| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveInterval analysis pass which is used |
| // by the Linear Scan Register allocator. This pass linearizes the |
| // basic blocks of the function in DFS order and uses the |
| // LiveVariables pass to conservatively compute live intervals for |
| // each virtual and physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "liveintervals" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Value.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| // Hidden options for help debugging. |
| static cl::opt<bool> DisableReMat("disable-rematerialization", |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> SplitAtBB("split-intervals-at-bb", |
| cl::init(true), cl::Hidden); |
| static cl::opt<int> SplitLimit("split-limit", |
| cl::init(-1), cl::Hidden); |
| |
| static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden); |
| |
| static cl::opt<bool> EnableFastSpilling("fast-spill", |
| cl::init(false), cl::Hidden); |
| |
| STATISTIC(numIntervals, "Number of original intervals"); |
| STATISTIC(numFolds , "Number of loads/stores folded into instructions"); |
| STATISTIC(numSplits , "Number of intervals split"); |
| |
| char LiveIntervals::ID = 0; |
| static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis"); |
| |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addPreserved<LiveVariables>(); |
| AU.addRequired<LiveVariables>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| |
| if (!StrongPHIElim) { |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequiredID(PHIEliminationID); |
| } |
| |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| void LiveIntervals::releaseMemory() { |
| // Free the live intervals themselves. |
| for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(), |
| E = r2iMap_.end(); I != E; ++I) |
| delete I->second; |
| |
| MBB2IdxMap.clear(); |
| Idx2MBBMap.clear(); |
| mi2iMap_.clear(); |
| i2miMap_.clear(); |
| r2iMap_.clear(); |
| // Release VNInfo memroy regions after all VNInfo objects are dtor'd. |
| VNInfoAllocator.Reset(); |
| while (!ClonedMIs.empty()) { |
| MachineInstr *MI = ClonedMIs.back(); |
| ClonedMIs.pop_back(); |
| mf_->DeleteMachineInstr(MI); |
| } |
| } |
| |
| void LiveIntervals::computeNumbering() { |
| Index2MiMap OldI2MI = i2miMap_; |
| std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap; |
| |
| Idx2MBBMap.clear(); |
| MBB2IdxMap.clear(); |
| mi2iMap_.clear(); |
| i2miMap_.clear(); |
| |
| FunctionSize = 0; |
| |
| // Number MachineInstrs and MachineBasicBlocks. |
| // Initialize MBB indexes to a sentinal. |
| MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U)); |
| |
| unsigned MIIndex = 0; |
| for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end(); |
| MBB != E; ++MBB) { |
| unsigned StartIdx = MIIndex; |
| |
| // Insert an empty slot at the beginning of each block. |
| MIIndex += InstrSlots::NUM; |
| i2miMap_.push_back(0); |
| |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second; |
| assert(inserted && "multiple MachineInstr -> index mappings"); |
| inserted = true; |
| i2miMap_.push_back(I); |
| MIIndex += InstrSlots::NUM; |
| FunctionSize++; |
| |
| // Insert max(1, numdefs) empty slots after every instruction. |
| unsigned Slots = I->getDesc().getNumDefs(); |
| if (Slots == 0) |
| Slots = 1; |
| MIIndex += InstrSlots::NUM * Slots; |
| while (Slots--) |
| i2miMap_.push_back(0); |
| } |
| |
| // Set the MBB2IdxMap entry for this MBB. |
| MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1); |
| Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB)); |
| } |
| std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare()); |
| |
| if (!OldI2MI.empty()) |
| for (iterator OI = begin(), OE = end(); OI != OE; ++OI) { |
| for (LiveInterval::iterator LI = OI->second->begin(), |
| LE = OI->second->end(); LI != LE; ++LI) { |
| |
| // Remap the start index of the live range to the corresponding new |
| // number, or our best guess at what it _should_ correspond to if the |
| // original instruction has been erased. This is either the following |
| // instruction or its predecessor. |
| unsigned index = LI->start / InstrSlots::NUM; |
| unsigned offset = LI->start % InstrSlots::NUM; |
| if (offset == InstrSlots::LOAD) { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start); |
| // Take the pair containing the index |
| std::vector<IdxMBBPair>::const_iterator J = |
| (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I; |
| |
| LI->start = getMBBStartIdx(J->second); |
| } else { |
| LI->start = mi2iMap_[OldI2MI[index]] + offset; |
| } |
| |
| // Remap the ending index in the same way that we remapped the start, |
| // except for the final step where we always map to the immediately |
| // following instruction. |
| index = (LI->end - 1) / InstrSlots::NUM; |
| offset = LI->end % InstrSlots::NUM; |
| if (offset == InstrSlots::LOAD) { |
| // VReg dies at end of block. |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end); |
| --I; |
| |
| LI->end = getMBBEndIdx(I->second) + 1; |
| } else { |
| unsigned idx = index; |
| while (index < OldI2MI.size() && !OldI2MI[index]) ++index; |
| |
| if (index != OldI2MI.size()) |
| LI->end = mi2iMap_[OldI2MI[index]] + (idx == index ? offset : 0); |
| else |
| LI->end = InstrSlots::NUM * i2miMap_.size(); |
| } |
| } |
| |
| for (LiveInterval::vni_iterator VNI = OI->second->vni_begin(), |
| VNE = OI->second->vni_end(); VNI != VNE; ++VNI) { |
| VNInfo* vni = *VNI; |
| |
| // Remap the VNInfo def index, which works the same as the |
| // start indices above. VN's with special sentinel defs |
| // don't need to be remapped. |
| if (vni->def != ~0U && vni->def != ~1U) { |
| unsigned index = vni->def / InstrSlots::NUM; |
| unsigned offset = vni->def % InstrSlots::NUM; |
| if (offset == InstrSlots::LOAD) { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def); |
| // Take the pair containing the index |
| std::vector<IdxMBBPair>::const_iterator J = |
| (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I; |
| |
| vni->def = getMBBStartIdx(J->second); |
| } else { |
| vni->def = mi2iMap_[OldI2MI[index]] + offset; |
| } |
| } |
| |
| // Remap the VNInfo kill indices, which works the same as |
| // the end indices above. |
| for (size_t i = 0; i < vni->kills.size(); ++i) { |
| // PHI kills don't need to be remapped. |
| if (!vni->kills[i]) continue; |
| |
| unsigned index = (vni->kills[i]-1) / InstrSlots::NUM; |
| unsigned offset = vni->kills[i] % InstrSlots::NUM; |
| if (offset == InstrSlots::LOAD) { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]); |
| --I; |
| |
| vni->kills[i] = getMBBEndIdx(I->second); |
| } else { |
| unsigned idx = index; |
| while (index < OldI2MI.size() && !OldI2MI[index]) ++index; |
| |
| if (index != OldI2MI.size()) |
| vni->kills[i] = mi2iMap_[OldI2MI[index]] + |
| (idx == index ? offset : 0); |
| else |
| vni->kills[i] = InstrSlots::NUM * i2miMap_.size(); |
| } |
| } |
| } |
| } |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| mri_ = &mf_->getRegInfo(); |
| tm_ = &fn.getTarget(); |
| tri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| aa_ = &getAnalysis<AliasAnalysis>(); |
| lv_ = &getAnalysis<LiveVariables>(); |
| allocatableRegs_ = tri_->getAllocatableSet(fn); |
| |
| computeNumbering(); |
| computeIntervals(); |
| |
| numIntervals += getNumIntervals(); |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void LiveIntervals::print(std::ostream &O, const Module* ) const { |
| O << "********** INTERVALS **********\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| I->second->print(O, tri_); |
| O << "\n"; |
| } |
| |
| O << "********** MACHINEINSTRS **********\n"; |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; |
| for (MachineBasicBlock::iterator mii = mbbi->begin(), |
| mie = mbbi->end(); mii != mie; ++mii) { |
| O << getInstructionIndex(mii) << '\t' << *mii; |
| } |
| } |
| } |
| |
| /// conflictsWithPhysRegDef - Returns true if the specified register |
| /// is defined during the duration of the specified interval. |
| bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li, |
| VirtRegMap &vrm, unsigned reg) { |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| for (unsigned index = getBaseIndex(I->start), |
| end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end; |
| index += InstrSlots::NUM) { |
| // skip deleted instructions |
| while (index != end && !getInstructionFromIndex(index)) |
| index += InstrSlots::NUM; |
| if (index == end) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(index); |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| if (SrcReg == li.reg || DstReg == li.reg) |
| continue; |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isReg()) |
| continue; |
| unsigned PhysReg = mop.getReg(); |
| if (PhysReg == 0 || PhysReg == li.reg) |
| continue; |
| if (TargetRegisterInfo::isVirtualRegister(PhysReg)) { |
| if (!vrm.hasPhys(PhysReg)) |
| continue; |
| PhysReg = vrm.getPhys(PhysReg); |
| } |
| if (PhysReg && tri_->regsOverlap(PhysReg, reg)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except |
| /// it can check use as well. |
| bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li, |
| unsigned Reg, bool CheckUse, |
