| //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Methods common to all machine instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // MachineOperand Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void MachineOperand::setReg(unsigned Reg) { |
| if (getReg() == Reg) return; // No change. |
| |
| // Otherwise, we have to change the register. If this operand is embedded |
| // into a machine function, we need to update the old and new register's |
| // use/def lists. |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) { |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MRI.removeRegOperandFromUseList(this); |
| SmallContents.RegNo = Reg; |
| MRI.addRegOperandToUseList(this); |
| return; |
| } |
| |
| // Otherwise, just change the register, no problem. :) |
| SmallContents.RegNo = Reg; |
| } |
| |
| void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, |
| const TargetRegisterInfo &TRI) { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg)); |
| if (SubIdx && getSubReg()) |
| SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); |
| setReg(Reg); |
| if (SubIdx) |
| setSubReg(SubIdx); |
| } |
| |
| void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg)); |
| if (getSubReg()) { |
| Reg = TRI.getSubReg(Reg, getSubReg()); |
| // Note that getSubReg() may return 0 if the sub-register doesn't exist. |
| // That won't happen in legal code. |
| setSubReg(0); |
| } |
| setReg(Reg); |
| } |
| |
| /// Change a def to a use, or a use to a def. |
| void MachineOperand::setIsDef(bool Val) { |
| assert(isReg() && "Wrong MachineOperand accessor"); |
| assert((!Val || !isDebug()) && "Marking a debug operation as def"); |
| if (IsDef == Val) |
| return; |
| // MRI may keep uses and defs in different list positions. |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) { |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MRI.removeRegOperandFromUseList(this); |
| IsDef = Val; |
| MRI.addRegOperandToUseList(this); |
| return; |
| } |
| IsDef = Val; |
| } |
| |
| /// ChangeToImmediate - Replace this operand with a new immediate operand of |
| /// the specified value. If an operand is known to be an immediate already, |
| /// the setImm method should be used. |
| void MachineOperand::ChangeToImmediate(int64_t ImmVal) { |
| assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); |
| // If this operand is currently a register operand, and if this is in a |
| // function, deregister the operand from the register's use/def list. |
| if (isReg() && isOnRegUseList()) |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) |
| MF->getRegInfo().removeRegOperandFromUseList(this); |
| |
| OpKind = MO_Immediate; |
| Contents.ImmVal = ImmVal; |
| } |
| |
| /// ChangeToRegister - Replace this operand with a new register operand of |
| /// the specified value. If an operand is known to be an register already, |
| /// the setReg method should be used. |
| void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, |
| bool isKill, bool isDead, bool isUndef, |
| bool isDebug) { |
| MachineRegisterInfo *RegInfo = 0; |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) |
| RegInfo = &MF->getRegInfo(); |
| // If this operand is already a register operand, remove it from the |
| // register's use/def lists. |
| bool WasReg = isReg(); |
| if (RegInfo && WasReg) |
| RegInfo->removeRegOperandFromUseList(this); |
| |
| // Change this to a register and set the reg#. |
| OpKind = MO_Register; |
| SmallContents.RegNo = Reg; |
| SubReg_TargetFlags = 0; |
| IsDef = isDef; |
| IsImp = isImp; |
| IsKill = isKill; |
| IsDead = isDead; |
| IsUndef = isUndef; |
| IsInternalRead = false; |
| IsEarlyClobber = false; |
| IsDebug = isDebug; |
| // Ensure isOnRegUseList() returns false. |
| Contents.Reg.Prev = 0; |
| // Preserve the tie when the operand was already a register. |
| if (!WasReg) |
| TiedTo = 0; |
| |
| // If this operand is embedded in a function, add the operand to the |
| // register's use/def list. |
| if (RegInfo) |
| RegInfo->addRegOperandToUseList(this); |
| } |
| |
| /// isIdenticalTo - Return true if this operand is identical to the specified |
| /// operand. Note that this should stay in sync with the hash_value overload |
| /// below. |
| bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { |
| if (getType() != Other.getType() || |
| getTargetFlags() != Other.getTargetFlags()) |
| return false; |
| |
| switch (getType()) { |
| case MachineOperand::MO_Register: |
| return getReg() == Other.getReg() && isDef() == Other.isDef() && |
| getSubReg() == Other.getSubReg(); |
| case MachineOperand::MO_Immediate: |
| return getImm() == Other.getImm(); |
| case MachineOperand::MO_CImmediate: |
| return getCImm() == Other.getCImm(); |
| case MachineOperand::MO_FPImmediate: |
| return getFPImm() == Other.getFPImm(); |
| case MachineOperand::MO_MachineBasicBlock: |
| return getMBB() == Other.getMBB(); |
| case MachineOperand::MO_FrameIndex: |
| return getIndex() == Other.getIndex(); |
| case MachineOperand::MO_ConstantPoolIndex: |
| case MachineOperand::MO_TargetIndex: |
| return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); |
| case MachineOperand::MO_JumpTableIndex: |
| return getIndex() == Other.getIndex(); |
| case MachineOperand::MO_GlobalAddress: |
| return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); |
| case MachineOperand::MO_ExternalSymbol: |
| return !strcmp(getSymbolName(), Other.getSymbolName()) && |
| getOffset() == Other.getOffset(); |
| case MachineOperand::MO_BlockAddress: |
| return getBlockAddress() == Other.getBlockAddress() && |
| getOffset() == Other.getOffset(); |
| case MO_RegisterMask: |
| return getRegMask() == Other.getRegMask(); |
| case MachineOperand::MO_MCSymbol: |
| return getMCSymbol() == Other.getMCSymbol(); |
| case MachineOperand::MO_Metadata: |
| return getMetadata() == Other.getMetadata(); |
| } |
| llvm_unreachable("Invalid machine operand type"); |
| } |
| |
| // Note: this must stay exactly in sync with isIdenticalTo above. |
| hash_code llvm::hash_value(const MachineOperand &MO) { |
| switch (MO.getType()) { |
| case MachineOperand::MO_Register: |
| // Register operands don't have target flags. |
| return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); |
| case MachineOperand::MO_Immediate: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); |
| case MachineOperand::MO_CImmediate: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); |
| case MachineOperand::MO_FPImmediate: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); |
| case MachineOperand::MO_MachineBasicBlock: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); |
| case MachineOperand::MO_FrameIndex: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); |
| case MachineOperand::MO_ConstantPoolIndex: |
| case MachineOperand::MO_TargetIndex: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), |
| MO.getOffset()); |
| case MachineOperand::MO_JumpTableIndex: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); |
| case MachineOperand::MO_ExternalSymbol: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), |
| MO.getSymbolName()); |
| case MachineOperand::MO_GlobalAddress: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), |
| MO.getOffset()); |
| case MachineOperand::MO_BlockAddress: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), |
