| //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements lowering for the llvm.gc* intrinsics for targets that do |
| // not natively support them (which includes the C backend). Note that the code |
| // generated is not quite as efficient as algorithms which generate stack maps |
| // to identify roots. |
| // |
| // This pass implements the code transformation described in this paper: |
| // "Accurate Garbage Collection in an Uncooperative Environment" |
| // Fergus Henderson, ISMM, 2002 |
| // |
| // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with |
| // ShadowStackGC. |
| // |
| // In order to support this particular transformation, all stack roots are |
| // coallocated in the stack. This allows a fully target-independent stack map |
| // while introducing only minor runtime overhead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "shadowstackgc" |
| #include "llvm/CodeGen/GCs.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/CallSite.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class ShadowStackGC : public GCStrategy { |
| /// RootChain - This is the global linked-list that contains the chain of GC |
| /// roots. |
| GlobalVariable *Head; |
| |
| /// StackEntryTy - Abstract type of a link in the shadow stack. |
| /// |
| StructType *StackEntryTy; |
| StructType *FrameMapTy; |
| |
| /// Roots - GC roots in the current function. Each is a pair of the |
| /// intrinsic call and its corresponding alloca. |
| std::vector<std::pair<CallInst*,AllocaInst*> > Roots; |
| |
| public: |
| ShadowStackGC(); |
| |
| bool initializeCustomLowering(Module &M); |
| bool performCustomLowering(Function &F); |
| |
| private: |
| bool IsNullValue(Value *V); |
| Constant *GetFrameMap(Function &F); |
| Type* GetConcreteStackEntryType(Function &F); |
| void CollectRoots(Function &F); |
| static GetElementPtrInst *CreateGEP(LLVMContext &Context, |
| IRBuilder<> &B, Value *BasePtr, |
| int Idx1, const char *Name); |
| static GetElementPtrInst *CreateGEP(LLVMContext &Context, |
| IRBuilder<> &B, Value *BasePtr, |
| int Idx1, int Idx2, const char *Name); |
| }; |
| |
| } |
| |
| static GCRegistry::Add<ShadowStackGC> |
| X("shadow-stack", "Very portable GC for uncooperative code generators"); |
| |
| namespace { |
| /// EscapeEnumerator - This is a little algorithm to find all escape points |
| /// from a function so that "finally"-style code can be inserted. In addition |
| /// to finding the existing return and unwind instructions, it also (if |
| /// necessary) transforms any call instructions into invokes and sends them to |
| /// a landing pad. |
| /// |
| /// It's wrapped up in a state machine using the same transform C# uses for |
| /// 'yield return' enumerators, This transform allows it to be non-allocating. |
| class EscapeEnumerator { |
| Function &F; |
| const char *CleanupBBName; |
| |
| // State. |
| int State; |
| Function::iterator StateBB, StateE; |
| IRBuilder<> Builder; |
| |
| public: |
| EscapeEnumerator(Function &F, const char *N = "cleanup") |
| : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {} |
| |
| IRBuilder<> *Next() { |
| switch (State) { |
| default: |
| return 0; |
| |
| case 0: |
| StateBB = F.begin(); |
| StateE = F.end(); |
| State = 1; |
| |
| case 1: |
| // Find all 'return', 'resume', and 'unwind' instructions. |
| while (StateBB != StateE) { |
| BasicBlock *CurBB = StateBB++; |
| |
| // Branches and invokes do not escape, only unwind, resume, and return |
| // do. |
| TerminatorInst *TI = CurBB->getTerminator(); |
| if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI)) |
| continue; |
| |
| Builder.SetInsertPoint(TI->getParent(), TI); |
| return &Builder; |
| } |
| |
| State = 2; |
| |
| // Find all 'call' instructions. |
| SmallVector<Instruction*,16> Calls; |
| for (Function::iterator BB = F.begin(), |
| E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator II = BB->begin(), |