| SmallPtrSet<MachineInstr*,32> &JoinedCopies) { |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| for (unsigned index = getBaseIndex(I->start), |
| end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end; |
| index += InstrSlots::NUM) { |
| // Skip deleted instructions. |
| MachineInstr *MI = 0; |
| while (index != end) { |
| MI = getInstructionFromIndex(index); |
| if (MI) |
| break; |
| index += InstrSlots::NUM; |
| } |
| if (index == end) break; |
| |
| if (JoinedCopies.count(MI)) |
| continue; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| if (MO.isUse() && !CheckUse) |
| continue; |
| unsigned PhysReg = MO.getReg(); |
| if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg)) |
| continue; |
| if (tri_->isSubRegister(Reg, PhysReg)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| void LiveIntervals::printRegName(unsigned reg) const { |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) |
| cerr << tri_->getName(reg); |
| else |
| cerr << "%reg" << reg; |
| } |
| |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, MachineOperand& MO, |
| unsigned MOIdx, |
| LiveInterval &interval) { |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); |
| |
| if (mi->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { |
| DOUT << "is a implicit_def\n"; |
| return; |
| } |
| |
| // Virtual registers may be defined multiple times (due to phi |
| // elimination and 2-addr elimination). Much of what we do only has to be |
| // done once for the vreg. We use an empty interval to detect the first |
| // time we see a vreg. |
| if (interval.empty()) { |
| // Get the Idx of the defining instructions. |
| unsigned defIndex = getDefIndex(MIIdx); |
| // Earlyclobbers move back one. |
| if (MO.isEarlyClobber()) |
| defIndex = getUseIndex(MIIdx); |
| VNInfo *ValNo; |
| MachineInstr *CopyMI = NULL; |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG || |
| mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG || |
| mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG || |
| tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| CopyMI = mi; |
| // Earlyclobbers move back one. |
| ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator); |
| |
| assert(ValNo->id == 0 && "First value in interval is not 0?"); |
| |
| // Loop over all of the blocks that the vreg is defined in. There are |
| // two cases we have to handle here. The most common case is a vreg |
| // whose lifetime is contained within a basic block. In this case there |
| // will be a single kill, in MBB, which comes after the definition. |
| if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { |
| // FIXME: what about dead vars? |
| unsigned killIdx; |
| if (vi.Kills[0] != mi) |
| killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; |
| else |
| killIdx = defIndex+1; |
| |
| // If the kill happens after the definition, we have an intra-block |
| // live range. |
| if (killIdx > defIndex) { |
| assert(vi.AliveBlocks.none() && |
| "Shouldn't be alive across any blocks!"); |
| LiveRange LR(defIndex, killIdx, ValNo); |
| interval.addRange(LR); |
| DOUT << " +" << LR << "\n"; |
| interval.addKill(ValNo, killIdx); |
| return; |
| } |
| } |
| |
| // The other case we handle is when a virtual register lives to the end |
| // of the defining block, potentially live across some blocks, then is |
| // live into some number of blocks, but gets killed. Start by adding a |
| // range that goes from this definition to the end of the defining block. |
| LiveRange NewLR(defIndex, getMBBEndIdx(mbb)+1, ValNo); |
| DOUT << " +" << NewLR; |
| interval.addRange(NewLR); |
| |
| // Iterate over all of the blocks that the variable is completely |
| // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the |
| // live interval. |
| for (int i = vi.AliveBlocks.find_first(); i != -1; |
| i = vi.AliveBlocks.find_next(i)) { |
| LiveRange LR(getMBBStartIdx(i), |
| getMBBEndIdx(i)+1, // MBB ends at -1. |
| ValNo); |
| interval.addRange(LR); |
| DOUT << " +" << LR; |
| } |
| |
| // Finally, this virtual register is live from the start of any killing |
| // block to the 'use' slot of the killing instruction. |
| for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = vi.Kills[i]; |
| unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1; |
| LiveRange LR(getMBBStartIdx(Kill->getParent()), |
| killIdx, ValNo); |
| interval.addRange(LR); |
| interval.addKill(ValNo, killIdx); |
| DOUT << " +" << LR; |
| } |
| |
| } else { |
| // If this is the second time we see a virtual register definition, it |
| // must be due to phi elimination or two addr elimination. If this is |
| // the result of two address elimination, then the vreg is one of the |
| // def-and-use register operand. |
| if (mi->isRegTiedToUseOperand(MOIdx)) { |
| // If this is a two-address definition, then we have already processed |
| // the live range. The only problem is that we didn't realize there |
| // are actually two values in the live interval. Because of this we |
| // need to take the LiveRegion that defines this register and split it |
| // into two values. |
| assert(interval.containsOneValue()); |
| unsigned DefIndex = getDefIndex(interval.getValNumInfo(0)->def); |
| unsigned RedefIndex = getDefIndex(MIIdx); |
| if (MO.isEarlyClobber()) |
| RedefIndex = getUseIndex(MIIdx); |
| |
| const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1); |
| VNInfo *OldValNo = OldLR->valno; |
| |
| // Delete the initial value, which should be short and continuous, |
| // because the 2-addr copy must be in the same MBB as the redef. |
| interval.removeRange(DefIndex, RedefIndex); |
| |
| // Two-address vregs should always only be redefined once. This means |
| // that at this point, there should be exactly one value number in it. |
| assert(interval.containsOneValue() && "Unexpected 2-addr liveint!"); |
| |
| // The new value number (#1) is defined by the instruction we claimed |
| // defined value #0. |
| VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->copy, |
| VNInfoAllocator); |
| |
| // Value#0 is now defined by the 2-addr instruction. |
| OldValNo->def = RedefIndex; |
| OldValNo->copy = 0; |
| if (MO.isEarlyClobber()) |
| OldValNo->redefByEC = true; |
| |
| // Add the new live interval which replaces the range for the input copy. |
| LiveRange LR(DefIndex, RedefIndex, ValNo); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| interval.addKill(ValNo, RedefIndex); |
| |
| // If this redefinition is dead, we need to add a dummy unit live |
| // range covering the def slot. |
| if (MO.isDead()) |
| interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo)); |
| |
| DOUT << " RESULT: "; |
| interval.print(DOUT, tri_); |
| |
| } else { |
| // Otherwise, this must be because of phi elimination. If this is the |
| // first redefinition of the vreg that we have seen, go back and change |
| // the live range in the PHI block to be a different value number. |
| if (interval.containsOneValue()) { |
| assert(vi.Kills.size() == 1 && |
| "PHI elimination vreg should have one kill, the PHI itself!"); |
| |
| // Remove the old range that we now know has an incorrect number. |
| VNInfo *VNI = interval.getValNumInfo(0); |
| MachineInstr *Killer = vi.Kills[0]; |
| unsigned Start = getMBBStartIdx(Killer->getParent()); |
| unsigned End = getUseIndex(getInstructionIndex(Killer))+1; |
| DOUT << " Removing [" << Start << "," << End << "] from: "; |
| interval.print(DOUT, tri_); DOUT << "\n"; |
| interval.removeRange(Start, End); |
| VNI->hasPHIKill = true; |
| DOUT << " RESULT: "; interval.print(DOUT, tri_); |
| |
| // Replace the interval with one of a NEW value number. Note that this |
| // value number isn't actually defined by an instruction, weird huh? :) |
| LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator)); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| interval.addKill(LR.valno, End); |
| DOUT << " RESULT: "; interval.print(DOUT, tri_); |
| } |
| |
| // In the case of PHI elimination, each variable definition is only |
| // live until the end of the block. We've already taken care of the |
| // rest of the live range. |
| unsigned defIndex = getDefIndex(MIIdx); |
| if (MO.isEarlyClobber()) |
| defIndex = getUseIndex(MIIdx); |
| |
| VNInfo *ValNo; |
| MachineInstr *CopyMI = NULL; |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG || |
| mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG || |
| mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG || |
| tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| CopyMI = mi; |
| ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator); |
| |
| unsigned killIndex = getMBBEndIdx(mbb) + 1; |
| LiveRange LR(defIndex, killIndex, ValNo); |
| interval.addRange(LR); |
| interval.addKill(ValNo, killIndex); |
| ValNo->hasPHIKill = true; |
| DOUT << " +" << LR; |
| } |
| } |
| |
| DOUT << '\n'; |
| } |
| |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, |
| MachineOperand& MO, |
| LiveInterval &interval, |
| MachineInstr *CopyMI) { |
| // A physical register cannot be live across basic block, so its |
| // lifetime must end somewhere in its defining basic block. |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| |
| unsigned baseIndex = MIIdx; |
| unsigned start = getDefIndex(baseIndex); |
| // Earlyclobbers move back one. |