| MO.getBlockAddress(), MO.getOffset()); |
| case MachineOperand::MO_RegisterMask: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); |
| case MachineOperand::MO_Metadata: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); |
| case MachineOperand::MO_MCSymbol: |
| return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); |
| } |
| llvm_unreachable("Invalid machine operand type"); |
| } |
| |
| /// print - Print the specified machine operand. |
| /// |
| void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { |
| // If the instruction is embedded into a basic block, we can find the |
| // target info for the instruction. |
| if (!TM) |
| if (const MachineInstr *MI = getParent()) |
| if (const MachineBasicBlock *MBB = MI->getParent()) |
| if (const MachineFunction *MF = MBB->getParent()) |
| TM = &MF->getTarget(); |
| const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; |
| |
| switch (getType()) { |
| case MachineOperand::MO_Register: |
| OS << PrintReg(getReg(), TRI, getSubReg()); |
| |
| if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || |
| isInternalRead() || isEarlyClobber() || isTied()) { |
| OS << '<'; |
| bool NeedComma = false; |
| if (isDef()) { |
| if (NeedComma) OS << ','; |
| if (isEarlyClobber()) |
| OS << "earlyclobber,"; |
| if (isImplicit()) |
| OS << "imp-"; |
| OS << "def"; |
| NeedComma = true; |
| // <def,read-undef> only makes sense when getSubReg() is set. |
| // Don't clutter the output otherwise. |
| if (isUndef() && getSubReg()) |
| OS << ",read-undef"; |
| } else if (isImplicit()) { |
| OS << "imp-use"; |
| NeedComma = true; |
| } |
| |
| if (isKill()) { |
| if (NeedComma) OS << ','; |
| OS << "kill"; |
| NeedComma = true; |
| } |
| if (isDead()) { |
| if (NeedComma) OS << ','; |
| OS << "dead"; |
| NeedComma = true; |
| } |
| if (isUndef() && isUse()) { |
| if (NeedComma) OS << ','; |
| OS << "undef"; |
| NeedComma = true; |
| } |
| if (isInternalRead()) { |
| if (NeedComma) OS << ','; |
| OS << "internal"; |
| NeedComma = true; |
| } |
| if (isTied()) { |
| if (NeedComma) OS << ','; |
| OS << "tied"; |
| if (TiedTo != 15) |
| OS << unsigned(TiedTo - 1); |
| NeedComma = true; |
| } |
| OS << '>'; |
| } |
| break; |
| case MachineOperand::MO_Immediate: |
| OS << getImm(); |
| break; |
| case MachineOperand::MO_CImmediate: |
| getCImm()->getValue().print(OS, false); |
| break; |
| case MachineOperand::MO_FPImmediate: |
| if (getFPImm()->getType()->isFloatTy()) |
| OS << getFPImm()->getValueAPF().convertToFloat(); |
| else |
| OS << getFPImm()->getValueAPF().convertToDouble(); |
| break; |
| case MachineOperand::MO_MachineBasicBlock: |
| OS << "<BB#" << getMBB()->getNumber() << ">"; |
| break; |
| case MachineOperand::MO_FrameIndex: |
| OS << "<fi#" << getIndex() << '>'; |
| break; |
| case MachineOperand::MO_ConstantPoolIndex: |
| OS << "<cp#" << getIndex(); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_TargetIndex: |
| OS << "<ti#" << getIndex(); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_JumpTableIndex: |
| OS << "<jt#" << getIndex() << '>'; |
| break; |
| case MachineOperand::MO_GlobalAddress: |
| OS << "<ga:"; |
| WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_ExternalSymbol: |
| OS << "<es:" << getSymbolName(); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_BlockAddress: |
| OS << '<'; |
| WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_RegisterMask: |
| OS << "<regmask>"; |
| break; |
| case MachineOperand::MO_Metadata: |
| OS << '<'; |
| WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_MCSymbol: |
| OS << "<MCSym=" << *getMCSymbol() << '>'; |
| break; |
| } |
| |
| if (unsigned TF = getTargetFlags()) |
| OS << "[TF=" << TF << ']'; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineMemOperand Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getAddrSpace - Return the LLVM IR address space number that this pointer |
| /// points into. |
| unsigned MachinePointerInfo::getAddrSpace() const { |
| if (V == 0) return 0; |
| return cast<PointerType>(V->getType())->getAddressSpace(); |
| } |
| |
| /// getConstantPool - Return a MachinePointerInfo record that refers to the |
| /// constant pool. |
| MachinePointerInfo MachinePointerInfo::getConstantPool() { |
| return MachinePointerInfo(PseudoSourceValue::getConstantPool()); |
| } |
| |
| /// getFixedStack - Return a MachinePointerInfo record that refers to the |
| /// the specified FrameIndex. |
| MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { |
| return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); |
| } |
| |
| MachinePointerInfo MachinePointerInfo::getJumpTable() { |
| return MachinePointerInfo(PseudoSourceValue::getJumpTable()); |
| } |
| |
| MachinePointerInfo MachinePointerInfo::getGOT() { |
| return MachinePointerInfo(PseudoSourceValue::getGOT()); |
| } |
| |
| MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { |
| return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); |
| } |
| |
| MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, |
| uint64_t s, unsigned int a, |
| const MDNode *TBAAInfo, |
| const MDNode *Ranges) |
| : PtrInfo(ptrinfo), Size(s), |
| Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), |
| TBAAInfo(TBAAInfo), Ranges(Ranges) { |
| assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && |
| "invalid pointer value"); |
| assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); |
| assert((isLoad() || isStore()) && "Not a load/store!"); |
| } |
| |
| /// Profile - Gather unique data for the object. |
| /// |
| void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { |
| ID.AddInteger(getOffset()); |
| ID.AddInteger(Size); |
| ID.AddPointer(getValue()); |
| ID.AddInteger(Flags); |
| } |
| |
| void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { |
| // The Value and Offset may differ due to CSE. But the flags and size |
| // should be the same. |
| assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); |
| assert(MMO->getSize() == getSize() && "Size mismatch!"); |
| |
| if (MMO->getBaseAlignment() >= getBaseAlignment()) { |
| // Update the alignment value. |
| Flags = (Flags & ((1 << MOMaxBits) - 1)) | |
| ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); |
| // Also update the base and offset, because the new alignment may |
| // not be applicable with the old ones. |
| PtrInfo = MMO->PtrInfo; |
| } |
| } |
| |
| /// getAlignment - Return the minimum known alignment in bytes of the |
| /// actual memory reference. |
| uint64_t MachineMemOperand::getAlignment() const { |
| return MinAlign(getBaseAlignment(), getOffset()); |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { |
| assert((MMO.isLoad() || MMO.isStore()) && |
| "SV has to be a load, store or both."); |
| |
| if (MMO.isVolatile()) |
| OS << "Volatile "; |
| |
| if (MMO.isLoad()) |
| OS << "LD"; |
| if (MMO.isStore()) |
| OS << "ST"; |
| OS << MMO.getSize(); |
| |
| // Print the address information. |
| OS << "["; |
| if (!MMO.getValue()) |
| OS << "<unknown>"; |
| else |
| WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); |
| |
| // If the alignment of the memory reference itself differs from the alignment |
| // of the base pointer, print the base alignment explicitly, next to the base |
| // pointer. |
| if (MMO.getBaseAlignment() != MMO.getAlignment()) |
