| //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the actual instruction interpreter. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "interpreter" |
| #include "Interpreter.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ParameterAttributes.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cmath> |
| using namespace llvm; |
| |
| STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); |
| static Interpreter *TheEE = 0; |
| |
| //===----------------------------------------------------------------------===// |
| // Various Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) { |
| // Determine if the value is signed or not |
| bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0; |
| // If its signed, extend the sign bits |
| if (isSigned) |
| Val |= ~ITy->getBitMask(); |
| return Val; |
| } |
| |
| static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| SF.Values[V] = Val; |
| } |
| |
| void Interpreter::initializeExecutionEngine() { |
| TheEE = this; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| case Type::TY##TyID: \ |
| Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ |
| break |
| |
| #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \ |
| case Type::IntegerTyID: { \ |
| Dest.IntVal = Src1.IntVal OP Src2.IntVal; \ |
| break; \ |
| } |
| |
| |
| static void executeAddInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_BINOP1(+, Ty); |
| IMPLEMENT_BINARY_OPERATOR(+, Float); |
| IMPLEMENT_BINARY_OPERATOR(+, Double); |
| default: |
| cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| } |
| |
| static void executeSubInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_BINOP1(-, Ty); |
| IMPLEMENT_BINARY_OPERATOR(-, Float); |
| IMPLEMENT_BINARY_OPERATOR(-, Double); |
| default: |
| cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| } |
| |
| static void executeMulInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_BINOP1(*, Ty); |
| IMPLEMENT_BINARY_OPERATOR(*, Float); |
| IMPLEMENT_BINARY_OPERATOR(*, Double); |
| default: |
| cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| } |
| |
| static void executeFDivInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_BINARY_OPERATOR(/, Float); |
| IMPLEMENT_BINARY_OPERATOR(/, Double); |
| default: |
| cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| } |
| |
| static void executeFRemInst(GenericValue &Dest, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::FloatTyID: |
| Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); |
| break; |
| default: |
| cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| } |
| |
| #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ |
| case Type::IntegerTyID: \ |
| Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ |
| break; |
| |
| // Handle pointers specially because they must be compared with only as much |
| // width as the host has. We _do not_ want to be comparing 64 bit values when |
| // running on a 32-bit target, otherwise the upper 32 bits might mess up |
| // comparisons if they contain garbage. |
| #define IMPLEMENT_POINTER_ICMP(OP) \ |
| case Type::PointerTyID: \ |
| Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ |
| (void*)(intptr_t)Src2.PointerVal); \ |
| break; |
| |
| static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(eq,Ty); |
| IMPLEMENT_POINTER_ICMP(==); |
| default: |
| cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ne,Ty); |
| IMPLEMENT_POINTER_ICMP(!=); |
| default: |
| cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ult,Ty); |
| IMPLEMENT_POINTER_ICMP(<); |
| default: |
| cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(slt,Ty); |
| IMPLEMENT_POINTER_ICMP(<); |
| default: |
| cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ugt,Ty); |
| IMPLEMENT_POINTER_ICMP(>); |
| default: |
| cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sgt,Ty); |
| IMPLEMENT_POINTER_ICMP(>); |
| default: |
| cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(ule,Ty); |
| IMPLEMENT_POINTER_ICMP(<=); |
| default: |
| cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sle,Ty); |
| IMPLEMENT_POINTER_ICMP(<=); |
| default: |
| cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(uge,Ty); |
| IMPLEMENT_POINTER_ICMP(>=); |
| default: |
| cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_INTEGER_ICMP(sge,Ty); |
| IMPLEMENT_POINTER_ICMP(>=); |
| default: |
| cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| void Interpreter::visitICmpInst(ICmpInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getPredicate()) { |
| case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; |
| case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; |
| default: |
| cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; |
| abort(); |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| #define IMPLEMENT_FCMP(OP, TY) \ |
| case Type::TY##TyID: \ |
| Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ |
| break |
| |
| static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(==, Float); |
| IMPLEMENT_FCMP(==, Double); |
| default: |
| cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(!=, Float); |