| if (MO.isEarlyClobber()) |
| start = getUseIndex(MIIdx); |
| unsigned end = start; |
| |
| // If it is not used after definition, it is considered dead at |
| // the instruction defining it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| if (MO.isDead()) { |
| DOUT << " dead"; |
| end = start + 1; |
| goto exit; |
| } |
| |
| // If it is not dead on definition, it must be killed by a |
| // subsequent instruction. Hence its interval is: |
| // [defSlot(def), useSlot(kill)+1) |
| baseIndex += InstrSlots::NUM; |
| while (++mi != MBB->end()) { |
| while (baseIndex / InstrSlots::NUM < i2miMap_.size() && |
| getInstructionFromIndex(baseIndex) == 0) |
| baseIndex += InstrSlots::NUM; |
| if (mi->killsRegister(interval.reg, tri_)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } else { |
| int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_); |
| if (DefIdx != -1) { |
| if (mi->isRegTiedToUseOperand(DefIdx)) { |
| // Two-address instruction. |
| end = getDefIndex(baseIndex); |
| if (mi->getOperand(DefIdx).isEarlyClobber()) |
| end = getUseIndex(baseIndex); |
| } else { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = start + 1; |
| } |
| goto exit; |
| } |
| } |
| |
| baseIndex += InstrSlots::NUM; |
| } |
| |
| // The only case we should have a dead physreg here without a killing or |
| // instruction where we know it's dead is if it is live-in to the function |
| // and never used. Another possible case is the implicit use of the |
| // physical register has been deleted by two-address pass. |
| end = start + 1; |
| |
| exit: |
| assert(start < end && "did not find end of interval?"); |
| |
| // Already exists? Extend old live interval. |
| LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start); |
| bool Extend = OldLR != interval.end(); |
| VNInfo *ValNo = Extend |
| ? OldLR->valno : interval.getNextValue(start, CopyMI, VNInfoAllocator); |
| if (MO.isEarlyClobber() && Extend) |
| ValNo->redefByEC = true; |
| LiveRange LR(start, end, ValNo); |
| interval.addRange(LR); |
| interval.addKill(LR.valno, end); |
| DOUT << " +" << LR << '\n'; |
| } |
| |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned MIIdx, |
| MachineOperand& MO, |
| unsigned MOIdx) { |
| if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, |
| getOrCreateInterval(MO.getReg())); |
| else if (allocatableRegs_[MO.getReg()]) { |
| MachineInstr *CopyMI = NULL; |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG || |
| MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG || |
| MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG || |
| tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| CopyMI = MI; |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, |
| getOrCreateInterval(MO.getReg()), CopyMI); |
| // Def of a register also defines its sub-registers. |
| for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS) |
| // If MI also modifies the sub-register explicitly, avoid processing it |
| // more than once. Do not pass in TRI here so it checks for exact match. |
| if (!MI->modifiesRegister(*AS)) |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, |
| getOrCreateInterval(*AS), 0); |
| } |
| } |
| |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, |
| unsigned MIIdx, |
| LiveInterval &interval, bool isAlias) { |
| DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg)); |
| |
| // Look for kills, if it reaches a def before it's killed, then it shouldn't |
| // be considered a livein. |
| MachineBasicBlock::iterator mi = MBB->begin(); |
| unsigned baseIndex = MIIdx; |
| unsigned start = baseIndex; |
| while (baseIndex / InstrSlots::NUM < i2miMap_.size() && |
| getInstructionFromIndex(baseIndex) == 0) |
| baseIndex += InstrSlots::NUM; |
| unsigned end = baseIndex; |
| bool SeenDefUse = false; |
| |
| while (mi != MBB->end()) { |
| if (mi->killsRegister(interval.reg, tri_)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| SeenDefUse = true; |
| goto exit; |
| } else if (mi->modifiesRegister(interval.reg, tri_)) { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| SeenDefUse = true; |
| goto exit; |
| } |
| |
| baseIndex += InstrSlots::NUM; |
| ++mi; |
| if (mi != MBB->end()) { |
| while (baseIndex / InstrSlots::NUM < i2miMap_.size() && |
| getInstructionFromIndex(baseIndex) == 0) |
| baseIndex += InstrSlots::NUM; |
| } |
| } |
| |
| exit: |
| // Live-in register might not be used at all. |
| if (!SeenDefUse) { |
| if (isAlias) { |
| DOUT << " dead"; |
| end = getDefIndex(MIIdx) + 1; |
| } else { |
| DOUT << " live through"; |
| end = baseIndex; |
| } |
| } |
| |
| LiveRange LR(start, end, interval.getNextValue(~0U, 0, VNInfoAllocator)); |
| interval.addRange(LR); |
| interval.addKill(LR.valno, end); |
| DOUT << " +" << LR << '\n'; |
| } |
| |
| /// computeIntervals - computes the live intervals for virtual |
| /// registers. for some ordering of the machine instructions [1,N] a |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for |
| /// which a variable is live |
| void LiveIntervals::computeIntervals() { |
| |
| DOUT << "********** COMPUTING LIVE INTERVALS **********\n" |
| << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'; |
| |
| for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| // Track the index of the current machine instr. |
| unsigned MIIndex = getMBBStartIdx(MBB); |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); |
| |
| // Create intervals for live-ins to this BB first. |
| for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(), |
| LE = MBB->livein_end(); LI != LE; ++LI) { |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); |
| // Multiple live-ins can alias the same register. |
| for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS) |
| if (!hasInterval(*AS)) |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), |
| true); |
| } |
| |
| // Skip over empty initial indices. |
| while (MIIndex / InstrSlots::NUM < i2miMap_.size() && |
| getInstructionFromIndex(MIIndex) == 0) |
| MIIndex += InstrSlots::NUM; |
| |
| for (; MI != miEnd; ++MI) { |
| DOUT << MIIndex << "\t" << *MI; |
| |
| // Handle defs. |
| for (int i = MI->getNumOperands() - 1; i >= 0; --i) { |
| MachineOperand &MO = MI->getOperand(i); |
| // handle register defs - build intervals |
| if (MO.isReg() && MO.getReg() && MO.isDef()) { |
| handleRegisterDef(MBB, MI, MIIndex, MO, i); |
| } |
| } |
| |
| // Skip over the empty slots after each instruction. |
| unsigned Slots = MI->getDesc().getNumDefs(); |
| if (Slots == 0) |
| Slots = 1; |
| MIIndex += InstrSlots::NUM * Slots; |
| |
| // Skip over empty indices. |
| while (MIIndex / InstrSlots::NUM < i2miMap_.size() && |
| getInstructionFromIndex(MIIndex) == 0) |
| MIIndex += InstrSlots::NUM; |
| } |
| } |
| } |
| |
| bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End, |
| SmallVectorImpl<MachineBasicBlock*> &MBBs) const { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start); |
| |
| bool ResVal = false; |
| while (I != Idx2MBBMap.end()) { |
| if (I->first >= End) |
| break; |
| MBBs.push_back(I->second); |
| ResVal = true; |
| ++I; |
| } |
| return ResVal; |
| } |
| |
| bool LiveIntervals::findReachableMBBs(unsigned Start, unsigned End, |
| SmallVectorImpl<MachineBasicBlock*> &MBBs) const { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start); |
| |
| bool ResVal = false; |
| while (I != Idx2MBBMap.end()) { |
| if (I->first > End) |
| break; |
| MachineBasicBlock *MBB = I->second; |
| if (getMBBEndIdx(MBB) > End) |
| break; |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| MBBs.push_back(*SI); |
| ResVal = true; |
| ++I; |
| } |
| return ResVal; |
| } |
| |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) { |
| float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; |
| return new LiveInterval(reg, Weight); |
| } |
| |
| /// dupInterval - Duplicate a live interval. The caller is responsible for |
| /// managing the allocated memory. |
| LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) { |
| LiveInterval *NewLI = createInterval(li->reg); |
| NewLI->Copy(*li, getVNInfoAllocator()); |
| return NewLI; |
| } |
| |
| /// getVNInfoSourceReg - Helper function that parses the specified VNInfo |
| /// copy field and returns the source register that defines it. |
| unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const { |
| if (!VNI->copy) |
| return 0; |
| |
| if (VNI->copy->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { |
| // If it's extracting out of a physical register, return the sub-register. |
| unsigned Reg = VNI->copy->getOperand(1).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| Reg = tri_->getSubReg(Reg, VNI->copy->getOperand(2).getImm()); |
| return Reg; |
| } else if (VNI->copy->getOpcode() == TargetInstrInfo::INSERT_SUBREG || |
| VNI->copy->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) |
| return VNI->copy->getOperand(2).getReg(); |
| |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (tii_->isMoveInstr(*VNI->copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| return SrcReg; |
| assert(0 && "Unrecognized copy instruction!"); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Register allocator hooks. |
| // |
| |
| /// getReMatImplicitUse - If the remat definition MI has one (for now, we only |