| OS << "(align=" << MMO.getBaseAlignment() << ")"; |
| |
| if (MMO.getOffset() != 0) |
| OS << "+" << MMO.getOffset(); |
| OS << "]"; |
| |
| // Print the alignment of the reference. |
| if (MMO.getBaseAlignment() != MMO.getAlignment() || |
| MMO.getBaseAlignment() != MMO.getSize()) |
| OS << "(align=" << MMO.getAlignment() << ")"; |
| |
| // Print TBAA info. |
| if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { |
| OS << "(tbaa="; |
| if (TBAAInfo->getNumOperands() > 0) |
| WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); |
| else |
| OS << "<unknown>"; |
| OS << ")"; |
| } |
| |
| // Print nontemporal info. |
| if (MMO.isNonTemporal()) |
| OS << "(nontemporal)"; |
| |
| return OS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineInstr Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { |
| if (MCID->ImplicitDefs) |
| for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) |
| addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); |
| if (MCID->ImplicitUses) |
| for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) |
| addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); |
| } |
| |
| /// MachineInstr ctor - This constructor creates a MachineInstr and adds the |
| /// implicit operands. It reserves space for the number of operands specified by |
| /// the MCInstrDesc. |
| MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, |
| const DebugLoc dl, bool NoImp) |
| : MCID(&tid), Parent(0), Operands(0), NumOperands(0), |
| Flags(0), AsmPrinterFlags(0), |
| NumMemRefs(0), MemRefs(0), debugLoc(dl) { |
| // Reserve space for the expected number of operands. |
| if (unsigned NumOps = MCID->getNumOperands() + |
| MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { |
| CapOperands = OperandCapacity::get(NumOps); |
| Operands = MF.allocateOperandArray(CapOperands); |
| } |
| |
| if (!NoImp) |
| addImplicitDefUseOperands(MF); |
| } |
| |
| /// MachineInstr ctor - Copies MachineInstr arg exactly |
| /// |
| MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) |
| : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), |
| Flags(0), AsmPrinterFlags(0), |
| NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), |
| debugLoc(MI.getDebugLoc()) { |
| CapOperands = OperandCapacity::get(MI.getNumOperands()); |
| Operands = MF.allocateOperandArray(CapOperands); |
| |
| // Copy operands. |
| for (unsigned i = 0; i != MI.getNumOperands(); ++i) |
| addOperand(MF, MI.getOperand(i)); |
| |
| // Copy all the sensible flags. |
| setFlags(MI.Flags); |
| } |
| |
| /// getRegInfo - If this instruction is embedded into a MachineFunction, |
| /// return the MachineRegisterInfo object for the current function, otherwise |
| /// return null. |
| MachineRegisterInfo *MachineInstr::getRegInfo() { |
| if (MachineBasicBlock *MBB = getParent()) |
| return &MBB->getParent()->getRegInfo(); |
| return 0; |
| } |
| |
| /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands already be on their use lists. |
| void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (Operands[i].isReg()) |
| MRI.removeRegOperandFromUseList(&Operands[i]); |
| } |
| |
| /// AddRegOperandsToUseLists - Add all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands not be on their use lists yet. |
| void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (Operands[i].isReg()) |
| MRI.addRegOperandToUseList(&Operands[i]); |
| } |
| |
| void MachineInstr::addOperand(const MachineOperand &Op) { |
| MachineBasicBlock *MBB = getParent(); |
| assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); |
| MachineFunction *MF = MBB->getParent(); |
| assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); |
| addOperand(*MF, Op); |
| } |
| |
| /// Move NumOps MachineOperands from Src to Dst, with support for overlapping |
| /// ranges. If MRI is non-null also update use-def chains. |
| static void moveOperands(MachineOperand *Dst, MachineOperand *Src, |
| unsigned NumOps, MachineRegisterInfo *MRI) { |
| if (MRI) |
| return MRI->moveOperands(Dst, Src, NumOps); |
| |
| // Here it would be convenient to call memmove, so that isn't allowed because |
| // MachineOperand has a constructor and so isn't a POD type. |
| if (Dst < Src) |
| for (unsigned i = 0; i != NumOps; ++i) |
| new (Dst + i) MachineOperand(Src[i]); |
| else |
| for (unsigned i = NumOps; i ; --i) |
| new (Dst + i - 1) MachineOperand(Src[i - 1]); |
| } |
| |
| /// addOperand - Add the specified operand to the instruction. If it is an |
| /// implicit operand, it is added to the end of the operand list. If it is |
| /// an explicit operand it is added at the end of the explicit operand list |
| /// (before the first implicit operand). |
| void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { |
| assert(MCID && "Cannot add operands before providing an instr descriptor"); |
| |
| // Check if we're adding one of our existing operands. |
| if (&Op >= Operands && &Op < Operands + NumOperands) { |
| // This is unusual: MI->addOperand(MI->getOperand(i)). |
| // If adding Op requires reallocating or moving existing operands around, |
| // the Op reference could go stale. Support it by copying Op. |
| MachineOperand CopyOp(Op); |
| return addOperand(MF, CopyOp); |
| } |
| |
| // Find the insert location for the new operand. Implicit registers go at |
| // the end, everything else goes before the implicit regs. |
| // |
| // FIXME: Allow mixed explicit and implicit operands on inline asm. |
| // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as |
| // implicit-defs, but they must not be moved around. See the FIXME in |
| // InstrEmitter.cpp. |
| unsigned OpNo = getNumOperands(); |
| bool isImpReg = Op.isReg() && Op.isImplicit(); |
| if (!isImpReg && !isInlineAsm()) { |
| while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { |
| --OpNo; |
| assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); |
| } |
| } |
| |
| // OpNo now points as the desired insertion point. Unless this is a variadic |
| // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). |
| // RegMask operands go between the explicit and implicit operands. |
| assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || |
| OpNo < MCID->getNumOperands()) && |
| "Trying to add an operand to a machine instr that is already done!"); |
| |
| MachineRegisterInfo *MRI = getRegInfo(); |
| |
| // Determine if the Operands array needs to be reallocated. |
| // Save the old capacity and operand array. |
| OperandCapacity OldCap = CapOperands; |
| MachineOperand *OldOperands = Operands; |
| if (!OldOperands || OldCap.getSize() == getNumOperands()) { |
| CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); |
| Operands = MF.allocateOperandArray(CapOperands); |
| // Move the operands before the insertion point. |
| if (OpNo) |
| moveOperands(Operands, OldOperands, OpNo, MRI); |
| } |
| |
| // Move the operands following the insertion point. |
| if (OpNo != NumOperands) |
| moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, |
| MRI); |
| ++NumOperands; |
| |
| // Deallocate the old operand array. |
| if (OldOperands != Operands && OldOperands) |
| MF.deallocateOperandArray(OldCap, OldOperands); |
| |
| // Copy Op into place. It still needs to be inserted into the MRI use lists. |
| MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); |
