| |
| // Otherwise, we have to emit a lazy resolving stub. |
| return Resolver.getFunctionStub(F); |
| } |
| |
| void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| // Make sure GV is emitted first. |
| // FIXME: For now, if the GV is an external function we force the JIT to |
| // compile it so the lazy pointer will contain the fully resolved address. |
| void *GVAddress = getPointerToGlobal(V, Reference, true); |
| return Resolver.getGlobalValueLazyPtr(V, GVAddress); |
| } |
| |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| uintptr_t ActualSize; |
| BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| |
| // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| emitAlignment(16); |
| |
| emitConstantPool(F.getConstantPool()); |
| initJumpTableInfo(F.getJumpTableInfo()); |
| |
| // About to start emitting the machine code for the function. |
| emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); |
| |
| MBBLocations.clear(); |
| } |
| |
| bool JITEmitter::finishFunction(MachineFunction &F) { |
| if (CurBufferPtr == BufferEnd) { |
| // FIXME: Allocate more space, then try again. |
| cerr << "JIT: Ran out of space for generated machine code!\n"; |
| abort(); |
| } |
| |
| emitJumpTableInfo(F.getJumpTableInfo()); |
| |
| // FnStart is the start of the text, not the start of the constant pool and |
| // other per-function data. |
| unsigned char *FnStart = |
| (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); |
| unsigned char *FnEnd = CurBufferPtr; |
| |
| MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd); |
| NumBytes += FnEnd-FnStart; |
| |
| if (!Relocations.empty()) { |
| NumRelos += Relocations.size(); |
| |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr; |
| if (MR.isString()) { |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); |
| |
| // If the target REALLY wants a stub for this function, emit it now. |
| if (!MR.doesntNeedStub()) |
| ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); |
| } else if (MR.isGlobalValue()) { |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedStub()); |
| } else if (MR.isGlobalValueLazyPtr()) { |
| ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedStub()); |
| } else if (MR.isBasicBlock()) { |
| ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); |
| } else if (MR.isConstantPoolIndex()) { |
| ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| } else { |
| assert(MR.isJumpTableIndex()); |
| ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| } |
| |
| MR.setResultPointer(ResultPtr); |
| |
| // if we are managing the GOT and the relocation wants an index, |
| // give it one |
| if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); |
| MR.setGOTIndex(idx); |
| if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { |
| DOUT << "GOT was out of date for " << ResultPtr |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| << "\n"; |
| ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; |
| } |
| } |
| } |
| |
| TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| Relocations.size(), MemMgr->getGOTBase()); |
| } |
| |
| // Update the GOT entry for F to point to the new code. |
| if (MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); |
| if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { |
| DOUT << "GOT was out of date for " << (void*)BufferBegin |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"; |
| ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; |
| } |
| } |
| |
| // Invalidate the icache if necessary. |
| synchronizeICache(FnStart, FnEnd-FnStart); |
| |
| // Add it to the JIT symbol table if the host wants it. |
| AddFunctionToSymbolTable(F.getFunction()->getNameStart(), |
| FnStart, FnEnd-FnStart); |
| |
| DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << (FnEnd-FnStart) << " bytes of text, " |
| << Relocations.size() << " relocations\n"; |
| Relocations.clear(); |
| |
| #ifndef NDEBUG |
| if (sys::hasDisassembler()) |
| DOUT << "Disassembled code:\n" |
| << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart); |
| #endif |
| if (ExceptionHandling) { |
| uintptr_t ActualSize; |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd); |
| MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, |
| FrameRegister); |
| BufferBegin = SavedBufferBegin; |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| |
| TheJIT->RegisterTable(FrameRegister); |
| } |
| MMI->EndFunction(); |
| |
| return false; |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| MachineConstantPoolEntry CPE = Constants.back(); |
| unsigned Size = CPE.Offset; |
| const Type *Ty = CPE.isMachineConstantPoolEntry() |
| ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType(); |
| Size += TheJIT->getTargetData()->getABITypeSize(Ty); |
| |
| ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment()); |
| ConstantPool = MCP; |
| |
| if (ConstantPoolBase == 0) return; // Buffer overflow. |
| |
| // Initialize the memory for all of the constant pool entries. |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset; |
| if (Constants[i].isMachineConstantPoolEntry()) { |
| // FIXME: add support to lower machine constant pool values into bytes! |
| cerr << "Initialize memory with machine specific constant pool entry" |
| << " has not been implemented!\n"; |
| abort(); |
| } |
| TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr); |
| } |
| } |
| |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| // Just allocate space for all the jump tables now. We will fix up the actual |
| // MBB entries in the tables after we emit the code for each block, since then |
| // we will know the final locations of the MBBs in memory. |
| JumpTable = MJTI; |
| JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); |
| } |
| |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty() || JumpTableBase == 0) return; |
| |
| if (TargetMachine::getRelocationModel() == Reloc::PIC_) { |
| assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?"); |
| // For each jump table, place the offset from the beginning of the table |
| // to the target address. |
| int *SlotPtr = (int*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the offset of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| intptr_t Base = (intptr_t)SlotPtr; |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { |
| intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); |
| *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); |
| } |
| } |
| } else { |
| assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); |
| |
| // For each jump table, map each target in the jump table to the address of |
| // an emitted MachineBasicBlock. |
| intptr_t *SlotPtr = (intptr_t*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the address of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) |
| *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); |
| } |
| } |
| } |
| |
| void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr->allocateStub(StubSize, Alignment); |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void *JITEmitter::finishFunctionStub(const Function *F) { |
| NumBytes += getCurrentPCOffset(); |
| std::swap(SavedBufferBegin, BufferBegin); |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| return SavedBufferBegin; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { |
| assert(ConstantNum < ConstantPool->getConstants().size() && |
| "Invalid ConstantPoolIndex!"); |
| return (intptr_t)ConstantPoolBase + |
| ConstantPool->getConstants()[ConstantNum].Offset; |
| } |
| |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| // |
| intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| assert(Index < JT.size() && "Invalid jump table index!"); |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = JumpTable->getEntrySize(); |
| |
| for (unsigned i = 0; i < Index; ++i) |
| Offset += JT[i].MBBs.size(); |
| |
| Offset *= EntrySize; |
| |
| return (intptr_t)((char *)JumpTableBase + Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public interface to this file |
| //===----------------------------------------------------------------------===// |
| |
| MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) { |
| return new JITEmitter(jit, JMM); |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| if (Function *F = TheJIT->FindFunctionNamed(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it. |
| assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?"); |
| JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); |
| return JE->getJITResolver().getFunctionStub(F); |
| } |
| |
| /// freeMachineCodeForFunction - release machine code memory for given Function. |
| /// |
| void JIT::freeMachineCodeForFunction(Function *F) { |
| |
| // Delete translation for this from the ExecutionEngine, so it will get |
| // retranslated next time it is used. |
| void *OldPtr = updateGlobalMapping(F, 0); |
| |
| if (OldPtr) |
| RemoveFunctionFromSymbolTable(OldPtr); |
| |
| // Free the actual memory for the function body and related stuff. |
| assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?"); |
| static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F); |
| } |
| |