| /// allow one) virtual register operand, then its uses are implicitly using |
| /// the register. Returns the virtual register. |
| unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li, |
| MachineInstr *MI) const { |
| unsigned RegOp = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0 || Reg == li.reg) |
| continue; |
| // FIXME: For now, only remat MI with at most one register operand. |
| assert(!RegOp && |
| "Can't rematerialize instruction with multiple register operand!"); |
| RegOp = MO.getReg(); |
| #ifndef NDEBUG |
| break; |
| #endif |
| } |
| return RegOp; |
| } |
| |
| /// isValNoAvailableAt - Return true if the val# of the specified interval |
| /// which reaches the given instruction also reaches the specified use index. |
| bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, |
| unsigned UseIdx) const { |
| unsigned Index = getInstructionIndex(MI); |
| VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno; |
| LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx); |
| return UI != li.end() && UI->valno == ValNo; |
| } |
| |
| /// isReMaterializable - Returns true if the definition MI of the specified |
| /// val# of the specified interval is re-materializable. |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li, |
| const VNInfo *ValNo, MachineInstr *MI, |
| SmallVectorImpl<LiveInterval*> &SpillIs, |
| bool &isLoad) { |
| if (DisableReMat) |
| return false; |
| |
| if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) |
| return true; |
| |
| int FrameIdx = 0; |
| if (tii_->isLoadFromStackSlot(MI, FrameIdx) && |
| mf_->getFrameInfo()->isImmutableObjectIndex(FrameIdx)) |
| // FIXME: Let target specific isReallyTriviallyReMaterializable determines |
| // this but remember this is not safe to fold into a two-address |
| // instruction. |
| // This is a load from fixed stack slot. It can be rematerialized. |
| return true; |
| |
| // If the target-specific rules don't identify an instruction as |
| // being trivially rematerializable, use some target-independent |
| // rules. |
| if (!MI->getDesc().isRematerializable() || |
| !tii_->isTriviallyReMaterializable(MI)) { |
| if (!EnableAggressiveRemat) |
| return false; |
| |
| // If the instruction accesses memory but the memoperands have been lost, |
| // we can't analyze it. |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if ((TID.mayLoad() || TID.mayStore()) && MI->memoperands_empty()) |
| return false; |
| |
| // Avoid instructions obviously unsafe for remat. |
| if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable()) |
| return false; |
| |
| // If the instruction accesses memory and the memory could be non-constant, |
| // assume the instruction is not rematerializable. |
| for (std::list<MachineMemOperand>::const_iterator |
| I = MI->memoperands_begin(), E = MI->memoperands_end(); I != E; ++I){ |
| const MachineMemOperand &MMO = *I; |
| if (MMO.isVolatile() || MMO.isStore()) |
| return false; |
| const Value *V = MMO.getValue(); |
| if (!V) |
| return false; |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { |
| if (!PSV->isConstant(mf_->getFrameInfo())) |
| return false; |
| } else if (!aa_->pointsToConstantMemory(V)) |
| return false; |
| } |
| |
| // If any of the registers accessed are non-constant, conservatively assume |
| // the instruction is not rematerializable. |
| unsigned ImpUse = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg()) { |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return false; |
| |
| // Only allow one def, and that in the first operand. |
| if (MO.isDef() != (i == 0)) |
| return false; |
| |
| // Only allow constant-valued registers. |
| bool IsLiveIn = mri_->isLiveIn(Reg); |
| MachineRegisterInfo::def_iterator I = mri_->def_begin(Reg), |
| E = mri_->def_end(); |
| |
| // For the def, it should be the only def of that register. |
| if (MO.isDef() && (next(I) != E || IsLiveIn)) |
| return false; |
| |
| if (MO.isUse()) { |
| // Only allow one use other register use, as that's all the |
| // remat mechanisms support currently. |
| if (Reg != li.reg) { |
| if (ImpUse == 0) |
| ImpUse = Reg; |
| else if (Reg != ImpUse) |
| return false; |
| } |
| // For the use, there should be only one associated def. |
| if (I != E && (next(I) != E || IsLiveIn)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| unsigned ImpUse = getReMatImplicitUse(li, MI); |
| if (ImpUse) { |
| const LiveInterval &ImpLi = getInterval(ImpUse); |
| for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg), |
| re = mri_->use_end(); ri != re; ++ri) { |
| MachineInstr *UseMI = &*ri; |
| unsigned UseIdx = getInstructionIndex(UseMI); |
| if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo) |
| continue; |
| if (!isValNoAvailableAt(ImpLi, MI, UseIdx)) |
| return false; |
| } |
| |
| // If a register operand of the re-materialized instruction is going to |
| // be spilled next, then it's not legal to re-materialize this instruction. |
| for (unsigned i = 0, e = SpillIs.size(); i != e; ++i) |
| if (ImpUse == SpillIs[i]->reg) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isReMaterializable - Returns true if the definition MI of the specified |
| /// val# of the specified interval is re-materializable. |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li, |
| const VNInfo *ValNo, MachineInstr *MI) { |
| SmallVector<LiveInterval*, 4> Dummy1; |
| bool Dummy2; |
| return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2); |
| } |
| |
| /// isReMaterializable - Returns true if every definition of MI of every |
| /// val# of the specified interval is re-materializable. |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li, |
| SmallVectorImpl<LiveInterval*> &SpillIs, |
| bool &isLoad) { |
| isLoad = false; |
| for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); |
| i != e; ++i) { |
| const VNInfo *VNI = *i; |
| unsigned DefIdx = VNI->def; |
| if (DefIdx == ~1U) |
| continue; // Dead val#. |
| // Is the def for the val# rematerializable? |
| if (DefIdx == ~0u) |
| return false; |
| MachineInstr *ReMatDefMI = getInstructionFromIndex(DefIdx); |
| bool DefIsLoad = false; |
| if (!ReMatDefMI || |
| !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad)) |
| return false; |
| isLoad |= DefIsLoad; |
| } |
| return true; |
| } |
| |
| /// FilterFoldedOps - Filter out two-address use operands. Return |
| /// true if it finds any issue with the operands that ought to prevent |
| /// folding. |
| static bool FilterFoldedOps(MachineInstr *MI, |
| SmallVector<unsigned, 2> &Ops, |
| unsigned &MRInfo, |
| SmallVector<unsigned, 2> &FoldOps) { |
| MRInfo = 0; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned OpIdx = Ops[i]; |
| MachineOperand &MO = MI->getOperand(OpIdx); |
| // FIXME: fold subreg use. |
| if (MO.getSubReg()) |
| return true; |
| if (MO.isDef()) |
| MRInfo |= (unsigned)VirtRegMap::isMod; |
| else { |
| // Filter out two-address use operand(s). |
| if (MI->isRegTiedToDefOperand(OpIdx)) { |
| MRInfo = VirtRegMap::isModRef; |
| continue; |
| } |
| MRInfo |= (unsigned)VirtRegMap::isRef; |
| } |
| FoldOps.push_back(OpIdx); |
| } |
| return false; |
| } |
| |
| |
| /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from |
| /// slot / to reg or any rematerialized load into ith operand of specified |
| /// MI. If it is successul, MI is updated with the newly created MI and |
| /// returns true. |
| bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, |
| VirtRegMap &vrm, MachineInstr *DefMI, |
| unsigned InstrIdx, |
| SmallVector<unsigned, 2> &Ops, |
| bool isSS, int Slot, unsigned Reg) { |
| // If it is an implicit def instruction, just delete it. |
| if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { |
| RemoveMachineInstrFromMaps(MI); |
| vrm.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| ++numFolds; |
| return true; |
| } |
| |
| // Filter the list of operand indexes that are to be folded. Abort if |
| // any operand will prevent folding. |
| unsigned MRInfo = 0; |
| SmallVector<unsigned, 2> FoldOps; |
| if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps)) |
| return false; |
| |
| // The only time it's safe to fold into a two address instruction is when |
| // it's folding reload and spill from / into a spill stack slot. |
| if (DefMI && (MRInfo & VirtRegMap::isMod)) |
| return false; |
| |
| MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot) |
| : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI); |
| if (fmi) { |
| // Remember this instruction uses the spill slot. |
| if (isSS) vrm.addSpillSlotUse(Slot, fmi); |
| |
| // Attempt to fold the memory reference into the instruction. If |
| // we can do this, we don't need to insert spill code. |
| MachineBasicBlock &MBB = *MI->getParent(); |
| if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot)) |
| vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo); |
| vrm.transferSpillPts(MI, fmi); |
| vrm.transferRestorePts(MI, fmi); |
| vrm.transferEmergencySpills(MI, fmi); |
| mi2iMap_.erase(MI); |
| i2miMap_[InstrIdx /InstrSlots::NUM] = fmi; |
| mi2iMap_[fmi] = InstrIdx; |
| MI = MBB.insert(MBB.erase(MI), fmi); |
| ++numFolds; |
| return true; |
| } |
| return false; |
| } |
| |
| /// canFoldMemoryOperand - Returns true if the specified load / store |
