| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveVariable analysis pass. For each machine |
| // instruction in the function, this pass calculates the set of registers that |
| // are immediately dead after the instruction (i.e., the instruction calculates |
| // the value, but it is never used) and the set of registers that are used by |
| // the instruction, but are never used after the instruction (i.e., they are |
| // killed). |
| // |
| // This class computes live variables using are sparse implementation based on |
| // the machine code SSA form. This class computes live variable information for |
| // each virtual and _register allocatable_ physical register in a function. It |
| // uses the dominance properties of SSA form to efficiently compute live |
| // variables for virtual registers, and assumes that physical registers are only |
| // live within a single basic block (allowing it to do a single local analysis |
| // to resolve physical register lifetimes in each basic block). If a physical |
| // register is not register allocatable, it is not tracked. This is useful for |
| // things like the stack pointer and condition codes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Config/alloca.h" |
| #include <algorithm> |
| #include <iostream> |
| using namespace llvm; |
| |
| static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); |
| |
| void LiveVariables::VarInfo::dump() const { |
| std::cerr << "Register Defined by: "; |
| if (DefInst) |
| std::cerr << *DefInst; |
| else |
| std::cerr << "<null>\n"; |
| std::cerr << " Alive in blocks: "; |
| for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) |
| if (AliveBlocks[i]) std::cerr << i << ", "; |
| std::cerr << "\n Killed by:"; |
| if (Kills.empty()) |
| std::cerr << " No instructions.\n"; |
| else { |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
| std::cerr << "\n #" << i << ": " << *Kills[i]; |
| std::cerr << "\n"; |
| } |
| } |
| |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { |
| assert(MRegisterInfo::isVirtualRegister(RegIdx) && |
| "getVarInfo: not a virtual register!"); |
| RegIdx -= MRegisterInfo::FirstVirtualRegister; |
| if (RegIdx >= VirtRegInfo.size()) { |
| if (RegIdx >= 2*VirtRegInfo.size()) |
| VirtRegInfo.resize(RegIdx*2); |
| else |
| VirtRegInfo.resize(2*VirtRegInfo.size()); |
| } |
| return VirtRegInfo[RegIdx]; |
| } |
| |
| bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { |
| std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = |
| RegistersKilled.find(MI); |
| if (I == RegistersKilled.end()) return false; |
| |
| // Do a binary search, as these lists can grow pretty big, particularly for |
| // call instructions on targets with lots of call-clobbered registers. |
| return std::binary_search(I->second.begin(), I->second.end(), Reg); |
| } |
| |
| bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { |
| std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = |
| RegistersDead.find(MI); |
| if (I == RegistersDead.end()) return false; |
| |
| // Do a binary search, as these lists can grow pretty big, particularly for |
| // call instructions on targets with lots of call-clobbered registers. |
| return std::binary_search(I->second.begin(), I->second.end(), Reg); |
| } |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
| MachineBasicBlock *MBB) { |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Check to see if this basic block is one of the killing blocks. If so, |
| // remove it... |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| if (VRInfo.Kills[i]->getParent() == MBB) { |
| VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry |
| break; |
| } |
| |
| if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion |
| |
| if (VRInfo.AliveBlocks.size() <= BBNum) |
| VRInfo.AliveBlocks.resize(BBNum+1); // Make space... |
| |
| if (VRInfo.AliveBlocks[BBNum]) |
| return; // We already know the block is live |
| |
| // Mark the variable known alive in this bb |
| VRInfo.AliveBlocks[BBNum] = true; |
| |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, *PI); |
| } |
| |
| void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, |
| MachineInstr *MI) { |
| assert(VRInfo.DefInst && "Register use before def!"); |
| |
| // Check to see if this basic block is already a kill block... |
| if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { |
| // Yes, this register is killed in this basic block already. Increase the |
| // live range by updating the kill instruction. |
| VRInfo.Kills.back() = MI; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); |
| #endif |
| |
| assert(MBB != VRInfo.DefInst->getParent() && |
| "Should have kill for defblock!"); |
| |
| // Add a new kill entry for this basic block. |
| VRInfo.Kills.push_back(MI); |
| |
| // Update all dominating blocks to mark them known live. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, *PI); |
| } |
| |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = true; |
| |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| unsigned Alias = *AliasSet; ++AliasSet) { |
| PhysRegInfo[Alias] = MI; |
| PhysRegUsed[Alias] = true; |
| } |
| } |
| |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { |
| // Does this kill a previous version of this register? |
| if (MachineInstr *LastUse = PhysRegInfo[Reg]) { |
| if (PhysRegUsed[Reg]) |
| RegistersKilled[LastUse].push_back(Reg); |
| else |
| RegistersDead[LastUse].push_back(Reg); |
| } |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = false; |
| |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| unsigned Alias = *AliasSet; ++AliasSet) { |
| if (MachineInstr *LastUse = PhysRegInfo[Alias]) { |
| if (PhysRegUsed[Alias]) |
| RegistersKilled[LastUse].push_back(Alias); |
| else |
| RegistersDead[LastUse].push_back(Alias); |
| } |
| PhysRegInfo[Alias] = MI; |
| PhysRegUsed[Alias] = false; |
| } |
| } |
| |
| bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { |
| const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); |
| RegInfo = MF.getTarget().getRegisterInfo(); |
| assert(RegInfo && "Target doesn't have register information?"); |
| |
| AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); |
| |
| // PhysRegInfo - Keep track of which instruction was the last use of a |
| // physical register. This is a purely local property, because all physical |
| // register references as presumed dead across basic blocks. |
| // |
| PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * |
| RegInfo->getNumRegs()); |
| PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); |
| std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); |
| |
| /// Get some space for a respectable number of registers... |
| VirtRegInfo.resize(64); |
| |
| // Mark live-in registers as live-in. |
| for (MachineFunction::livein_iterator I = MF.livein_begin(), |
| E = MF.livein_end(); I != E; ++I) { |
| assert(MRegisterInfo::isPhysicalRegister(I->first) && |
| "Cannot have a live-in virtual register!"); |
| HandlePhysRegDef(I->first, 0); |
| } |
| |
| analyzePHINodes(MF); |
| |
| // Calculate live variable information in depth first order on the CFG of the |
| // function. This guarantees that we will see the definition of a virtual |
| // register before its uses due to dominance properties of SSA (except for PHI |
| // nodes, which are treated as a special case). |
| // |
| MachineBasicBlock *Entry = MF.begin(); |
| std::set<MachineBasicBlock*> Visited; |
| for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), |
| E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { |
| MachineBasicBlock *MBB = *DFI; |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Loop over all of the instructions, processing them. |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); |
| |
| // Process all of the operands of the instruction... |
| unsigned NumOperandsToProcess = MI->getNumOperands(); |
| |
| // Unless it is a PHI node. In this case, ONLY process the DEF, not any |
| // of the uses. They will be handled in other basic blocks. |
| if (MI->getOpcode() == TargetInstrInfo::PHI) |
| NumOperandsToProcess = 1; |
| |
| // Loop over implicit uses, using them. |
| if (MID.ImplicitUses) { |
| for (const unsigned *ImplicitUses = MID.ImplicitUses; |
| *ImplicitUses; ++ImplicitUses) |
| HandlePhysRegUse(*ImplicitUses, MI); |
| } |
| |
| // Process all explicit uses... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isUse() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())){ |
| HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| AllocatablePhysicalRegisters[MO.getReg()]) { |
| HandlePhysRegUse(MO.getReg(), MI); |
| } |
| } |
| } |
| |
| // Loop over implicit defs, defining them. |
| if (MID.ImplicitDefs) { |
| for (const unsigned *ImplicitDefs = MID.ImplicitDefs; |
| *ImplicitDefs; ++ImplicitDefs) |
| HandlePhysRegDef(*ImplicitDefs, MI); |
| } |
| |
| // Process all explicit defs... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| VarInfo &VRInfo = getVarInfo(MO.getReg()); |
| |
| assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); |
| VRInfo.DefInst = MI; |
| // Defaults to dead |
| VRInfo.Kills.push_back(MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| AllocatablePhysicalRegisters[MO.getReg()]) { |
| HandlePhysRegDef(MO.getReg(), MI); |
| } |
| } |
| } |
| } |
| |
| // Handle any virtual assignments from PHI nodes which might be at the |
| // bottom of this basic block. We check all of our successor blocks to see |
| // if they have PHI nodes, and if so, we simulate an assignment at the end |
| // of the current block. |
| if (!PHIVarInfo[MBB].empty()) { |
| std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB]; |
| |
| for (std::vector<unsigned>::iterator I = VarInfoVec.begin(), |
| E = VarInfoVec.end(); I != E; ++I) { |
| VarInfo& VRInfo = getVarInfo(*I); |
| assert(VRInfo.DefInst && "Register use before def (or no def)!"); |
| |
| // Only mark it alive only in the block we are representing. |
| MarkVirtRegAliveInBlock(VRInfo, MBB); |
| } |
| } |
| |
| // Finally, if the last block in the function is a return, make sure to mark |
| // it as using all of the live-out values in the function. |
| if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { |
| MachineInstr *Ret = &MBB->back(); |
| for (MachineFunction::liveout_iterator I = MF.liveout_begin(), |
| E = MF.liveout_end(); I != E; ++I) { |
| assert(MRegisterInfo::isPhysicalRegister(*I) && |
| "Cannot have a live-in virtual register!"); |