| IMPLEMENT_FCMP(!=, Double); |
| |
| default: |
| cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(<=, Float); |
| IMPLEMENT_FCMP(<=, Double); |
| default: |
| cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(>=, Float); |
| IMPLEMENT_FCMP(>=, Double); |
| default: |
| cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(<, Float); |
| IMPLEMENT_FCMP(<, Double); |
| default: |
| cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getTypeID()) { |
| IMPLEMENT_FCMP(>, Float); |
| IMPLEMENT_FCMP(>, Double); |
| default: |
| cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| #define IMPLEMENT_UNORDERED(TY, X,Y) \ |
| if (TY == Type::FloatTy) \ |
| if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| Dest.IntVal = APInt(1,true); \ |
| return Dest; \ |
| } \ |
| else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| Dest.IntVal = APInt(1,true); \ |
| return Dest; \ |
| } |
| |
| |
| static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_OEQ(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_ONE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_OLE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_OGE(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_OLT(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| return executeFCMP_OGT(Src1, Src2, Ty); |
| } |
| |
| static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| if (Ty == Type::FloatTy) |
| Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && |
| Src2.FloatVal == Src2.FloatVal)); |
| else |
| Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && |
| Src2.DoubleVal == Src2.DoubleVal)); |
| return Dest; |
| } |
| |
| static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| if (Ty == Type::FloatTy) |
| Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || |
| Src2.FloatVal != Src2.FloatVal)); |
| else |
| Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || |
| Src2.DoubleVal != Src2.DoubleVal)); |
| return Dest; |
| } |
| |
| void Interpreter::visitFCmpInst(FCmpInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getPredicate()) { |
| case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; |
| case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; |
| case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; |
| case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; |
| default: |
| cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; |
| abort(); |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, |
| GenericValue Src2, const Type *Ty) { |
| GenericValue Result; |
| switch (predicate) { |
| case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); |
| case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); |
| case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); |
| case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); |
| case FCmpInst::FCMP_FALSE: { |
| GenericValue Result; |
| Result.IntVal = APInt(1, false); |
| return Result; |
| } |
| case FCmpInst::FCMP_TRUE: { |
| GenericValue Result; |
| Result.IntVal = APInt(1, true); |
| return Result; |
| } |
| default: |
| cerr << "Unhandled Cmp predicate\n"; |
| abort(); |
| } |
| } |
| |
| void Interpreter::visitBinaryOperator(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break; |
| case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break; |
| case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break; |
| case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break; |
| case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break; |
| case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; |
| case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; |
| case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; |
| case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; |
| case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; |
| case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; |
| case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; |
| default: |
| cerr << "Don't know how to handle this binary operator!\n-->" << I; |
| abort(); |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, |
| GenericValue Src3) { |
| return Src1.IntVal == 0 ? Src3 : Src2; |
| } |
| |
| void Interpreter::visitSelectInst(SelectInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Src3 = getOperandValue(I.getOperand(2), SF); |
| GenericValue R = executeSelectInst(Src1, Src2, Src3); |
| SetValue(&I, R, SF); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::exitCalled(GenericValue GV) { |
| // runAtExitHandlers() assumes there are no stack frames, but |
| // if exit() was called, then it had a stack frame. Blow away |
| // the stack before interpreting atexit handlers. |
| ECStack.clear (); |
| runAtExitHandlers (); |
| exit (GV.IntVal.zextOrTrunc(32).getZExtValue()); |
| } |
| |
| /// Pop the last stack frame off of ECStack and then copy the result |
| /// back into the result variable if we are not returning void. The |
| /// result variable may be the ExitValue, or the Value of the calling |
| /// CallInst if there was a previous stack frame. This method may |