| /// folding is possible. |
| bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI, |
| SmallVector<unsigned, 2> &Ops, |
| bool ReMat) const { |
| // Filter the list of operand indexes that are to be folded. Abort if |
| // any operand will prevent folding. |
| unsigned MRInfo = 0; |
| SmallVector<unsigned, 2> FoldOps; |
| if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps)) |
| return false; |
| |
| // It's only legal to remat for a use, not a def. |
| if (ReMat && (MRInfo & VirtRegMap::isMod)) |
| return false; |
| |
| return tii_->canFoldMemoryOperand(MI, FoldOps); |
| } |
| |
| bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const { |
| SmallPtrSet<MachineBasicBlock*, 4> MBBs; |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| std::vector<IdxMBBPair>::const_iterator II = |
| std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start); |
| if (II == Idx2MBBMap.end()) |
| continue; |
| if (I->end > II->first) // crossing a MBB. |
| return false; |
| MBBs.insert(II->second); |
| if (MBBs.size() > 1) |
| return false; |
| } |
| return true; |
| } |
| |
| /// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of |
| /// interval on to-be re-materialized operands of MI) with new register. |
| void LiveIntervals::rewriteImplicitOps(const LiveInterval &li, |
| MachineInstr *MI, unsigned NewVReg, |
| VirtRegMap &vrm) { |
| // There is an implicit use. That means one of the other operand is |
| // being remat'ed and the remat'ed instruction has li.reg as an |
| // use operand. Make sure we rewrite that as well. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| if (!vrm.isReMaterialized(Reg)) |
| continue; |
| MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg); |
| MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg); |
| if (UseMO) |
| UseMO->setReg(NewVReg); |
| } |
| } |
| |
| /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions |
| /// for addIntervalsForSpills to rewrite uses / defs for the given live range. |
| bool LiveIntervals:: |
| rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI, |
| bool TrySplit, unsigned index, unsigned end, MachineInstr *MI, |
| MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, |
| unsigned Slot, int LdSlot, |
| bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, |
| VirtRegMap &vrm, |
| const TargetRegisterClass* rc, |
| SmallVector<int, 4> &ReMatIds, |
| const MachineLoopInfo *loopInfo, |
| unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse, |
| DenseMap<unsigned,unsigned> &MBBVRegsMap, |
| std::vector<LiveInterval*> &NewLIs) { |
| bool CanFold = false; |
| RestartInstruction: |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isReg()) |
| continue; |
| unsigned Reg = mop.getReg(); |
| unsigned RegI = Reg; |
| if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| if (Reg != li.reg) |
| continue; |
| |
| bool TryFold = !DefIsReMat; |
| bool FoldSS = true; // Default behavior unless it's a remat. |
| int FoldSlot = Slot; |
| if (DefIsReMat) { |
| // If this is the rematerializable definition MI itself and |
| // all of its uses are rematerialized, simply delete it. |
| if (MI == ReMatOrigDefMI && CanDelete) { |
| DOUT << "\t\t\t\tErasing re-materlizable def: "; |
| DOUT << MI << '\n'; |
| RemoveMachineInstrFromMaps(MI); |
| vrm.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| break; |
| } |
| |
| // If def for this use can't be rematerialized, then try folding. |
| // If def is rematerializable and it's a load, also try folding. |
| TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad)); |
| if (isLoad) { |
| // Try fold loads (from stack slot, constant pool, etc.) into uses. |
| FoldSS = isLoadSS; |
| FoldSlot = LdSlot; |
| } |
| } |
| |
| // Scan all of the operands of this instruction rewriting operands |
| // to use NewVReg instead of li.reg as appropriate. We do this for |
| // two reasons: |
| // |
| // 1. If the instr reads the same spilled vreg multiple times, we |
| // want to reuse the NewVReg. |
| // 2. If the instr is a two-addr instruction, we are required to |
| // keep the src/dst regs pinned. |
| // |
| // Keep track of whether we replace a use and/or def so that we can |
| // create the spill interval with the appropriate range. |
| |
| HasUse = mop.isUse(); |
| HasDef = mop.isDef(); |
| SmallVector<unsigned, 2> Ops; |
| Ops.push_back(i); |
| for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { |
| const MachineOperand &MOj = MI->getOperand(j); |
| if (!MOj.isReg()) |
| continue; |
| unsigned RegJ = MOj.getReg(); |
| if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ)) |
| continue; |
| if (RegJ == RegI) { |
| Ops.push_back(j); |
| HasUse |= MOj.isUse(); |
| HasDef |= MOj.isDef(); |
| } |
| } |
| |
| if (HasUse && !li.liveAt(getUseIndex(index))) |
| // Must be defined by an implicit def. It should not be spilled. Note, |
| // this is for correctness reason. e.g. |
| // 8 %reg1024<def> = IMPLICIT_DEF |
| // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 |
| // The live range [12, 14) are not part of the r1024 live interval since |
| // it's defined by an implicit def. It will not conflicts with live |
| // interval of r1025. Now suppose both registers are spilled, you can |
| // easily see a situation where both registers are reloaded before |
| // the INSERT_SUBREG and both target registers that would overlap. |
| HasUse = false; |
| |
| // Create a new virtual register for the spill interval. |
| // Create the new register now so we can map the fold instruction |
| // to the new register so when it is unfolded we get the correct |
| // answer. |
| bool CreatedNewVReg = false; |
| if (NewVReg == 0) { |
| NewVReg = mri_->createVirtualRegister(rc); |
| vrm.grow(); |
| CreatedNewVReg = true; |
| } |
| |
| if (!TryFold) |
| CanFold = false; |
| else { |
| // Do not fold load / store here if we are splitting. We'll find an |
| // optimal point to insert a load / store later. |
| if (!TrySplit) { |
| if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, |
| Ops, FoldSS, FoldSlot, NewVReg)) { |
| // Folding the load/store can completely change the instruction in |
| // unpredictable ways, rescan it from the beginning. |
| |
| if (FoldSS) { |
| // We need to give the new vreg the same stack slot as the |
| // spilled interval. |
| vrm.assignVirt2StackSlot(NewVReg, FoldSlot); |
| } |
| |
| HasUse = false; |
| HasDef = false; |
| CanFold = false; |
| if (isNotInMIMap(MI)) |
| break; |
| goto RestartInstruction; |
| } |
| } else { |
| // We'll try to fold it later if it's profitable. |
| CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat); |
| } |
| } |
| |
| mop.setReg(NewVReg); |
| if (mop.isImplicit()) |
| rewriteImplicitOps(li, MI, NewVReg, vrm); |
| |
| // Reuse NewVReg for other reads. |
| for (unsigned j = 0, e = Ops.size(); j != e; ++j) { |
| MachineOperand &mopj = MI->getOperand(Ops[j]); |
| mopj.setReg(NewVReg); |
| if (mopj.isImplicit()) |
| rewriteImplicitOps(li, MI, NewVReg, vrm); |
| } |
| |
| if (CreatedNewVReg) { |
| if (DefIsReMat) { |
| vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/); |
| if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) { |
| // Each valnum may have its own remat id. |
| ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg); |
| } else { |
| vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]); |
| } |
| if (!CanDelete || (HasUse && HasDef)) { |
| // If this is a two-addr instruction then its use operands are |
| // rematerializable but its def is not. It should be assigned a |
| // stack slot. |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| } else { |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| } else if (HasUse && HasDef && |
| vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) { |
| // If this interval hasn't been assigned a stack slot (because earlier |
| // def is a deleted remat def), do it now. |
| assert(Slot != VirtRegMap::NO_STACK_SLOT); |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| |
| // Re-matting an instruction with virtual register use. Add the |
| // register as an implicit use on the use MI. |
| if (DefIsReMat && ImpUse) |
| MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true)); |
| |
| // Create a new register interval for this spill / remat. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| if (CreatedNewVReg) { |
| NewLIs.push_back(&nI); |
| MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg)); |
| if (TrySplit) |
| vrm.setIsSplitFromReg(NewVReg, li.reg); |
| } |
| |
| if (HasUse) { |
| if (CreatedNewVReg) { |
| LiveRange LR(getLoadIndex(index), getUseIndex(index)+1, |
| nI.getNextValue(~0U, 0, VNInfoAllocator)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } else { |
| // Extend the split live interval to this def / use. |
| unsigned End = getUseIndex(index)+1; |
| LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End, |
| nI.getValNumInfo(nI.getNumValNums()-1)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| } |
| if (HasDef) { |
| LiveRange LR(getDefIndex(index), getStoreIndex(index), |
| nI.getNextValue(~0U, 0, VNInfoAllocator)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| |
| DOUT << "\t\t\t\tAdded new interval: "; |
| nI.print(DOUT, tri_); |
| DOUT << '\n'; |
| } |