| NewMO->ParentMI = this; |
| |
| // When adding a register operand, tell MRI about it. |
| if (NewMO->isReg()) { |
| // Ensure isOnRegUseList() returns false, regardless of Op's status. |
| NewMO->Contents.Reg.Prev = 0; |
| // Ignore existing ties. This is not a property that can be copied. |
| NewMO->TiedTo = 0; |
| // Add the new operand to MRI, but only for instructions in an MBB. |
| if (MRI) |
| MRI->addRegOperandToUseList(NewMO); |
| // The MCID operand information isn't accurate until we start adding |
| // explicit operands. The implicit operands are added first, then the |
| // explicits are inserted before them. |
| if (!isImpReg) { |
| // Tie uses to defs as indicated in MCInstrDesc. |
| if (NewMO->isUse()) { |
| int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); |
| if (DefIdx != -1) |
| tieOperands(DefIdx, OpNo); |
| } |
| // If the register operand is flagged as early, mark the operand as such. |
| if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) |
| NewMO->setIsEarlyClobber(true); |
| } |
| } |
| } |
| |
| /// RemoveOperand - Erase an operand from an instruction, leaving it with one |
| /// fewer operand than it started with. |
| /// |
| void MachineInstr::RemoveOperand(unsigned OpNo) { |
| assert(OpNo < getNumOperands() && "Invalid operand number"); |
| untieRegOperand(OpNo); |
| |
| #ifndef NDEBUG |
| // Moving tied operands would break the ties. |
| for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) |
| if (Operands[i].isReg()) |
| assert(!Operands[i].isTied() && "Cannot move tied operands"); |
| #endif |
| |
| MachineRegisterInfo *MRI = getRegInfo(); |
| if (MRI && Operands[OpNo].isReg()) |
| MRI->removeRegOperandFromUseList(Operands + OpNo); |
| |
| // Don't call the MachineOperand destructor. A lot of this code depends on |
| // MachineOperand having a trivial destructor anyway, and adding a call here |
| // wouldn't make it 'destructor-correct'. |
| |
| if (unsigned N = NumOperands - 1 - OpNo) |
| moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); |
| --NumOperands; |
| } |
| |
| /// addMemOperand - Add a MachineMemOperand to the machine instruction. |
| /// This function should be used only occasionally. The setMemRefs function |
| /// is the primary method for setting up a MachineInstr's MemRefs list. |
| void MachineInstr::addMemOperand(MachineFunction &MF, |
| MachineMemOperand *MO) { |
| mmo_iterator OldMemRefs = MemRefs; |
| unsigned OldNumMemRefs = NumMemRefs; |
| |
| unsigned NewNum = NumMemRefs + 1; |
| mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); |
| |
| std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); |
| NewMemRefs[NewNum - 1] = MO; |
| setMemRefs(NewMemRefs, NewMemRefs + NewNum); |
| } |
| |
| bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { |
| const MachineBasicBlock *MBB = getParent(); |
| MachineBasicBlock::const_instr_iterator MII = *this; ++MII; |
| while (MII != MBB->end() && MII->isInsideBundle()) { |
| if (MII->getDesc().getFlags() & Mask) { |
| if (Type == AnyInBundle) |
| return true; |
| } else { |
| if (Type == AllInBundle) |
| return false; |
| } |
| ++MII; |
| } |
| |
| return Type == AllInBundle; |
| } |
| |
| bool MachineInstr::isIdenticalTo(const MachineInstr *Other, |
| MICheckType Check) const { |
| // If opcodes or number of operands are not the same then the two |
| // instructions are obviously not identical. |
| if (Other->getOpcode() != getOpcode() || |
| Other->getNumOperands() != getNumOperands()) |
| return false; |
| |
| if (isBundle()) { |
| // Both instructions are bundles, compare MIs inside the bundle. |
| MachineBasicBlock::const_instr_iterator I1 = *this; |
| MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); |
| MachineBasicBlock::const_instr_iterator I2 = *Other; |
| MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); |
| while (++I1 != E1 && I1->isInsideBundle()) { |
| ++I2; |
| if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) |
| return false; |
| } |
| } |
| |
| // Check operands to make sure they match. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| const MachineOperand &OMO = Other->getOperand(i); |
| if (!MO.isReg()) { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| continue; |
| } |
| |
| // Clients may or may not want to ignore defs when testing for equality. |
| // For example, machine CSE pass only cares about finding common |
| // subexpressions, so it's safe to ignore virtual register defs. |
| if (MO.isDef()) { |
| if (Check == IgnoreDefs) |
| continue; |
| else if (Check == IgnoreVRegDefs) { |
| if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || |
| TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) |
| if (MO.getReg() != OMO.getReg()) |
| return false; |
| } else { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) |
| return false; |
| } |
| } else { |
| if (!MO.isIdenticalTo(OMO)) |
| return false; |
| if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) |
| return false; |
| } |
| } |
| // If DebugLoc does not match then two dbg.values are not identical. |
| if (isDebugValue()) |
| if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() |
| && getDebugLoc() != Other->getDebugLoc()) |
| return false; |
| return true; |
| } |
| |
| MachineInstr *MachineInstr::removeFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| return getParent()->remove(this); |
| } |
| |
| MachineInstr *MachineInstr::removeFromBundle() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| return getParent()->remove_instr(this); |
| } |
| |
| void MachineInstr::eraseFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->erase(this); |
| } |
| |
| void MachineInstr::eraseFromBundle() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->erase_instr(this); |
| } |
| |
| /// getNumExplicitOperands - Returns the number of non-implicit operands. |
| /// |
| unsigned MachineInstr::getNumExplicitOperands() const { |
| unsigned NumOperands = MCID->getNumOperands(); |
| if (!MCID->isVariadic()) |
| return NumOperands; |
| |
| for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isImplicit()) |
| NumOperands++; |
| } |
| return NumOperands; |
| } |
| |
| void MachineInstr::bundleWithPred() { |
| assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); |
| setFlag(BundledPred); |
| MachineBasicBlock::instr_iterator Pred = this; |
| --Pred; |
| assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); |
| Pred->setFlag(BundledSucc); |
| } |
| |
| void MachineInstr::bundleWithSucc() { |
| assert(!isBundledWithSucc() && "MI is already bundled with its successor"); |
| setFlag(BundledSucc); |
| MachineBasicBlock::instr_iterator Succ = this; |
| ++Succ; |
| assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); |
| Succ->setFlag(BundledPred); |
| } |
| |
| void MachineInstr::unbundleFromPred() { |
| assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); |
| clearFlag(BundledPred); |
| MachineBasicBlock::instr_iterator Pred = this; |
| --Pred; |
| assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); |
| Pred->clearFlag(BundledSucc); |
| } |
| |
| void MachineInstr::unbundleFromSucc() { |
| assert(isBundledWithSucc() && "MI isn't bundled with its successor"); |
| clearFlag(BundledSucc); |
| MachineBasicBlock::instr_iterator Succ = this; |
| --Succ; |
| assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); |
| Succ->clearFlag(BundledPred); |
| } |
| |
| bool MachineInstr::isStackAligningInlineAsm() const { |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| return true; |
| } |
| return false; |
| } |
| |
| InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { |
| assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); |
| } |
| |
| int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, |
| unsigned *GroupNo) const { |
| assert(isInlineAsm() && "Expected an inline asm instruction"); |
| assert(OpIdx < getNumOperands() && "OpIdx out of range"); |
| |
| // Ignore queries about the initial operands. |
| if (OpIdx < InlineAsm::MIOp_FirstOperand) |
| return -1; |
| |
| unsigned Group = 0; |
| unsigned NumOps; |
| for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| i += NumOps) { |
| const MachineOperand &FlagMO = getOperand(i); |
| // If we reach the implicit register operands, stop looking. |
| if (!FlagMO.isImm()) |
| return -1; |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); |
| if (i + NumOps > OpIdx) { |
| if (GroupNo) |
| *GroupNo = Group; |
| return i; |
| } |
| ++Group; |
| } |
| return -1; |
| } |
| |
| const TargetRegisterClass* |
| MachineInstr::getRegClassConstraint(unsigned OpIdx, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) const { |
| assert(getParent() && "Can't have an MBB reference here!"); |
| assert(getParent()->getParent() && "Can't have an MF reference here!"); |
| const MachineFunction &MF = *getParent()->getParent(); |
| |
| // Most opcodes have fixed constraints in their MCInstrDesc. |
| if (!isInlineAsm()) |
| return TII->getRegClass(getDesc(), OpIdx, TRI, MF); |
| |
| if (!getOperand(OpIdx).isReg()) |
| return NULL; |
| |
| // For tied uses on inline asm, get the constraint from the def. |
| unsigned DefIdx; |
| if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) |
| OpIdx = DefIdx; |
| |
| // Inline asm stores register class constraints in the flag word. |
| int FlagIdx = findInlineAsmFlagIdx(OpIdx); |
| if (FlagIdx < 0) |
| return NULL; |
| |
| unsigned Flag = getOperand(FlagIdx).getImm(); |
| unsigned RCID; |
| if (InlineAsm::hasRegClassConstraint(Flag, RCID)) |
| return TRI->getRegClass(RCID); |
| |
| // Assume that all registers in a memory operand are pointers. |
| if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) |
| return TRI->getPointerRegClass(MF); |
| |
| return NULL; |
| } |
| |
| /// getBundleSize - Return the number of instructions inside the MI bundle. |
| unsigned MachineInstr::getBundleSize() const { |
| assert(isBundle() && "Expecting a bundle"); |
| |
| const MachineBasicBlock *MBB = getParent(); |
| MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); |
| unsigned Size = 0; |
| while ((++I != E) && I->isInsideBundle()) { |
| ++Size; |
| } |
| assert(Size > 1 && "Malformed bundle"); |
| |
| return Size; |
| } |
| |
| /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of |
| /// the specific register or -1 if it is not found. It further tightens |
| /// the search criteria to a use that kills the register if isKill is true. |
| int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, |
| const TargetRegisterInfo *TRI) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MOReg == Reg || |
| (TRI && |
| TargetRegisterInfo::isPhysicalRegister(MOReg) && |
| TargetRegisterInfo::isPhysicalRegister(Reg) && |
| TRI->isSubRegister(MOReg, Reg))) |
| if (!isKill || MO.isKill()) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) |
| /// indicating if this instruction reads or writes Reg. This also considers |
| /// partial defines. |
| std::pair<bool,bool> |
| MachineInstr::readsWritesVirtualRegister(unsigned Reg, |
| SmallVectorImpl<unsigned> *Ops) const { |
| bool PartDef = false; // Partial redefine. |
| bool FullDef = false; // Full define. |
| bool Use = false; |
| |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || MO.getReg() != Reg) |
| continue; |
| if (Ops) |
| Ops->push_back(i); |
| if (MO.isUse()) |
| Use |= !MO.isUndef(); |
| else if (MO.getSubReg() && !MO.isUndef()) |
| // A partial <def,undef> doesn't count as reading the register. |
| PartDef = true; |
| else |
| FullDef = true; |
| } |
| // A partial redefine uses Reg unless there is also a full define. |
| return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); |
| } |
| |
| /// findRegisterDefOperandIdx() - Returns the operand index that is a def of |
| /// the specified register or -1 if it is not found. If isDead is true, defs |
| /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it |
| /// also checks if there is a def of a super-register. |
| int |
| MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, |
| const TargetRegisterInfo *TRI) const { |
| bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| // Accept regmask operands when Overlap is set. |
| // Ignore them when looking for a specific def operand (Overlap == false). |
| if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) |
| return i; |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| bool Found = (MOReg == Reg); |
| if (!Found && TRI && isPhys && |
| TargetRegisterInfo::isPhysicalRegister(MOReg)) { |
| if (Overlap) |
| Found = TRI->regsOverlap(MOReg, Reg); |
| else |
| Found = TRI->isSubRegister(MOReg, Reg); |
| } |
| if (Found && (!isDead || MO.isDead())) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// findFirstPredOperandIdx() - Find the index of the first operand in the |
| /// operand list that is used to represent the predicate. It returns -1 if |
| /// none is found. |
| int MachineInstr::findFirstPredOperandIdx() const { |
| // Don't call MCID.findFirstPredOperandIdx() because this variant |
| // is sometimes called on an instruction that's not yet complete, and |
| // so the number of operands is less than the MCID indicates. In |
| // particular, the PTX target does this. |
| const MCInstrDesc &MCID = getDesc(); |
| if (MCID.isPredicable()) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (MCID.OpInfo[i].isPredicate()) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| // MachineOperand::TiedTo is 4 bits wide. |
| const unsigned TiedMax = 15; |
| |
| /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. |
| /// |
| /// Use and def operands can be tied together, indicated by a non-zero TiedTo |
| /// field. TiedTo can have these values: |
| /// |
| /// 0: Operand is not tied to anything. |
| /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). |
| /// TiedMax: Tied to an operand >= TiedMax-1. |
| /// |
| /// The tied def must be one of the first TiedMax operands on a normal |
| /// instruction. INLINEASM instructions allow more tied defs. |
| /// |
| void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { |
| MachineOperand &DefMO = getOperand(DefIdx); |
| MachineOperand &UseMO = getOperand(UseIdx); |
| assert(DefMO.isDef() && "DefIdx must be a def operand"); |
| assert(UseMO.isUse() && "UseIdx must be a use operand"); |
| assert(!DefMO.isTied() && "Def is already tied to another use"); |
| assert(!UseMO.isTied() && "Use is already tied to another def"); |
| |
| if (DefIdx < TiedMax) |
| UseMO.TiedTo = DefIdx + 1; |
| else { |
| // Inline asm can use the group descriptors to find tied operands, but on |
| // normal instruction, the tied def must be within the first TiedMax |