| /// invalidate any ECStack iterators you have. This method also takes |
| /// care of switching to the normal destination BB, if we are returning |
| /// from an invoke. |
| /// |
| void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, |
| GenericValue Result) { |
| // Pop the current stack frame. |
| ECStack.pop_back(); |
| |
| if (ECStack.empty()) { // Finished main. Put result into exit code... |
| if (RetTy && RetTy->isInteger()) { // Nonvoid return type? |
| ExitValue = Result; // Capture the exit value of the program |
| } else { |
| memset(&ExitValue, 0, sizeof(ExitValue)); |
| } |
| } else { |
| // If we have a previous stack frame, and we have a previous call, |
| // fill in the return value... |
| ExecutionContext &CallingSF = ECStack.back(); |
| if (Instruction *I = CallingSF.Caller.getInstruction()) { |
| if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... |
| SetValue(I, Result, CallingSF); |
| if (InvokeInst *II = dyn_cast<InvokeInst> (I)) |
| SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); |
| CallingSF.Caller = CallSite(); // We returned from the call... |
| } |
| } |
| } |
| |
| void Interpreter::visitReturnInst(ReturnInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *RetTy = Type::VoidTy; |
| GenericValue Result; |
| |
| // Save away the return value... (if we are not 'ret void') |
| if (I.getNumOperands()) { |
| RetTy = I.getReturnValue()->getType(); |
| Result = getOperandValue(I.getReturnValue(), SF); |
| } |
| |
| popStackAndReturnValueToCaller(RetTy, Result); |
| } |
| |
| void Interpreter::visitUnwindInst(UnwindInst &I) { |
| // Unwind stack |
| Instruction *Inst; |
| do { |
| ECStack.pop_back (); |
| if (ECStack.empty ()) |
| abort (); |
| Inst = ECStack.back ().Caller.getInstruction (); |
| } while (!(Inst && isa<InvokeInst> (Inst))); |
| |
| // Return from invoke |
| ExecutionContext &InvokingSF = ECStack.back (); |
| InvokingSF.Caller = CallSite (); |
| |
| // Go to exceptional destination BB of invoke instruction |
| SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); |
| } |
| |
| void Interpreter::visitUnreachableInst(UnreachableInst &I) { |
| cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; |
| abort(); |
| } |
| |
| void Interpreter::visitBranchInst(BranchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| BasicBlock *Dest; |
| |
| Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... |
| if (!I.isUnconditional()) { |
| Value *Cond = I.getCondition(); |
| if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... |
| Dest = I.getSuccessor(1); |
| } |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| void Interpreter::visitSwitchInst(SwitchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue CondVal = getOperandValue(I.getOperand(0), SF); |
| const Type *ElTy = I.getOperand(0)->getType(); |
| |
| // Check to see if any of the cases match... |
| BasicBlock *Dest = 0; |
| for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) |
| if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) |
| .IntVal != 0) { |
| Dest = cast<BasicBlock>(I.getOperand(i+1)); |
| break; |
| } |
| |
| if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| // SwitchToNewBasicBlock - This method is used to jump to a new basic block. |
| // This function handles the actual updating of block and instruction iterators |
| // as well as execution of all of the PHI nodes in the destination block. |
| // |
| // This method does this because all of the PHI nodes must be executed |
| // atomically, reading their inputs before any of the results are updated. Not |
| // doing this can cause problems if the PHI nodes depend on other PHI nodes for |
| // their inputs. If the input PHI node is updated before it is read, incorrect |
| // results can happen. Thus we use a two phase approach. |
| // |
| void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ |
| BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... |
| SF.CurBB = Dest; // Update CurBB to branch destination |
| SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| |
| if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do |
| |
| // Loop over all of the PHI nodes in the current block, reading their inputs. |
| std::vector<GenericValue> ResultValues; |
| |
| for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { |
| // Search for the value corresponding to this previous bb... |
| int i = PN->getBasicBlockIndex(PrevBB); |
| assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); |
| Value *IncomingValue = PN->getIncomingValue(i); |
| |
| // Save the incoming value for this PHI node... |
| ResultValues.push_back(getOperandValue(IncomingValue, SF)); |
| } |
| |
| // Now loop over all of the PHI nodes setting their values... |
| SF.CurInst = SF.CurBB->begin(); |
| for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { |
| PHINode *PN = cast<PHINode>(SF.CurInst); |
| SetValue(PN, ResultValues[i], SF); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitAllocationInst(AllocationInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| const Type *Ty = I.getType()->getElementType(); // Type to be allocated |
| |