| return CanFold; |
| } |
| bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li, |
| const VNInfo *VNI, |
| MachineBasicBlock *MBB, unsigned Idx) const { |
| unsigned End = getMBBEndIdx(MBB); |
| for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) { |
| unsigned KillIdx = VNI->kills[j]; |
| if (KillIdx > Idx && KillIdx < End) |
| return true; |
| } |
| return false; |
| } |
| |
| /// RewriteInfo - Keep track of machine instrs that will be rewritten |
| /// during spilling. |
| namespace { |
| struct RewriteInfo { |
| unsigned Index; |
| MachineInstr *MI; |
| bool HasUse; |
| bool HasDef; |
| RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d) |
| : Index(i), MI(mi), HasUse(u), HasDef(d) {} |
| }; |
| |
| struct RewriteInfoCompare { |
| bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const { |
| return LHS.Index < RHS.Index; |
| } |
| }; |
| } |
| |
| void LiveIntervals:: |
| rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit, |
| LiveInterval::Ranges::const_iterator &I, |
| MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, |
| unsigned Slot, int LdSlot, |
| bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, |
| VirtRegMap &vrm, |
| const TargetRegisterClass* rc, |
| SmallVector<int, 4> &ReMatIds, |
| const MachineLoopInfo *loopInfo, |
| BitVector &SpillMBBs, |
| DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes, |
| BitVector &RestoreMBBs, |
| DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes, |
| DenseMap<unsigned,unsigned> &MBBVRegsMap, |
| std::vector<LiveInterval*> &NewLIs) { |
| bool AllCanFold = true; |
| unsigned NewVReg = 0; |
| unsigned start = getBaseIndex(I->start); |
| unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM; |
| |
| // First collect all the def / use in this live range that will be rewritten. |
| // Make sure they are sorted according to instruction index. |
| std::vector<RewriteInfo> RewriteMIs; |
| for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg), |
| re = mri_->reg_end(); ri != re; ) { |
| MachineInstr *MI = &*ri; |
| MachineOperand &O = ri.getOperand(); |
| ++ri; |
| assert(!O.isImplicit() && "Spilling register that's used as implicit use?"); |
| unsigned index = getInstructionIndex(MI); |
| if (index < start || index >= end) |
| continue; |
| if (O.isUse() && !li.liveAt(getUseIndex(index))) |
| // Must be defined by an implicit def. It should not be spilled. Note, |
| // this is for correctness reason. e.g. |
| // 8 %reg1024<def> = IMPLICIT_DEF |
| // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 |
| // The live range [12, 14) are not part of the r1024 live interval since |
| // it's defined by an implicit def. It will not conflicts with live |
| // interval of r1025. Now suppose both registers are spilled, you can |
| // easily see a situation where both registers are reloaded before |
| // the INSERT_SUBREG and both target registers that would overlap. |
| continue; |
| RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef())); |
| } |
| std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare()); |
| |
| unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0; |
| // Now rewrite the defs and uses. |
| for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) { |
| RewriteInfo &rwi = RewriteMIs[i]; |
| ++i; |
| unsigned index = rwi.Index; |
| bool MIHasUse = rwi.HasUse; |
| bool MIHasDef = rwi.HasDef; |
| MachineInstr *MI = rwi.MI; |
| // If MI def and/or use the same register multiple times, then there |
| // are multiple entries. |
| unsigned NumUses = MIHasUse; |
| while (i != e && RewriteMIs[i].MI == MI) { |
| assert(RewriteMIs[i].Index == index); |
| bool isUse = RewriteMIs[i].HasUse; |
| if (isUse) ++NumUses; |
| MIHasUse |= isUse; |
| MIHasDef |= RewriteMIs[i].HasDef; |
| ++i; |
| } |
| MachineBasicBlock *MBB = MI->getParent(); |
| |
| if (ImpUse && MI != ReMatDefMI) { |
| // Re-matting an instruction with virtual register use. Update the |
| // register interval's spill weight to HUGE_VALF to prevent it from |
| // being spilled. |
| LiveInterval &ImpLi = getInterval(ImpUse); |
| ImpLi.weight = HUGE_VALF; |
| } |
| |
| unsigned MBBId = MBB->getNumber(); |
| unsigned ThisVReg = 0; |
| if (TrySplit) { |
| DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId); |
| if (NVI != MBBVRegsMap.end()) { |
| ThisVReg = NVI->second; |
| // One common case: |
| // x = use |
| // ... |
| // ... |
| // def = ... |
| // = use |
| // It's better to start a new interval to avoid artifically |
| // extend the new interval. |
| if (MIHasDef && !MIHasUse) { |
| MBBVRegsMap.erase(MBB->getNumber()); |
| ThisVReg = 0; |
| } |
| } |
| } |
| |
| bool IsNew = ThisVReg == 0; |
| if (IsNew) { |
| // This ends the previous live interval. If all of its def / use |
| // can be folded, give it a low spill weight. |
| if (NewVReg && TrySplit && AllCanFold) { |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| nI.weight /= 10.0F; |
| } |
| AllCanFold = true; |
| } |
| NewVReg = ThisVReg; |
| |
| bool HasDef = false; |
| bool HasUse = false; |
| bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit, |
| index, end, MI, ReMatOrigDefMI, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg, |
| ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs); |
| if (!HasDef && !HasUse) |
| continue; |
| |
| AllCanFold &= CanFold; |
| |
| // Update weight of spill interval. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| if (!TrySplit) { |
| // The spill weight is now infinity as it cannot be spilled again. |
| nI.weight = HUGE_VALF; |
| continue; |
| } |
| |
| // Keep track of the last def and first use in each MBB. |
| if (HasDef) { |
| if (MI != ReMatOrigDefMI || !CanDelete) { |
| bool HasKill = false; |
| if (!HasUse) |
| HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index)); |
| else { |
| // If this is a two-address code, then this index starts a new VNInfo. |
| const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index)); |
| if (VNI) |
| HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index)); |
| } |
| DenseMap<unsigned, std::vector<SRInfo> >::iterator SII = |
| SpillIdxes.find(MBBId); |
| if (!HasKill) { |
| if (SII == SpillIdxes.end()) { |
| std::vector<SRInfo> S; |
| S.push_back(SRInfo(index, NewVReg, true)); |
| SpillIdxes.insert(std::make_pair(MBBId, S)); |
| } else if (SII->second.back().vreg != NewVReg) { |
| SII->second.push_back(SRInfo(index, NewVReg, true)); |
| } else if ((int)index > SII->second.back().index) { |
| // If there is an earlier def and this is a two-address |
| // instruction, then it's not possible to fold the store (which |
| // would also fold the load). |
| SRInfo &Info = SII->second.back(); |
| Info.index = index; |
| Info.canFold = !HasUse; |
| } |
| SpillMBBs.set(MBBId); |
| } else if (SII != SpillIdxes.end() && |
| SII->second.back().vreg == NewVReg && |
| (int)index > SII->second.back().index) { |
| // There is an earlier def that's not killed (must be two-address). |
| // The spill is no longer needed. |
| SII->second.pop_back(); |
| if (SII->second.empty()) { |
| SpillIdxes.erase(MBBId); |
| SpillMBBs.reset(MBBId); |
| } |
| } |
| } |
| } |
| |
| if (HasUse) { |
| DenseMap<unsigned, std::vector<SRInfo> >::iterator SII = |
| SpillIdxes.find(MBBId); |
| if (SII != SpillIdxes.end() && |
| SII->second.back().vreg == NewVReg && |
| (int)index > SII->second.back().index) |
| // Use(s) following the last def, it's not safe to fold the spill. |
| SII->second.back().canFold = false; |
| DenseMap<unsigned, std::vector<SRInfo> >::iterator RII = |
| RestoreIdxes.find(MBBId); |
| if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg) |
| // If we are splitting live intervals, only fold if it's the first |
| // use and there isn't another use later in the MBB. |
| RII->second.back().canFold = false; |
| else if (IsNew) { |
| // Only need a reload if there isn't an earlier def / use. |
| if (RII == RestoreIdxes.end()) { |
| std::vector<SRInfo> Infos; |
| Infos.push_back(SRInfo(index, NewVReg, true)); |
| RestoreIdxes.insert(std::make_pair(MBBId, Infos)); |
| } else { |
| RII->second.push_back(SRInfo(index, NewVReg, true)); |
| } |
| RestoreMBBs.set(MBBId); |
| } |
| } |
| |
| // Update spill weight. |
| unsigned loopDepth = loopInfo->getLoopDepth(MBB); |
| nI.weight += getSpillWeight(HasDef, HasUse, loopDepth); |
| } |
| |
| if (NewVReg && TrySplit && AllCanFold) { |
| // If all of its def / use can be folded, give it a low spill weight. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| nI.weight /= 10.0F; |
| } |
| } |
| |
| bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr, |
| BitVector &RestoreMBBs, |
| DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) { |
| if (!RestoreMBBs[Id]) |
| return false; |
| std::vector<SRInfo> &Restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = Restores.size(); i != e; ++i) |
| if (Restores[i].index == index && |
| Restores[i].vreg == vr && |
| Restores[i].canFold) |
| return true; |
| return false; |
| } |
| |
| void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr, |
| BitVector &RestoreMBBs, |
| DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) { |
| if (!RestoreMBBs[Id]) |
| return; |
| std::vector<SRInfo> &Restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = Restores.size(); i != e; ++i) |