| HandlePhysRegUse(*I, Ret); |
| } |
| } |
| |
| // Loop over PhysRegInfo, killing any registers that are available at the |
| // end of the basic block. This also resets the PhysRegInfo map. |
| for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) |
| if (PhysRegInfo[i]) |
| HandlePhysRegDef(i, 0); |
| } |
| |
| // Convert the information we have gathered into VirtRegInfo and transform it |
| // into a form usable by RegistersKilled. |
| // |
| for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) |
| for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { |
| if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) |
| RegistersDead[VirtRegInfo[i].Kills[j]].push_back( |
| i + MRegisterInfo::FirstVirtualRegister); |
| |
| else |
| RegistersKilled[VirtRegInfo[i].Kills[j]].push_back( |
| i + MRegisterInfo::FirstVirtualRegister); |
| } |
| |
| // Walk through the RegistersKilled/Dead sets, and sort the registers killed |
| // or dead. This allows us to use efficient binary search for membership |
| // testing. |
| for (std::map<MachineInstr*, std::vector<unsigned> >::iterator |
| I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I) |
| std::sort(I->second.begin(), I->second.end()); |
| for (std::map<MachineInstr*, std::vector<unsigned> >::iterator |
| I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I) |
| std::sort(I->second.begin(), I->second.end()); |
| |
| // Check to make sure there are no unreachable blocks in the MC CFG for the |
| // function. If so, it is due to a bug in the instruction selector or some |
| // other part of the code generator if this happens. |
| #ifndef NDEBUG |
| for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) |
| assert(Visited.count(&*i) != 0 && "unreachable basic block found"); |
| #endif |
| |
| PHIVarInfo.clear(); |
| return false; |
| } |
| |
| /// instructionChanged - When the address of an instruction changes, this |
| /// method should be called so that live variables can update its internal |
| /// data structures. This removes the records for OldMI, transfering them to |
| /// the records for NewMI. |
| void LiveVariables::instructionChanged(MachineInstr *OldMI, |
| MachineInstr *NewMI) { |
| // If the instruction defines any virtual registers, update the VarInfo for |
| // the instruction. |
| for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = OldMI->getOperand(i); |
| if (MO.isRegister() && MO.getReg() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| VarInfo &VI = getVarInfo(Reg); |
| if (MO.isDef()) { |
| // Update the defining instruction. |
| if (VI.DefInst == OldMI) |
| VI.DefInst = NewMI; |
| } |
| if (MO.isUse()) { |
| // If this is a kill of the value, update the VI kills list. |
| if (VI.removeKill(OldMI)) |
| VI.Kills.push_back(NewMI); // Yes, there was a kill of it |
| } |
| } |
| } |
| |
| // Move the killed information over... |
| killed_iterator I, E; |
| tie(I, E) = killed_range(OldMI); |
| if (I != E) { |
| std::vector<unsigned> &V = RegistersKilled[NewMI]; |
| bool WasEmpty = V.empty(); |
| V.insert(V.end(), I, E); |
| if (!WasEmpty) |
| std::sort(V.begin(), V.end()); // Keep the reg list sorted. |
| RegistersKilled.erase(OldMI); |
| } |
| |
| // Move the dead information over... |
| tie(I, E) = dead_range(OldMI); |
| if (I != E) { |
| std::vector<unsigned> &V = RegistersDead[NewMI]; |
| bool WasEmpty = V.empty(); |
| V.insert(V.end(), I, E); |
| if (!WasEmpty) |
| std::sort(V.begin(), V.end()); // Keep the reg list sorted. |
| RegistersDead.erase(OldMI); |
| } |
| } |
| |
| /// removeVirtualRegistersKilled - Remove all killed info for the specified |
| /// instruction. |
| void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { |
| std::map<MachineInstr*, std::vector<unsigned> >::iterator I = |
| RegistersKilled.find(MI); |
| if (I == RegistersKilled.end()) return; |
| |
| std::vector<unsigned> &Regs = I->second; |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) { |
| if (MRegisterInfo::isVirtualRegister(Regs[i])) { |
| bool removed = getVarInfo(Regs[i]).removeKill(MI); |
| assert(removed && "kill not in register's VarInfo?"); |
| } |
| } |
| RegistersKilled.erase(I); |
| } |
| |
| /// removeVirtualRegistersDead - Remove all of the dead registers for the |
| /// specified instruction from the live variable information. |
| void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { |
| std::map<MachineInstr*, std::vector<unsigned> >::iterator I = |
| RegistersDead.find(MI); |
| if (I == RegistersDead.end()) return; |
| |
| std::vector<unsigned> &Regs = I->second; |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) { |
| if (MRegisterInfo::isVirtualRegister(Regs[i])) { |
| bool removed = getVarInfo(Regs[i]).removeKill(MI); |
| assert(removed && "kill not in register's VarInfo?"); |
| } |
| } |
| RegistersDead.erase(I); |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the variable information of a virtual |
| /// register which is used in a PHI node. We map that to the BB the vreg is |
| /// coming from. |
| /// |
| void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { |
| for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()]. |
| push_back(BBI->getOperand(i).getReg()); |
| } |