| // operands. |
| assert(isInlineAsm() && "DefIdx out of range"); |
| UseMO.TiedTo = TiedMax; |
| } |
| |
| // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). |
| DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); |
| } |
| |
| /// Given the index of a tied register operand, find the operand it is tied to. |
| /// Defs are tied to uses and vice versa. Returns the index of the tied operand |
| /// which must exist. |
| unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { |
| const MachineOperand &MO = getOperand(OpIdx); |
| assert(MO.isTied() && "Operand isn't tied"); |
| |
| // Normally TiedTo is in range. |
| if (MO.TiedTo < TiedMax) |
| return MO.TiedTo - 1; |
| |
| // Uses on normal instructions can be out of range. |
| if (!isInlineAsm()) { |
| // Normal tied defs must be in the 0..TiedMax-1 range. |
| if (MO.isUse()) |
| return TiedMax - 1; |
| // MO is a def. Search for the tied use. |
| for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &UseMO = getOperand(i); |
| if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) |
| return i; |
| } |
| llvm_unreachable("Can't find tied use"); |
| } |
| |
| // Now deal with inline asm by parsing the operand group descriptor flags. |
| // Find the beginning of each operand group. |
| SmallVector<unsigned, 8> GroupIdx; |
| unsigned OpIdxGroup = ~0u; |
| unsigned NumOps; |
| for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| i += NumOps) { |
| const MachineOperand &FlagMO = getOperand(i); |
| assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); |
| unsigned CurGroup = GroupIdx.size(); |
| GroupIdx.push_back(i); |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); |
| // OpIdx belongs to this operand group. |
| if (OpIdx > i && OpIdx < i + NumOps) |
| OpIdxGroup = CurGroup; |
| unsigned TiedGroup; |
| if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) |
| continue; |
| // Operands in this group are tied to operands in TiedGroup which must be |
| // earlier. Find the number of operands between the two groups. |
| unsigned Delta = i - GroupIdx[TiedGroup]; |
| |
| // OpIdx is a use tied to TiedGroup. |
| if (OpIdxGroup == CurGroup) |
| return OpIdx - Delta; |
| |
| // OpIdx is a def tied to this use group. |
| if (OpIdxGroup == TiedGroup) |
| return OpIdx + Delta; |
| } |
| llvm_unreachable("Invalid tied operand on inline asm"); |
| } |
| |
| /// clearKillInfo - Clears kill flags on all operands. |
| /// |
| void MachineInstr::clearKillInfo() { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (MO.isReg() && MO.isUse()) |
| MO.setIsKill(false); |
| } |
| } |
| |
| void MachineInstr::substituteRegister(unsigned FromReg, |
| unsigned ToReg, |
| unsigned SubIdx, |
| const TargetRegisterInfo &RegInfo) { |
| if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { |
| if (SubIdx) |
| ToReg = RegInfo.getSubReg(ToReg, SubIdx); |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || MO.getReg() != FromReg) |
| continue; |
| MO.substPhysReg(ToReg, RegInfo); |
| } |
| } else { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || MO.getReg() != FromReg) |
| continue; |
| MO.substVirtReg(ToReg, SubIdx, RegInfo); |
| } |
| } |
| } |
| |
| /// isSafeToMove - Return true if it is safe to move this instruction. If |
| /// SawStore is set to true, it means that there is a store (or call) between |
| /// the instruction's location and its intended destination. |
| bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, |
| AliasAnalysis *AA, |
| bool &SawStore) const { |
| // Ignore stuff that we obviously can't move. |
| // |
| // Treat volatile loads as stores. This is not strictly necessary for |
| // volatiles, but it is required for atomic loads. It is not allowed to move |
| // a load across an atomic load with Ordering > Monotonic. |
| if (mayStore() || isCall() || |
| (mayLoad() && hasOrderedMemoryRef())) { |
| SawStore = true; |
| return false; |
| } |
| |
| if (isLabel() || isDebugValue() || |
| isTerminator() || hasUnmodeledSideEffects()) |
| return false; |
| |
| // See if this instruction does a load. If so, we have to guarantee that the |
| // loaded value doesn't change between the load and the its intended |
| // destination. The check for isInvariantLoad gives the targe the chance to |
| // classify the load as always returning a constant, e.g. a constant pool |
| // load. |
| if (mayLoad() && !isInvariantLoad(AA)) |
| // Otherwise, this is a real load. If there is a store between the load and |
| // end of block, we can't move it. |
| return !SawStore; |
| |
| return true; |
| } |
| |
| /// isSafeToReMat - Return true if it's safe to rematerialize the specified |
| /// instruction which defined the specified register instead of copying it. |
| bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, |
| AliasAnalysis *AA, |
| unsigned DstReg) const { |
| bool SawStore = false; |
| if (!TII->isTriviallyReMaterializable(this, AA) || |
| !isSafeToMove(TII, AA, SawStore)) |
| return false; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| // FIXME: For now, do not remat any instruction with register operands. |
| // Later on, we can loosen the restriction is the register operands have |
| // not been modified between the def and use. Note, this is different from |
| // MachineSink because the code is no longer in two-address form (at least |
| // partially). |
| if (MO.isUse()) |
| return false; |
| else if (!MO.isDead() && MO.getReg() != DstReg) |
| return false; |
| } |
| return true; |
| } |
| |
| /// hasOrderedMemoryRef - Return true if this instruction may have an ordered |
| /// or volatile memory reference, or if the information describing the memory |
| /// reference is not available. Return false if it is known to have no ordered |
| /// memory references. |
| bool MachineInstr::hasOrderedMemoryRef() const { |
| // An instruction known never to access memory won't have a volatile access. |
| if (!mayStore() && |
| !mayLoad() && |
| !isCall() && |
| !hasUnmodeledSideEffects()) |
| return false; |
| |
| // Otherwise, if the instruction has no memory reference information, |
| // conservatively assume it wasn't preserved. |
| if (memoperands_empty()) |
| return true; |
| |
| // Check the memory reference information for ordered references. |
| for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) |
| if (!(*I)->isUnordered()) |
| return true; |
| |
| return false; |
| } |
| |
| /// isInvariantLoad - Return true if this instruction is loading from a |
| /// location whose value is invariant across the function. For example, |
| /// loading a value from the constant pool or from the argument area |
| /// of a function if it does not change. This should only return true of |
| /// *all* loads the instruction does are invariant (if it does multiple loads). |
| bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { |
| // If the instruction doesn't load at all, it isn't an invariant load. |
| if (!mayLoad()) |
| return false; |
| |
| // If the instruction has lost its memoperands, conservatively assume that |
| // it may not be an invariant load. |
| if (memoperands_empty()) |
| return false; |
| |
| const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); |
| |
| for (mmo_iterator I = memoperands_begin(), |
| E = memoperands_end(); I != E; ++I) { |
