| //===- Expressions.cpp - Expression Analysis Utilities ----------------------=// |
| // |
| // This file defines a package of expression analysis utilties: |
| // |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other variables it depends on. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/Optimizations/ConstantHandling.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| |
| using namespace opt; // Get all the constant handling stuff |
| using namespace analysis; |
| |
| ExprType::ExprType(Value *Val) { |
| if (Val) |
| if (ConstPoolInt *CPI = dyn_cast<ConstPoolInt>(Val)) { |
| Offset = CPI; |
| Var = 0; |
| ExprTy = Constant; |
| Scale = 0; |
| return; |
| } |
| |
| Var = Val; Offset = 0; |
| ExprTy = Var ? Linear : Constant; |
| Scale = 0; |
| } |
| |
| ExprType::ExprType(const ConstPoolInt *scale, Value *var, |
| const ConstPoolInt *offset) { |
| Scale = scale; Var = var; Offset = offset; |
| ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant); |
| if (Scale && Scale->equalsInt(0)) { // Simplify 0*Var + const |
| Scale = 0; Var = 0; |
| ExprTy = Constant; |
| } |
| } |
| |
| |
| const Type *ExprType::getExprType(const Type *Default) const { |
| if (Offset) return Offset->getType(); |
| if (Scale) return Scale->getType(); |
| return Var ? Var->getType() : Default; |
| } |
| |
| |
| |
| class DefVal { |
| const ConstPoolInt * const Val; |
| const Type * const Ty; |
| protected: |
| inline DefVal(const ConstPoolInt *val, const Type *ty) : Val(val), Ty(ty) {} |
| public: |
| inline const Type *getType() const { return Ty; } |
| inline const ConstPoolInt *getVal() const { return Val; } |
| inline operator const ConstPoolInt * () const { return Val; } |
| inline const ConstPoolInt *operator->() const { return Val; } |
| }; |
| |
| struct DefZero : public DefVal { |
| inline DefZero(const ConstPoolInt *val, const Type *ty) : DefVal(val, ty) {} |
| inline DefZero(const ConstPoolInt *val) : DefVal(val, val->getType()) {} |
| }; |
| |
| struct DefOne : public DefVal { |
| inline DefOne(const ConstPoolInt *val, const Type *ty) : DefVal(val, ty) {} |
| }; |
| |
| |
| static ConstPoolInt *getUnsignedConstant(uint64_t V, const Type *Ty) { |
| if (Ty->isPointerType()) Ty = Type::ULongTy; |
| return Ty->isSigned() ? (ConstPoolInt*)ConstPoolSInt::get(Ty, V) |
| : (ConstPoolInt*)ConstPoolUInt::get(Ty, V); |
| } |
| |
| // Add - Helper function to make later code simpler. Basically it just adds |
| // the two constants together, inserts the result into the constant pool, and |
| // returns it. Of course life is not simple, and this is no exception. Factors |
| // that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. The new value takes the type of the left argument. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| static const ConstPoolInt *Add(const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 + *Arg2; |
| assert(Result && Result->getType() == Arg1->getType() && |
| "Couldn't perform addition!"); |
| ConstPoolInt *ResultI = cast<ConstPoolInt>(Result); |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) |
| return 0; // Yes it is, simply return null. |
| |
| return ResultI; |
| } |
| |
| inline const ConstPoolInt *operator+(const DefZero &L, const DefZero &R) { |
| if (L == 0) return R; |
| if (R == 0) return L; |
| return Add(L, R, false); |
| } |
| |
| inline const ConstPoolInt *operator+(const DefOne &L, const DefOne &R) { |
| if (L == 0) { |
| if (R == 0) |
| return getUnsignedConstant(2, L.getType()); |
| else |
| return Add(getUnsignedConstant(1, L.getType()), R, true); |
| } else if (R == 0) { |
| return Add(L, getUnsignedConstant(1, L.getType()), true); |
| } |
| return Add(L, R, true); |
| } |
| |
| |
| // Mul - Helper function to make later code simpler. Basically it just |
| // multiplies the two constants together, inserts the result into the constant |
| // pool, and returns it. Of course life is not simple, and this is no |
| // exception. Factors that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| inline const ConstPoolInt *Mul(const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne = false) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 * *Arg2; |
| assert(Result && Result->getType() == Arg1->getType() && |
| "Couldn't perform mult!"); |
| ConstPoolInt *ResultI = cast<ConstPoolInt>(Result); |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) |
| return 0; // Yes it is, simply return null. |
| |
| return ResultI; |
| } |
| |
| inline const ConstPoolInt *operator*(const DefZero &L, const DefZero &R) { |
| if (L == 0 || R == 0) return 0; |
| return Mul(L, R, false); |
| } |
| inline const ConstPoolInt *operator*(const DefOne &L, const DefZero &R) { |
| if (R == 0) return getUnsignedConstant(0, L.getType()); |
| if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); |
| return Mul(L, R, false); |
| } |
| inline const ConstPoolInt *operator*(const DefZero &L, const DefOne &R) { |
| return R*L; |
| } |
| |
| // handleAddition - Add two expressions together, creating a new expression that |
| // represents the composite of the two... |
| // |
| static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) { |