| EE = BB->end(); II != EE; ++II) |
| if (CallInst *CI = dyn_cast<CallInst>(II)) |
| if (!CI->getCalledFunction() || |
| !CI->getCalledFunction()->getIntrinsicID()) |
| Calls.push_back(CI); |
| |
| if (Calls.empty()) |
| return 0; |
| |
| // Create a cleanup block. |
| LLVMContext &C = F.getContext(); |
| BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F); |
| Type *ExnTy = StructType::get(Type::getInt8PtrTy(C), |
| Type::getInt32Ty(C), NULL); |
| Constant *PersFn = |
| F.getParent()-> |
| getOrInsertFunction("__gcc_personality_v0", |
| FunctionType::get(Type::getInt32Ty(C), true)); |
| LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1, |
| "cleanup.lpad", |
| CleanupBB); |
| LPad->setCleanup(true); |
| ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB); |
| |
| // Transform the 'call' instructions into 'invoke's branching to the |
| // cleanup block. Go in reverse order to make prettier BB names. |
| SmallVector<Value*,16> Args; |
| for (unsigned I = Calls.size(); I != 0; ) { |
| CallInst *CI = cast<CallInst>(Calls[--I]); |
| |
| // Split the basic block containing the function call. |
| BasicBlock *CallBB = CI->getParent(); |
| BasicBlock *NewBB = |
| CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); |
| |
| // Remove the unconditional branch inserted at the end of CallBB. |
| CallBB->getInstList().pop_back(); |
| NewBB->getInstList().remove(CI); |
| |
| // Create a new invoke instruction. |
| Args.clear(); |
| CallSite CS(CI); |
| Args.append(CS.arg_begin(), CS.arg_end()); |
| |
| InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), |
| NewBB, CleanupBB, |
| Args, CI->getName(), CallBB); |
| II->setCallingConv(CI->getCallingConv()); |
| II->setAttributes(CI->getAttributes()); |
| CI->replaceAllUsesWith(II); |
| delete CI; |
| } |
| |
| Builder.SetInsertPoint(RI->getParent(), RI); |
| return &Builder; |
| } |
| } |
| }; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| void llvm::linkShadowStackGC() { } |
| |
| ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) { |
| InitRoots = true; |
| CustomRoots = true; |
| } |
| |
| Constant *ShadowStackGC::GetFrameMap(Function &F) { |
| // doInitialization creates the abstract type of this value. |
| Type *VoidPtr = Type::getInt8PtrTy(F.getContext()); |
| |
| // Truncate the ShadowStackDescriptor if some metadata is null. |
| unsigned NumMeta = 0; |
| SmallVector<Constant*, 16> Metadata; |
| for (unsigned I = 0; I != Roots.size(); ++I) { |
| Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); |
| if (!C->isNullValue()) |
| NumMeta = I + 1; |
| Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); |
| } |
| Metadata.resize(NumMeta); |
| |
| Type *Int32Ty = Type::getInt32Ty(F.getContext()); |
| |
| Constant *BaseElts[] = { |
| ConstantInt::get(Int32Ty, Roots.size(), false), |
| ConstantInt::get(Int32Ty, NumMeta, false), |
| }; |
| |
| Constant *DescriptorElts[] = { |
| ConstantStruct::get(FrameMapTy, BaseElts), |
| ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata) |
| }; |
| |
| Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()}; |
| StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta)); |
| |
| Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts); |
| |
| // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems |
| // that, short of multithreaded LLVM, it should be safe; all that is |
| // necessary is that a simple Module::iterator loop not be invalidated. |
| // Appending to the GlobalVariable list is safe in that sense. |
| // |
| // All of the output passes emit globals last. The ExecutionEngine |
| // explicitly supports adding globals to the module after |
| // initialization. |
| // |
| // Still, if it isn't deemed acceptable, then this transformation needs |
| // to be a ModulePass (which means it cannot be in the 'llc' pipeline |
| // (which uses a FunctionPassManager (which segfaults (not asserts) if |