| if ((*I)->isVolatile()) return false; |
| if ((*I)->isStore()) return false; |
| if ((*I)->isInvariant()) return true; |
| |
| if (const Value *V = (*I)->getValue()) { |
| // A load from a constant PseudoSourceValue is invariant. |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) |
| if (PSV->isConstant(MFI)) |
| continue; |
| // If we have an AliasAnalysis, ask it whether the memory is constant. |
| if (AA && AA->pointsToConstantMemory( |
| AliasAnalysis::Location(V, (*I)->getSize(), |
| (*I)->getTBAAInfo()))) |
| continue; |
| } |
| |
| // Otherwise assume conservatively. |
| return false; |
| } |
| |
| // Everything checks out. |
| return true; |
| } |
| |
| /// isConstantValuePHI - If the specified instruction is a PHI that always |
| /// merges together the same virtual register, return the register, otherwise |
| /// return 0. |
| unsigned MachineInstr::isConstantValuePHI() const { |
| if (!isPHI()) |
| return 0; |
| assert(getNumOperands() >= 3 && |
| "It's illegal to have a PHI without source operands"); |
| |
| unsigned Reg = getOperand(1).getReg(); |
| for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) |
| if (getOperand(i).getReg() != Reg) |
| return 0; |
| return Reg; |
| } |
| |
| bool MachineInstr::hasUnmodeledSideEffects() const { |
| if (hasProperty(MCID::UnmodeledSideEffects)) |
| return true; |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// allDefsAreDead - Return true if all the defs of this instruction are dead. |
| /// |
| bool MachineInstr::allDefsAreDead() const { |
| for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || MO.isUse()) |
| continue; |
| if (!MO.isDead()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// copyImplicitOps - Copy implicit register operands from specified |
| /// instruction to this instruction. |
| void MachineInstr::copyImplicitOps(MachineFunction &MF, |
| const MachineInstr *MI) { |
| for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); |
| i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isImplicit()) |
| addOperand(MF, MO); |
| } |
| } |
| |
| void MachineInstr::dump() const { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| dbgs() << " " << *this; |
| #endif |
| } |
| |
| static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, |
| raw_ostream &CommentOS) { |
| const LLVMContext &Ctx = MF->getFunction()->getContext(); |
| if (!DL.isUnknown()) { // Print source line info. |
| DIScope Scope(DL.getScope(Ctx)); |
| // Omit the directory, because it's likely to be long and uninteresting. |
| if (Scope.Verify()) |
| CommentOS << Scope.getFilename(); |
| else |
| CommentOS << "<unknown>"; |
| CommentOS << ':' << DL.getLine(); |
| if (DL.getCol() != 0) |
| CommentOS << ':' << DL.getCol(); |
| DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); |
| if (!InlinedAtDL.isUnknown()) { |
| CommentOS << " @[ "; |
| printDebugLoc(InlinedAtDL, MF, CommentOS); |
| CommentOS << " ]"; |
| } |
| } |
| } |
| |
| void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { |
| // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. |
| const MachineFunction *MF = 0; |
| const MachineRegisterInfo *MRI = 0; |
| if (const MachineBasicBlock *MBB = getParent()) { |
| MF = MBB->getParent(); |
| if (!TM && MF) |
| TM = &MF->getTarget(); |
| if (MF) |
| MRI = &MF->getRegInfo(); |
| } |
| |
| // Save a list of virtual registers. |
| SmallVector<unsigned, 8> VirtRegs; |
| |
| // Print explicitly defined operands on the left of an assignment syntax. |
| unsigned StartOp = 0, e = getNumOperands(); |
| for (; StartOp < e && getOperand(StartOp).isReg() && |
| getOperand(StartOp).isDef() && |
| !getOperand(StartOp).isImplicit(); |
| ++StartOp) { |
| if (StartOp != 0) OS << ", "; |
| getOperand(StartOp).print(OS, TM); |
| unsigned Reg = getOperand(StartOp).getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| VirtRegs.push_back(Reg); |
| } |
| |
| if (StartOp != 0) |
| OS << " = "; |
| |
| // Print the opcode name. |
| if (TM && TM->getInstrInfo()) |
| OS << TM->getInstrInfo()->getName(getOpcode()); |
| else |
| OS << "UNKNOWN"; |
| |
| // Print the rest of the operands. |
| bool OmittedAnyCallClobbers = false; |
| bool FirstOp = true; |
| unsigned AsmDescOp = ~0u; |
| unsigned AsmOpCount = 0; |
| |
| if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { |
| // Print asm string. |
| OS << " "; |
| getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); |
| |
| // Print HasSideEffects, IsAlignStack |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| OS << " [sideeffect]"; |
| if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| OS << " [alignstack]"; |
| if (getInlineAsmDialect() == InlineAsm::AD_ATT) |
| OS << " [attdialect]"; |
| if (getInlineAsmDialect() == InlineAsm::AD_Intel) |
| OS << " [inteldialect]"; |
| |
| StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; |
| FirstOp = false; |
| } |
| |
| |
| for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| |
| if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| VirtRegs.push_back(MO.getReg()); |
| |
| // Omit call-clobbered registers which aren't used anywhere. This makes |
| // call instructions much less noisy on targets where calls clobber lots |
| // of registers. Don't rely on MO.isDead() because we may be called before |
| // LiveVariables is run, or we may be looking at a non-allocatable reg. |
| if (MF && isCall() && |
| MO.isReg() && MO.isImplicit() && MO.isDef()) { |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { |
| bool HasAliasLive = false; |
| for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); |
| AI.isValid(); ++AI) { |
| unsigned AliasReg = *AI; |
| if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { |
| HasAliasLive = true; |
| break; |
| } |
| } |
| if (!HasAliasLive) { |
| OmittedAnyCallClobbers = true; |
| continue; |
| } |
| } |
| } |
| } |
| |
| if (FirstOp) FirstOp = false; else OS << ","; |
| OS << " "; |
| if (i < getDesc().NumOperands) { |
| const MCOperandInfo &MCOI = getDesc().OpInfo[i]; |
| if (MCOI.isPredicate()) |
| OS << "pred:"; |
| if (MCOI.isOptionalDef()) |
| OS << "opt:"; |
| } |
| if (isDebugValue() && MO.isMetadata()) { |
| // Pretty print DBG_VALUE instructions. |
| const MDNode *MD = MO.getMetadata(); |
| if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) |
| OS << "!\"" << MDS->getString() << '\"'; |
| else |
| MO.print(OS, TM); |
| } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { |
| OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); |
| } else if (i == AsmDescOp && MO.isImm()) { |
| // Pretty print the inline asm operand descriptor. |
| OS << '$' << AsmOpCount++; |
| unsigned Flag = MO.getImm(); |
| switch (InlineAsm::getKind(Flag)) { |
| case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; |
| case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; |
| case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; |
| case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; |
| case InlineAsm::Kind_Imm: OS << ":[imm"; break; |
| case InlineAsm::Kind_Mem: OS << ":[mem"; break; |
| default: OS << ":[??" << InlineAsm::getKind(Flag); break; |
| } |
| |
| unsigned RCID = 0; |
| if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { |
| if (TM) |
| OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); |
| else |