| const Type *Ty = V->getType(); |
| if (Left.ExprTy > Right.ExprTy) |
| swap(Left, Right); // Make left be simpler than right |
| |
| switch (Left.ExprTy) { |
| case ExprType::Constant: |
| return ExprType(Right.Scale, Right.Var, |
| DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty)); |
| case ExprType::Linear: // RHS side must be linear or scaled |
| case ExprType::ScaledLinear: // RHS must be scaled |
| if (Left.Var != Right.Var) // Are they the same variables? |
| return ExprType(V); // if not, we don't know anything! |
| |
| return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty), |
| Left.Var, |
| DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty)); |
| default: |
| assert(0 && "Dont' know how to handle this case!"); |
| return ExprType(); |
| } |
| } |
| |
| // negate - Negate the value of the specified expression... |
| // |
| static inline ExprType negate(const ExprType &E, Value *V) { |
| const Type *Ty = V->getType(); |
| const Type *ETy = E.getExprType(Ty); |
| ConstPoolInt *Zero = getUnsignedConstant(0, ETy); |
| ConstPoolInt *One = getUnsignedConstant(1, ETy); |
| ConstPoolInt *NegOne = cast<ConstPoolInt>(*Zero - *One); |
| if (NegOne == 0) return V; // Couldn't subtract values... |
| |
| return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var, |
| DefZero(E.Offset, Ty) * NegOne); |
| } |
| |
| |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other values it depends on. |
| // |
| // Note that this analysis cannot get into infinite loops because it treats PHI |
| // nodes as being an unknown linear expression. |
| // |
| ExprType analysis::ClassifyExpression(Value *Expr) { |
| assert(Expr != 0 && "Can't classify a null expression!"); |
| switch (Expr->getValueType()) { |
| case Value::InstructionVal: break; // Instruction... hmmm... investigate. |
| case Value::TypeVal: case Value::BasicBlockVal: |
| case Value::MethodVal: case Value::ModuleVal: default: |
| assert(0 && "Unexpected expression type to classify!"); |
| case Value::GlobalVariableVal: // Global Variable & Method argument: |
| case Value::MethodArgumentVal: // nothing known, return variable itself |
| return Expr; |
| case Value::ConstantVal: // Constant value, just return constant |
| ConstPoolVal *CPV = cast<ConstPoolVal>(Expr); |
| if (CPV->getType()->isIntegral()) { // It's an integral constant! |
| ConstPoolInt *CPI = cast<ConstPoolInt>(Expr); |
| return ExprType(CPI->equalsInt(0) ? 0 : CPI); |
| } |
| return Expr; |
| } |
| |
| Instruction *I = cast<Instruction>(Expr); |
| const Type *Ty = I->getType(); |
| |
| switch (I->getOpcode()) { // Handle each instruction type seperately |
| case Instruction::Add: { |
| ExprType Left (ClassifyExpression(I->getOperand(0))); |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| return handleAddition(Left, Right, I); |
| } // end case Instruction::Add |
| |
| case Instruction::Sub: { |
| ExprType Left (ClassifyExpression(I->getOperand(0))); |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| return handleAddition(Left, negate(Right, I), I); |
| } // end case Instruction::Sub |
| |
| case Instruction::Shl: { |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| if (Right.ExprTy != ExprType::Constant) break; |
| ExprType Left(ClassifyExpression(I->getOperand(0))); |
| if (Right.Offset == 0) return Left; // shl x, 0 = x |
| assert(Right.Offset->getType() == Type::UByteTy && |
| "Shift amount must always be a unsigned byte!"); |
| uint64_t ShiftAmount = ((ConstPoolUInt*)Right.Offset)->getValue(); |
| ConstPoolInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty); |
| |
| return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var, |
| DefZero(Left.Offset, Ty) * Multiplier); |
| } // end case Instruction::Shl |
| |
| case Instruction::Mul: { |
| ExprType Left (ClassifyExpression(I->getOperand(0))); |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| if (Left.ExprTy > Right.ExprTy) |
| swap(Left, Right); // Make left be simpler than right |
| |
| if (Left.ExprTy != ExprType::Constant) // RHS must be > constant |
| return I; // Quadratic eqn! :( |
| |
| const ConstPoolInt *Offs = Left.Offset; |
| if (Offs == 0) return ExprType(); |
| return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var, |
| DefZero(Right.Offset, Ty) * Offs); |
| } // end case Instruction::Mul |
| |
| case Instruction::Cast: { |
| ExprType Src(ClassifyExpression(I->getOperand(0))); |
| if (Src.ExprTy != ExprType::Constant) |
| return I; |
| const ConstPoolInt *Offs = Src.Offset; |
| if (Offs == 0) return ExprType(); |
| |
| const Type *DestTy = I->getType(); |
| if (DestTy->isPointerType()) |
| DestTy = Type::ULongTy; // Pointer types are represented as ulong |
| |
| assert(DestTy->isIntegral() && "Can only handle integral types!"); |
| |
| const ConstPoolVal *CPV =ConstRules::get(*Offs)->castTo(Offs, DestTy); |
| if (!CPV) return I; |
| assert(CPV->getType()->isIntegral() && "Must have an integral type!"); |
| return cast<ConstPoolInt>(CPV); |
| } // end case Instruction::Cast |
| // TODO: Handle SUB, SHR? |
| |
| } // end switch |
| |
| // Otherwise, I don't know anything about this value! |
| return I; |
| } |