| // provided a ModulePass))). |
| Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, |
| GlobalVariable::InternalLinkage, |
| FrameMap, "__gc_" + F.getName()); |
| |
| Constant *GEPIndices[2] = { |
| ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), |
| ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) |
| }; |
| return ConstantExpr::getGetElementPtr(GV, GEPIndices); |
| } |
| |
| Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) { |
| // doInitialization creates the generic version of this type. |
| std::vector<Type*> EltTys; |
| EltTys.push_back(StackEntryTy); |
| for (size_t I = 0; I != Roots.size(); I++) |
| EltTys.push_back(Roots[I].second->getAllocatedType()); |
| |
| return StructType::create(EltTys, "gc_stackentry."+F.getName().str()); |
| } |
| |
| /// doInitialization - If this module uses the GC intrinsics, find them now. If |
| /// not, exit fast. |
| bool ShadowStackGC::initializeCustomLowering(Module &M) { |
| // struct FrameMap { |
| // int32_t NumRoots; // Number of roots in stack frame. |
| // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. |
| // void *Meta[]; // May be absent for roots without metadata. |
| // }; |
| std::vector<Type*> EltTys; |
| // 32 bits is ok up to a 32GB stack frame. :) |
| EltTys.push_back(Type::getInt32Ty(M.getContext())); |
| // Specifies length of variable length array. |
| EltTys.push_back(Type::getInt32Ty(M.getContext())); |
| FrameMapTy = StructType::create(EltTys, "gc_map"); |
| PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); |
| |
| // struct StackEntry { |
| // ShadowStackEntry *Next; // Caller's stack entry. |
| // FrameMap *Map; // Pointer to constant FrameMap. |
| // void *Roots[]; // Stack roots (in-place array, so we pretend). |
| // }; |
| |
| StackEntryTy = StructType::create(M.getContext(), "gc_stackentry"); |
| |
| EltTys.clear(); |
| EltTys.push_back(PointerType::getUnqual(StackEntryTy)); |
| EltTys.push_back(FrameMapPtrTy); |
| StackEntryTy->setBody(EltTys); |
| PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); |
| |
| // Get the root chain if it already exists. |
| Head = M.getGlobalVariable("llvm_gc_root_chain"); |
| if (!Head) { |
| // If the root chain does not exist, insert a new one with linkonce |
| // linkage! |
| Head = new GlobalVariable(M, StackEntryPtrTy, false, |
| GlobalValue::LinkOnceAnyLinkage, |
| Constant::getNullValue(StackEntryPtrTy), |
| "llvm_gc_root_chain"); |
| } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { |
| Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); |
| Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); |
| } |
| |
| return true; |
| } |
| |
| bool ShadowStackGC::IsNullValue(Value *V) { |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C->isNullValue(); |
| return false; |
| } |
| |
| void ShadowStackGC::CollectRoots(Function &F) { |
| // FIXME: Account for original alignment. Could fragment the root array. |
| // Approach 1: Null initialize empty slots at runtime. Yuck. |
| // Approach 2: Emit a map of the array instead of just a count. |
| |
| assert(Roots.empty() && "Not cleaned up?"); |
| |
| SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots; |
| |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) |
| if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::gcroot) { |
| std::pair<CallInst*, AllocaInst*> Pair = std::make_pair( |
| CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts())); |
| if (IsNullValue(CI->getArgOperand(1))) |
| Roots.push_back(Pair); |
| else |
| MetaRoots.push_back(Pair); |
| } |
| |
| // Number roots with metadata (usually empty) at the beginning, so that the |
| // FrameMap::Meta array can be elided. |
| Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); |
| } |
| |
| GetElementPtrInst * |
| ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, |
| int Idx, int Idx2, const char *Name) { |
| Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), |
| ConstantInt::get(Type::getInt32Ty(Context), Idx), |
| ConstantInt::get(Type::getInt32Ty(Context), Idx2) }; |
| Value* Val = B.CreateGEP(BasePtr, Indices, Name); |
| |
| assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); |
| |
| return dyn_cast<GetElementPtrInst>(Val); |
| } |
| |
| GetElementPtrInst * |
| ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, |
| int Idx, const char *Name) { |
| Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), |
| ConstantInt::get(Type::getInt32Ty(Context), Idx) }; |
| Value *Val = B.CreateGEP(BasePtr, Indices, Name); |
| |
| assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); |
| |
| return dyn_cast<GetElementPtrInst>(Val); |
| } |
| |
| /// runOnFunction - Insert code to maintain the shadow stack. |
| bool ShadowStackGC::performCustomLowering(Function &F) { |
| LLVMContext &Context = F.getContext(); |
| |
| // Find calls to llvm.gcroot. |
| CollectRoots(F); |
| |
| // If there are no roots in this function, then there is no need to add a |
| // stack map entry for it. |
| if (Roots.empty()) |
| return false; |
| |
| // Build the constant map and figure the type of the shadow stack entry. |
| Value *FrameMap = GetFrameMap(F); |
| Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); |
| |
| // Build the shadow stack entry at the very start of the function. |
| BasicBlock::iterator IP = F.getEntryBlock().begin(); |
| IRBuilder<> AtEntry(IP->getParent(), IP); |
| |
| Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, |
| "gc_frame"); |
| |
| while (isa<AllocaInst>(IP)) ++IP; |
| AtEntry.SetInsertPoint(IP->getParent(), IP); |
| |
| // Initialize the map pointer and load the current head of the shadow stack. |
| Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); |
| Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry, |
| 0,1,"gc_frame.map"); |
| AtEntry.CreateStore(FrameMap, EntryMapPtr); |
| |
| // After all the allocas... |
| for (unsigned I = 0, E = Roots.size(); I != E; ++I) { |
| // For each root, find the corresponding slot in the aggregate... |
| Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root"); |
| |
| // And use it in lieu of the alloca. |
| AllocaInst *OriginalAlloca = Roots[I].second; |
| SlotPtr->takeName(OriginalAlloca); |
| OriginalAlloca->replaceAllUsesWith(SlotPtr); |
| } |
| |
| // Move past the original stores inserted by GCStrategy::InitRoots. This isn't |
| // really necessary (the collector would never see the intermediate state at |
| // runtime), but it's nicer not to push the half-initialized entry onto the |
| // shadow stack. |
| while (isa<StoreInst>(IP)) ++IP; |
| AtEntry.SetInsertPoint(IP->getParent(), IP); |
| |
| // Push the entry onto the shadow stack. |
| Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, |
| StackEntry,0,0,"gc_frame.next"); |
| Instruction *NewHeadVal = CreateGEP(Context, AtEntry, |
| StackEntry, 0, "gc_newhead"); |
| AtEntry.CreateStore(CurrentHead, EntryNextPtr); |
| AtEntry.CreateStore(NewHeadVal, Head); |
| |
| // For each instruction that escapes... |
| EscapeEnumerator EE(F, "gc_cleanup"); |
| while (IRBuilder<> *AtExit = EE.Next()) { |
| // Pop the entry from the shadow stack. Don't reuse CurrentHead from |
| // AtEntry, since that would make the value live for the entire function. |
| Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0, |
| "gc_frame.next"); |
| Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); |
| AtExit->CreateStore(SavedHead, Head); |
| } |
| |
| // Delete the original allocas (which are no longer used) and the intrinsic |
| // calls (which are no longer valid). Doing this last avoids invalidating |
| // iterators. |
| for (unsigned I = 0, E = Roots.size(); I != E; ++I) { |
| Roots[I].first->eraseFromParent(); |
| Roots[I].second->eraseFromParent(); |
| } |
| |
| Roots.clear(); |
| return true; |
| } |