| OS << ":RC" << RCID; |
| } |
| |
| unsigned TiedTo = 0; |
| if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) |
| OS << " tiedto:$" << TiedTo; |
| |
| OS << ']'; |
| |
| // Compute the index of the next operand descriptor. |
| AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); |
| } else |
| MO.print(OS, TM); |
| } |
| |
| // Briefly indicate whether any call clobbers were omitted. |
| if (OmittedAnyCallClobbers) { |
| if (!FirstOp) OS << ","; |
| OS << " ..."; |
| } |
| |
| bool HaveSemi = false; |
| if (Flags) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| OS << " flags: "; |
| |
| if (Flags & FrameSetup) |
| OS << "FrameSetup"; |
| } |
| |
| if (!memoperands_empty()) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| |
| OS << " mem:"; |
| for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); |
| i != e; ++i) { |
| OS << **i; |
| if (llvm::next(i) != e) |
| OS << " "; |
| } |
| } |
| |
| // Print the regclass of any virtual registers encountered. |
| if (MRI && !VirtRegs.empty()) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| for (unsigned i = 0; i != VirtRegs.size(); ++i) { |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); |
| OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); |
| for (unsigned j = i+1; j != VirtRegs.size();) { |
| if (MRI->getRegClass(VirtRegs[j]) != RC) { |
| ++j; |
| continue; |
| } |
| if (VirtRegs[i] != VirtRegs[j]) |
| OS << "," << PrintReg(VirtRegs[j]); |
| VirtRegs.erase(VirtRegs.begin()+j); |
| } |
| } |
| } |
| |
| // Print debug location information. |
| if (isDebugValue() && getOperand(e - 1).isMetadata()) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| DIVariable DV(getOperand(e - 1).getMetadata()); |
| OS << " line no:" << DV.getLineNumber(); |
| if (MDNode *InlinedAt = DV.getInlinedAt()) { |
| DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); |
| if (!InlinedAtDL.isUnknown()) { |
| OS << " inlined @[ "; |
| printDebugLoc(InlinedAtDL, MF, OS); |
| OS << " ]"; |
| } |
| } |
| } else if (!debugLoc.isUnknown() && MF) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| OS << " dbg:"; |
| printDebugLoc(debugLoc, MF, OS); |
| } |
| |
| OS << '\n'; |
| } |
| |
| bool MachineInstr::addRegisterKilled(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); |
| bool hasAliases = isPhysReg && |
| MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| if (Reg == IncomingReg) { |
| if (!Found) { |
| if (MO.isKill()) |
| // The register is already marked kill. |
| return true; |
| if (isPhysReg && isRegTiedToDefOperand(i)) |
| // Two-address uses of physregs must not be marked kill. |
| return true; |
| MO.setIsKill(); |
| Found = true; |
| } |
| } else if (hasAliases && MO.isKill() && |
| TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // A super-register kill already exists. |
| if (RegInfo->isSuperRegister(IncomingReg, Reg)) |
| return true; |
| if (RegInfo->isSubRegister(IncomingReg, Reg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded kill operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsKill(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is killed. Add a |
| // new implicit operand if required. |
| if (!Found && AddIfNotFound) { |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| false /*IsDef*/, |
| true /*IsImp*/, |
| true /*IsKill*/)); |
| return true; |
| } |
| return Found; |
| } |
| |
| void MachineInstr::clearRegisterKills(unsigned Reg, |
| const TargetRegisterInfo *RegInfo) { |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) |
| RegInfo = 0; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || !MO.isKill()) |
| continue; |
| unsigned OpReg = MO.getReg(); |
| if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) |
| MO.setIsKill(false); |
| } |
| } |
| |
| bool MachineInstr::addRegisterDead(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); |
| bool hasAliases = isPhysReg && |
| MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| if (Reg == IncomingReg) { |
| MO.setIsDead(); |
| Found = true; |
| } else if (hasAliases && MO.isDead() && |
| TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // There exists a super-register that's marked dead. |
| if (RegInfo->isSuperRegister(IncomingReg, Reg)) |
| return true; |
| if (RegInfo->isSubRegister(IncomingReg, Reg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded dead operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsDead(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is dead. Add a |
| // new implicit operand if required. |
| if (Found || !AddIfNotFound) |
| return Found; |
| |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| true /*IsDef*/, |
| true /*IsImp*/, |
| false /*IsKill*/, |
| true /*IsDead*/)); |
| return true; |
| } |
| |
| void MachineInstr::addRegisterDefined(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo) { |
| if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { |
| MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); |
| if (MO) |
| return; |
| } else { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && |
| MO.getSubReg() == 0) |
| return; |
| } |
| } |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| true /*IsDef*/, |
| true /*IsImp*/)); |
| } |
| |
| void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, |
| const TargetRegisterInfo &TRI) { |
| bool HasRegMask = false; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (MO.isRegMask()) { |
| HasRegMask = true; |
| continue; |
| } |
| if (!MO.isReg() || !MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| bool Dead = true; |
| for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); |
| I != E; ++I) |
| if (TRI.regsOverlap(*I, Reg)) { |
| Dead = false; |
| break; |
| } |
| // If there are no uses, including partial uses, the def is dead. |
| if (Dead) MO.setIsDead(); |
| } |
| |
| // This is a call with a register mask operand. |
| // Mask clobbers are always dead, so add defs for the non-dead defines. |
| if (HasRegMask) |
| for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); |
| I != E; ++I) |
| addRegisterDefined(*I, &TRI); |
| } |
| |
| unsigned |
| MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { |
| // Build up a buffer of hash code components. |
| SmallVector<size_t, 8> HashComponents; |
| HashComponents.reserve(MI->getNumOperands() + 1); |
| HashComponents.push_back(MI->getOpcode()); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && |
| TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; // Skip virtual register defs. |
| |
| HashComponents.push_back(hash_value(MO)); |
| } |
| return hash_combine_range(HashComponents.begin(), HashComponents.end()); |
| } |
| |
| void MachineInstr::emitError(StringRef Msg) const { |
| // Find the source location cookie. |
| unsigned LocCookie = 0; |
| const MDNode *LocMD = 0; |
| for (unsigned i = getNumOperands(); i != 0; --i) { |
| if (getOperand(i-1).isMetadata() && |
| (LocMD = getOperand(i-1).getMetadata()) && |
| LocMD->getNumOperands() != 0) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { |
| LocCookie = CI->getZExtValue(); |
| break; |
| } |
| } |
| } |
| |
| if (const MachineBasicBlock *MBB = getParent()) |
| if (const MachineFunction *MF = MBB->getParent()) |
| return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); |
| report_fatal_error(Msg); |
| } |