| // Get the number of elements being allocated by the array... |
| unsigned NumElements = |
| getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); |
| |
| unsigned TypeSize = (size_t)TD.getTypeSize(Ty); |
| |
| unsigned MemToAlloc = NumElements * TypeSize; |
| |
| // Allocate enough memory to hold the type... |
| void *Memory = malloc(MemToAlloc); |
| |
| DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " |
| << NumElements << " (Total: " << MemToAlloc << ") at " |
| << uintptr_t(Memory) << '\n'; |
| |
| GenericValue Result = PTOGV(Memory); |
| assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); |
| SetValue(&I, Result, SF); |
| |
| if (I.getOpcode() == Instruction::Alloca) |
| ECStack.back().Allocas.add(Memory); |
| } |
| |
| void Interpreter::visitFreeInst(FreeInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); |
| GenericValue Value = getOperandValue(I.getOperand(0), SF); |
| // TODO: Check to make sure memory is allocated |
| free(GVTOP(Value)); // Free memory |
| } |
| |
| // getElementOffset - The workhorse for getelementptr. |
| // |
| GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E, |
| ExecutionContext &SF) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "Cannot getElementOffset of a nonpointer type!"); |
| |
| uint64_t Total = 0; |
| |
| for (; I != E; ++I) { |
| if (const StructType *STy = dyn_cast<StructType>(*I)) { |
| const StructLayout *SLO = TD.getStructLayout(STy); |
| |
| const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); |
| unsigned Index = unsigned(CPU->getZExtValue()); |
| |
| Total += SLO->getElementOffset(Index); |
| } else { |
| const SequentialType *ST = cast<SequentialType>(*I); |
| // Get the index number for the array... which must be long type... |
| GenericValue IdxGV = getOperandValue(I.getOperand(), SF); |
| |
| int64_t Idx; |
| unsigned BitWidth = |
| cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); |
| if (BitWidth == 32) |
| Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); |
| else if (BitWidth == 64) |
| Idx = (int64_t)IdxGV.IntVal.getZExtValue(); |
| else |
| assert(0 && "Invalid index type for getelementptr"); |
| Total += TD.getTypeSize(ST->getElementType())*Idx; |
| } |
| } |
| |
| GenericValue Result; |
| Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; |
| DOUT << "GEP Index " << Total << " bytes.\n"; |
| return Result; |
| } |
| |
| void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), |
| gep_type_begin(I), gep_type_end(I), SF), SF); |
| } |
| |
| void Interpreter::visitLoadInst(LoadInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| GenericValue *Ptr = (GenericValue*)GVTOP(SRC); |
| GenericValue Result; |
| LoadValueFromMemory(Result, Ptr, I.getType()); |
| SetValue(&I, Result, SF); |
| } |
| |
| void Interpreter::visitStoreInst(StoreInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Val = getOperandValue(I.getOperand(0), SF); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), |
| I.getOperand(0)->getType()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitCallSite(CallSite CS) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| // Check to see if this is an intrinsic function call... |
| Function *F = CS.getCalledFunction(); |
| if (F && F->isDeclaration ()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| break; |
| case Intrinsic::vastart: { // va_start |
| GenericValue ArgIndex; |
| ArgIndex.UIntPairVal.first = ECStack.size() - 1; |
| ArgIndex.UIntPairVal.second = 0; |
| SetValue(CS.getInstruction(), ArgIndex, SF); |
| return; |
| } |
| case Intrinsic::vaend: // va_end is a noop for the interpreter |
| return; |
| case Intrinsic::vacopy: // va_copy: dest = src |
| SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); |
| return; |
| default: |
| // If it is an unknown intrinsic function, use the intrinsic lowering |
| // class to transform it into hopefully tasty LLVM code. |
| // |
| BasicBlock::iterator me(CS.getInstruction()); |
| BasicBlock *Parent = CS.getInstruction()->getParent(); |
| bool atBegin(Parent->begin() == me); |
| if (!atBegin) |
| --me; |
| IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); |
| |
| // Restore the CurInst pointer to the first instruction newly inserted, if |
| // any. |
| if (atBegin) { |
| SF.CurInst = Parent->begin(); |
| } else { |
| SF.CurInst = me; |
| ++SF.CurInst; |
| } |
| return; |
| } |
| |
| |
| SF.Caller = CS; |
| std::vector<GenericValue> ArgVals; |
| const unsigned NumArgs = SF.Caller.arg_size(); |
| ArgVals.reserve(NumArgs); |
| uint16_t pNum = 1; |
| for (CallSite::arg_iterator i = SF.Caller.arg_begin(), |
| e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { |
| Value *V = *i; |
| ArgVals.push_back(getOperandValue(V, SF)); |
| if (F) { |
| // Promote all integral types whose size is < sizeof(i32) into i32. |
| // We do this by zero or sign extending the value as appropriate |
| // according to the parameter attributes |
| const Type *Ty = V->getType(); |
| if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) |
| if (const ParamAttrsList *PA = F->getParamAttrs()) |
| if (PA->paramHasAttr(pNum, ParamAttr::ZExt)) |
| ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32); |
| else if (PA->paramHasAttr(pNum, ParamAttr::SExt)) |
| ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32); |
| } |
| } |
| |
| // To handle indirect calls, we must get the pointer value from the argument |
| // and treat it as a function pointer. |
| GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); |
| callFunction((Function*)GVTOP(SRC), ArgVals); |
| } |
| |
| void Interpreter::visitShl(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitLShr(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitAShr(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); |
| SetValue(&I, Dest, SF); |
| } |
| |
| GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| const IntegerType *DITy = cast<IntegerType>(DstTy); |
| const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| unsigned SBitWidth = SITy->getBitWidth(); |
| assert(SBitWidth > DBitWidth && "Invalid truncate"); |
| Dest.IntVal = Src.IntVal.trunc(DBitWidth); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| const IntegerType *DITy = cast<IntegerType>(DstTy); |
| const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| unsigned SBitWidth = SITy->getBitWidth(); |
| assert(SBitWidth < DBitWidth && "Invalid sign extend"); |
| Dest.IntVal = Src.IntVal.sext(DBitWidth); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| const IntegerType *DITy = cast<IntegerType>(DstTy); |
| const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| unsigned DBitWidth = DITy->getBitWidth(); |
| unsigned SBitWidth = SITy->getBitWidth(); |
| assert(SBitWidth < DBitWidth && "Invalid sign extend"); |
| Dest.IntVal = Src.IntVal.zext(DBitWidth); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy && |
| "Invalid FPTrunc instruction"); |
| Dest.FloatVal = (float) Src.DoubleVal; |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy && |
| "Invalid FPTrunc instruction"); |
| Dest.DoubleVal = (double) Src.FloatVal; |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); |
| |
| if (SrcTy->getTypeID() == Type::FloatTyID) |
| Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| else |
| Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); |
| |
| if (SrcTy->getTypeID() == Type::FloatTyID) |
| Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| else |
| Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); |
| |
| if (DstTy->getTypeID() == Type::FloatTyID) |
| Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); |
| else |
| Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction"); |
| |
| if (DstTy->getTypeID() == Type::FloatTyID) |
| Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); |
| else |
| Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); |
| return Dest; |
| |
| } |
| |
| GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(isa<PointerType>(SrcTy) && "Invalid PtrToInt instruction"); |
| |
| Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction"); |
| |
| uint32_t PtrSize = TD.getPointerSizeInBits(); |
| if (PtrSize != Src.IntVal.getBitWidth()) |
| Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); |
| |
| Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); |
| return Dest; |
| } |
| |
| GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, |
| ExecutionContext &SF) { |
| |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| if (isa<PointerType>(DstTy)) { |
| assert(isa<PointerType>(SrcTy) && "Invalid BitCast"); |
| Dest.PointerVal = Src.PointerVal; |
| } else if (DstTy->isInteger()) { |
| if (SrcTy == Type::FloatTy) { |
| Dest.IntVal.zext(sizeof(Src.FloatVal) * 8); |
| Dest.IntVal.floatToBits(Src.FloatVal); |
| } else if (SrcTy == Type::DoubleTy) { |
| Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8); |
| Dest.IntVal.doubleToBits(Src.DoubleVal); |
| } else if (SrcTy->isInteger()) { |
| Dest.IntVal = Src.IntVal; |
| } else |
| assert(0 && "Invalid BitCast"); |
| } else if (DstTy == Type::FloatTy) { |
| if (SrcTy->isInteger()) |
| Dest.FloatVal = Src.IntVal.bitsToFloat(); |
| else |
| Dest.FloatVal = Src.FloatVal; |
| } else if (DstTy == Type::DoubleTy) { |
| if (SrcTy->isInteger()) |
| Dest.DoubleVal = Src.IntVal.bitsToDouble(); |
| else |
| Dest.DoubleVal = Src.DoubleVal; |
| } else |
| assert(0 && "Invalid Bitcast"); |
| |
| return Dest; |
| } |
| |
| void Interpreter::visitTruncInst(TruncInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitSExtInst(SExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitZExtInst(ZExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPTruncInst(FPTruncInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPExtInst(FPExtInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitUIToFPInst(UIToFPInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitSIToFPInst(SIToFPInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPToUIInst(FPToUIInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitFPToSIInst(FPToSIInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitBitCastInst(BitCastInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| #define IMPLEMENT_VAARG(TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break |
| |