| if (Restores[i].index == index && Restores[i].vreg) |
| Restores[i].index = -1; |
| } |
| |
| /// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being |
| /// spilled and create empty intervals for their uses. |
| void |
| LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm, |
| const TargetRegisterClass* rc, |
| std::vector<LiveInterval*> &NewLIs) { |
| for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg), |
| re = mri_->reg_end(); ri != re; ) { |
| MachineOperand &O = ri.getOperand(); |
| MachineInstr *MI = &*ri; |
| ++ri; |
| if (O.isDef()) { |
| assert(MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF && |
| "Register def was not rewritten?"); |
| RemoveMachineInstrFromMaps(MI); |
| vrm.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| } else { |
| // This must be an use of an implicit_def so it's not part of the live |
| // interval. Create a new empty live interval for it. |
| // FIXME: Can we simply erase some of the instructions? e.g. Stores? |
| unsigned NewVReg = mri_->createVirtualRegister(rc); |
| vrm.grow(); |
| vrm.setIsImplicitlyDefined(NewVReg); |
| NewLIs.push_back(&getOrCreateInterval(NewVReg)); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == li.reg) |
| MO.setReg(NewVReg); |
| } |
| } |
| } |
| } |
| |
| std::vector<LiveInterval*> LiveIntervals:: |
| addIntervalsForSpillsFast(const LiveInterval &li, |
| const MachineLoopInfo *loopInfo, |
| VirtRegMap &vrm) { |
| unsigned slot = vrm.assignVirt2StackSlot(li.reg); |
| |
| std::vector<LiveInterval*> added; |
| |
| assert(li.weight != HUGE_VALF && |
| "attempt to spill already spilled interval!"); |
| |
| DOUT << "\t\t\t\tadding intervals for spills for interval: "; |
| DEBUG(li.dump()); |
| DOUT << '\n'; |
| |
| const TargetRegisterClass* rc = mri_->getRegClass(li.reg); |
| |
| MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg); |
| while (RI != mri_->reg_end()) { |
| MachineInstr* MI = &*RI; |
| |
| SmallVector<unsigned, 2> Indices; |
| bool HasUse = false; |
| bool HasDef = false; |
| |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isReg() || mop.getReg() != li.reg) continue; |
| |
| HasUse |= MI->getOperand(i).isUse(); |
| HasDef |= MI->getOperand(i).isDef(); |
| |
| Indices.push_back(i); |
| } |
| |
| if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI), |
| Indices, true, slot, li.reg)) { |
| unsigned NewVReg = mri_->createVirtualRegister(rc); |
| vrm.grow(); |
| vrm.assignVirt2StackSlot(NewVReg, slot); |
| |
| // create a new register for this spill |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| |
| // the spill weight is now infinity as it |
| // cannot be spilled again |
| nI.weight = HUGE_VALF; |
| |
| // Rewrite register operands to use the new vreg. |
| for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(), |
| E = Indices.end(); I != E; ++I) { |
| MI->getOperand(*I).setReg(NewVReg); |
| |
| if (MI->getOperand(*I).isUse()) |
| MI->getOperand(*I).setIsKill(true); |
| } |
| |
| // Fill in the new live interval. |
| unsigned index = getInstructionIndex(MI); |
| if (HasUse) { |
| LiveRange LR(getLoadIndex(index), getUseIndex(index), |
| nI.getNextValue(~0U, 0, getVNInfoAllocator())); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| vrm.addRestorePoint(NewVReg, MI); |
| } |
| if (HasDef) { |
| LiveRange LR(getDefIndex(index), getStoreIndex(index), |
| nI.getNextValue(~0U, 0, getVNInfoAllocator())); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| vrm.addSpillPoint(NewVReg, true, MI); |
| } |
| |
| added.push_back(&nI); |
| |
| DOUT << "\t\t\t\tadded new interval: "; |
| DEBUG(nI.dump()); |
| DOUT << '\n'; |
| } |
| |
| |
| RI = mri_->reg_begin(li.reg); |
| } |
| |
| return added; |
| } |
| |
| std::vector<LiveInterval*> LiveIntervals:: |
| addIntervalsForSpills(const LiveInterval &li, |
| SmallVectorImpl<LiveInterval*> &SpillIs, |
| const MachineLoopInfo *loopInfo, VirtRegMap &vrm) { |
| |
| if (EnableFastSpilling) |
| return addIntervalsForSpillsFast(li, loopInfo, vrm); |
| |
| assert(li.weight != HUGE_VALF && |
| "attempt to spill already spilled interval!"); |
| |
| DOUT << "\t\t\t\tadding intervals for spills for interval: "; |
| li.print(DOUT, tri_); |
| DOUT << '\n'; |
| |
| // Each bit specify whether a spill is required in the MBB. |
| BitVector SpillMBBs(mf_->getNumBlockIDs()); |
| DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes; |
| BitVector RestoreMBBs(mf_->getNumBlockIDs()); |
| DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes; |
| DenseMap<unsigned,unsigned> MBBVRegsMap; |
| std::vector<LiveInterval*> NewLIs; |
| const TargetRegisterClass* rc = mri_->getRegClass(li.reg); |
| |
| unsigned NumValNums = li.getNumValNums(); |
| SmallVector<MachineInstr*, 4> ReMatDefs; |
| ReMatDefs.resize(NumValNums, NULL); |
| SmallVector<MachineInstr*, 4> ReMatOrigDefs; |
| ReMatOrigDefs.resize(NumValNums, NULL); |
| SmallVector<int, 4> ReMatIds; |
| ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT); |
| BitVector ReMatDelete(NumValNums); |
| unsigned Slot = VirtRegMap::MAX_STACK_SLOT; |
| |
| // Spilling a split live interval. It cannot be split any further. Also, |
| // it's also guaranteed to be a single val# / range interval. |
| if (vrm.getPreSplitReg(li.reg)) { |
| vrm.setIsSplitFromReg(li.reg, 0); |
| // Unset the split kill marker on the last use. |
| unsigned KillIdx = vrm.getKillPoint(li.reg); |
| if (KillIdx) { |
| MachineInstr *KillMI = getInstructionFromIndex(KillIdx); |
| assert(KillMI && "Last use disappeared?"); |
| int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true); |
| assert(KillOp != -1 && "Last use disappeared?"); |
| KillMI->getOperand(KillOp).setIsKill(false); |
| } |
| vrm.removeKillPoint(li.reg); |
| bool DefIsReMat = vrm.isReMaterialized(li.reg); |
| Slot = vrm.getStackSlot(li.reg); |
| assert(Slot != VirtRegMap::MAX_STACK_SLOT); |
| MachineInstr *ReMatDefMI = DefIsReMat ? |
| vrm.getReMaterializedMI(li.reg) : NULL; |
| int LdSlot = 0; |
| bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| bool isLoad = isLoadSS || |
| (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad())); |
| bool IsFirstRange = true; |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| // If this is a split live interval with multiple ranges, it means there |
| // are two-address instructions that re-defined the value. Only the |
| // first def can be rematerialized! |
| if (IsFirstRange) { |
| // Note ReMatOrigDefMI has already been deleted. |
| rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| false, vrm, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } else { |
| rewriteInstructionsForSpills(li, false, I, NULL, 0, |
| Slot, 0, false, false, false, |
| false, vrm, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } |
| IsFirstRange = false; |
| } |
| |
| handleSpilledImpDefs(li, vrm, rc, NewLIs); |
| return NewLIs; |
| } |
| |
| bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li); |
| if (SplitLimit != -1 && (int)numSplits >= SplitLimit) |
| TrySplit = false; |
| if (TrySplit) |
| ++numSplits; |
| bool NeedStackSlot = false; |
| for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); |
| i != e; ++i) { |
| const VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| unsigned DefIdx = VNI->def; |
| if (DefIdx == ~1U) |
| continue; // Dead val#. |
| // Is the def for the val# rematerializable? |
| MachineInstr *ReMatDefMI = (DefIdx == ~0u) |
| ? 0 : getInstructionFromIndex(DefIdx); |
| bool dummy; |
| if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) { |
| // Remember how to remat the def of this val#. |
| ReMatOrigDefs[VN] = ReMatDefMI; |
| // Original def may be modified so we have to make a copy here. |
| MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI); |
| ClonedMIs.push_back(Clone); |
| ReMatDefs[VN] = Clone; |
| |
| bool CanDelete = true; |
| if (VNI->hasPHIKill) { |
| // A kill is a phi node, not all of its uses can be rematerialized. |
| // It must not be deleted. |
| CanDelete = false; |
| // Need a stack slot if there is any live range where uses cannot be |
| // rematerialized. |
| NeedStackSlot = true; |
| } |
| if (CanDelete) |
| ReMatDelete.set(VN); |
| } else { |
| // Need a stack slot if there is any live range where uses cannot be |
| // rematerialized. |
| NeedStackSlot = true; |
| } |
| } |
| |
| // One stack slot per live interval. |
| if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) { |
| if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT) |
| Slot = vrm.assignVirt2StackSlot(li.reg); |
| |
| // This case only occurs when the prealloc splitter has already assigned |
| // a stack slot to this vreg. |
| else |
| Slot = vrm.getStackSlot(li.reg); |
| } |
| |
| // Create new intervals and rewrite defs and uses. |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id]; |
| MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id]; |
| bool DefIsReMat = ReMatDefMI != NULL; |
| bool CanDelete = ReMatDelete[I->valno->id]; |
| int LdSlot = 0; |
| bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| bool isLoad = isLoadSS || |
| (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad()); |
| rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| CanDelete, vrm, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } |
| |
| // Insert spills / restores if we are splitting. |
| if (!TrySplit) { |
| handleSpilledImpDefs(li, vrm, rc, NewLIs); |
| return NewLIs; |
| } |
| |
| SmallPtrSet<LiveInterval*, 4> AddedKill; |
| SmallVector<unsigned, 2> Ops; |
| if (NeedStackSlot) { |
| int Id = SpillMBBs.find_first(); |
| while (Id != -1) { |
| std::vector<SRInfo> &spills = SpillIdxes[Id]; |
| for (unsigned i = 0, e = spills.size(); i != e; ++i) { |
| int index = spills[i].index; |
| unsigned VReg = spills[i].vreg; |
| LiveInterval &nI = getOrCreateInterval(VReg); |
| bool isReMat = vrm.isReMaterialized(VReg); |
| MachineInstr *MI = getInstructionFromIndex(index); |
| bool CanFold = false; |
| bool FoundUse = false; |
| Ops.clear(); |
| if (spills[i].canFold) { |
| CanFold = true; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg() || MO.getReg() != VReg) |
| continue; |
| |
| Ops.push_back(j); |
| if (MO.isDef()) |
| continue; |
| if (isReMat || |
| (!FoundUse && !alsoFoldARestore(Id, index, VReg, |
| RestoreMBBs, RestoreIdxes))) { |
| // MI has two-address uses of the same register. If the use |
| // isn't the first and only use in the BB, then we can't fold |
| // it. FIXME: Move this to rewriteInstructionsForSpills. |
| CanFold = false; |
| break; |
| } |
| FoundUse = true; |
| } |
| } |
| // Fold the store into the def if possible. |
| bool Folded = false; |
| if (CanFold && !Ops.empty()) { |
| if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){ |
| Folded = true; |
| if (FoundUse) { |
| // Also folded uses, do not issue a load. |
| eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes); |
| nI.removeRange(getLoadIndex(index), getUseIndex(index)+1); |
| } |
| nI.removeRange(getDefIndex(index), getStoreIndex(index)); |
| } |
| } |
| |
| // Otherwise tell the spiller to issue a spill. |
| if (!Folded) { |
| LiveRange *LR = &nI.ranges[nI.ranges.size()-1]; |
| bool isKill = LR->end == getStoreIndex(index); |
| if (!MI->registerDefIsDead(nI.reg)) |
| // No need to spill a dead def. |
| vrm.addSpillPoint(VReg, isKill, MI); |
| if (isKill) |
| AddedKill.insert(&nI); |
| } |
| } |
| Id = SpillMBBs.find_next(Id); |
| } |
| } |
| |
| int Id = RestoreMBBs.find_first(); |
| while (Id != -1) { |
| std::vector<SRInfo> &restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = restores.size(); i != e; ++i) { |
| int index = restores[i].index; |
| if (index == -1) |
| continue; |
| unsigned VReg = restores[i].vreg; |
| LiveInterval &nI = getOrCreateInterval(VReg); |
| bool isReMat = vrm.isReMaterialized(VReg); |
| MachineInstr *MI = getInstructionFromIndex(index); |
| bool CanFold = false; |
| Ops.clear(); |
| if (restores[i].canFold) { |
| CanFold = true; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg() || MO.getReg() != VReg) |
| continue; |
| |
| if (MO.isDef()) { |
| // If this restore were to be folded, it would have been folded |
| // already. |
| CanFold = false; |
| break; |
| } |
| Ops.push_back(j); |
| } |
| } |
| |
| // Fold the load into the use if possible. |
| bool Folded = false; |
| if (CanFold && !Ops.empty()) { |
| if (!isReMat) |
| Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg); |
| else { |
| MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg); |
| int LdSlot = 0; |
| bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| // If the rematerializable def is a load, also try to fold it. |
| if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad()) |
| Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, |
| Ops, isLoadSS, LdSlot, VReg); |
| if (!Folded) { |
| unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI); |
| if (ImpUse) { |
| // Re-matting an instruction with virtual register use. Add the |
| // register as an implicit use on the use MI and update the register |
| // interval's spill weight to HUGE_VALF to prevent it from being |
| // spilled. |
| LiveInterval &ImpLi = getInterval(ImpUse); |
| ImpLi.weight = HUGE_VALF; |
| MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true)); |
| } |
| } |
| } |
| } |
| // If folding is not possible / failed, then tell the spiller to issue a |
| // load / rematerialization for us. |
| if (Folded) |
| nI.removeRange(getLoadIndex(index), getUseIndex(index)+1); |
| else |
| vrm.addRestorePoint(VReg, MI); |
| } |
| Id = RestoreMBBs.find_next(Id); |
| } |
| |
| // Finalize intervals: add kills, finalize spill weights, and filter out |
| // dead intervals. |
| std::vector<LiveInterval*> RetNewLIs; |
| for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) { |
| LiveInterval *LI = NewLIs[i]; |
| if (!LI->empty()) { |
| LI->weight /= InstrSlots::NUM * getApproximateInstructionCount(*LI); |
| if (!AddedKill.count(LI)) { |
| LiveRange *LR = &LI->ranges[LI->ranges.size()-1]; |
| unsigned LastUseIdx = getBaseIndex(LR->end); |
| MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx); |
| int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false); |
| assert(UseIdx != -1); |
| if (!LastUse->isRegTiedToDefOperand(UseIdx)) { |
| LastUse->getOperand(UseIdx).setIsKill(); |
| vrm.addKillPoint(LI->reg, LastUseIdx); |
| } |
| } |
| RetNewLIs.push_back(LI); |
| } |
| } |
| |
| handleSpilledImpDefs(li, vrm, rc, RetNewLIs); |
| return RetNewLIs; |
| } |
| |
| /// hasAllocatableSuperReg - Return true if the specified physical register has |
| /// any super register that's allocatable. |
| bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const { |
| for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) |
| if (allocatableRegs_[*AS] && hasInterval(*AS)) |
| return true; |
| return false; |
| } |
| |
| /// getRepresentativeReg - Find the largest super register of the specified |
| /// physical register. |
| unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const { |
| // Find the largest super-register that is allocatable. |
| unsigned BestReg = Reg; |
| for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) { |
| unsigned SuperReg = *AS; |
| if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) { |
| BestReg = SuperReg; |
| break; |
| } |
| } |
| return BestReg; |
| } |
| |
| /// getNumConflictsWithPhysReg - Return the number of uses and defs of the |
| /// specified interval that conflicts with the specified physical register. |
| unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li, |
| unsigned PhysReg) const { |
| unsigned NumConflicts = 0; |
| const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg)); |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg), |
| E = mri_->reg_end(); I != E; ++I) { |
| MachineOperand &O = I.getOperand(); |
| MachineInstr *MI = O.getParent(); |
| unsigned Index = getInstructionIndex(MI); |
| if (pli.liveAt(Index)) |
| ++NumConflicts; |
| } |
| return NumConflicts; |
| } |
| |
| /// spillPhysRegAroundRegDefsUses - Spill the specified physical register |
| /// around all defs and uses of the specified interval. Return true if it |
| /// was able to cut its interval. |
| bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li, |
| unsigned PhysReg, VirtRegMap &vrm) { |
| unsigned SpillReg = getRepresentativeReg(PhysReg); |
| |
| for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS) |
| // If there are registers which alias PhysReg, but which are not a |
| // sub-register of the chosen representative super register. Assert |
| // since we can't handle it yet. |
| assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) || |
| tri_->isSuperRegister(*AS, SpillReg)); |
| |
| bool Cut = false; |
| LiveInterval &pli = getInterval(SpillReg); |
| SmallPtrSet<MachineInstr*, 8> SeenMIs; |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg), |
| E = mri_->reg_end(); I != E; ++I) { |
| MachineOperand &O = I.getOperand(); |
| MachineInstr *MI = O.getParent(); |
| if (SeenMIs.count(MI)) |
| continue; |
| SeenMIs.insert(MI); |
| unsigned Index = getInstructionIndex(MI); |
| if (pli.liveAt(Index)) { |
| vrm.addEmergencySpill(SpillReg, MI); |
| unsigned StartIdx = getLoadIndex(Index); |
| unsigned EndIdx = getStoreIndex(Index)+1; |
| if (pli.isInOneLiveRange(StartIdx, EndIdx)) { |
| pli.removeRange(StartIdx, EndIdx); |
| Cut = true; |
| } else { |
| cerr << "Ran out of registers during register allocation!\n"; |
| if (MI->getOpcode() == TargetInstrInfo::INLINEASM) { |
| cerr << "Please check your inline asm statement for invalid " |
| << "constraints:\n"; |
| MI->print(cerr.stream(), tm_); |
| } |
| exit(1); |
| } |
| for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS) { |
| if (!hasInterval(*AS)) |
| continue; |
| LiveInterval &spli = getInterval(*AS); |
| if (spli.liveAt(Index)) |
| spli.removeRange(getLoadIndex(Index), getStoreIndex(Index)+1); |
| } |
| } |
| } |
| return Cut; |
| } |
| |
| LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, |
| MachineInstr* startInst) { |
| LiveInterval& Interval = getOrCreateInterval(reg); |
| VNInfo* VN = Interval.getNextValue( |
| getInstructionIndex(startInst) + InstrSlots::DEF, |
| startInst, getVNInfoAllocator()); |
| VN->hasPHIKill = true; |
| VN->kills.push_back(getMBBEndIdx(startInst->getParent())); |
| LiveRange LR(getInstructionIndex(startInst) + InstrSlots::DEF, |
| getMBBEndIdx(startInst->getParent()) + 1, VN); |
| Interval.addRange(LR); |
| |
| return LR; |
| } |