| void Interpreter::visitVAArgInst(VAArgInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| // Get the incoming valist parameter. LLI treats the valist as a |
| // (ec-stack-depth var-arg-index) pair. |
| GenericValue VAList = getOperandValue(I.getOperand(0), SF); |
| GenericValue Dest; |
| GenericValue Src = ECStack[VAList.UIntPairVal.first] |
| .VarArgs[VAList.UIntPairVal.second]; |
| const Type *Ty = I.getType(); |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: Dest.IntVal = Src.IntVal; |
| IMPLEMENT_VAARG(Pointer); |
| IMPLEMENT_VAARG(Float); |
| IMPLEMENT_VAARG(Double); |
| default: |
| cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| |
| // Set the Value of this Instruction. |
| SetValue(&I, Dest, SF); |
| |
| // Move the pointer to the next vararg. |
| ++VAList.UIntPairVal.second; |
| } |
| |
| GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, |
| ExecutionContext &SF) { |
| switch (CE->getOpcode()) { |
| case Instruction::Trunc: |
| return executeTruncInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::ZExt: |
| return executeZExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::SExt: |
| return executeSExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPTrunc: |
| return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPExt: |
| return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::UIToFP: |
| return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::SIToFP: |
| return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPToUI: |
| return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::FPToSI: |
| return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::PtrToInt: |
| return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::IntToPtr: |
| return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::BitCast: |
| return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::GetElementPtr: |
| return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), |
| gep_type_end(CE), SF); |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| return executeCmpInst(CE->getPredicate(), |
| getOperandValue(CE->getOperand(0), SF), |
| getOperandValue(CE->getOperand(1), SF), |
| CE->getOperand(0)->getType()); |
| case Instruction::Select: |
| return executeSelectInst(getOperandValue(CE->getOperand(0), SF), |
| getOperandValue(CE->getOperand(1), SF), |
| getOperandValue(CE->getOperand(2), SF)); |
| default : |
| break; |
| } |
| |
| // The cases below here require a GenericValue parameter for the result |
| // so we initialize one, compute it and then return it. |
| GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); |
| GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); |
| GenericValue Dest; |
| const Type * Ty = CE->getOperand(0)->getType(); |
| switch (CE->getOpcode()) { |
| case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break; |
| case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break; |
| case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break; |
| case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; |
| case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; |
| case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; |
| case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; |
| case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; |
| case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break; |
| case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break; |
| case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break; |
| case Instruction::Shl: |
| Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); |
| break; |
| case Instruction::LShr: |
| Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); |
| break; |
| case Instruction::AShr: |
| Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); |
| break; |
| default: |
| cerr << "Unhandled ConstantExpr: " << *CE << "\n"; |
| abort(); |
| return GenericValue(); |
| } |
| return Dest; |
| } |
| |
| GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| return getConstantExprValue(CE, SF); |
| } else if (Constant *CPV = dyn_cast<Constant>(V)) { |
| return getConstantValue(CPV); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| return PTOGV(getPointerToGlobal(GV)); |
| } else { |
| return SF.Values[V]; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Dispatch and Execution Code |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // callFunction - Execute the specified function... |
| // |
| void Interpreter::callFunction(Function *F, |
| const std::vector<GenericValue> &ArgVals) { |
| assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || |
| ECStack.back().Caller.arg_size() == ArgVals.size()) && |
| "Incorrect number of arguments passed into function call!"); |
| // Make a new stack frame... and fill it in. |
| ECStack.push_back(ExecutionContext()); |
| ExecutionContext &StackFrame = ECStack.back(); |
| StackFrame.CurFunction = F; |
| |
| // Special handling for external functions. |
| if (F->isDeclaration()) { |
| GenericValue Result = callExternalFunction (F, ArgVals); |
| // Simulate a 'ret' instruction of the appropriate type. |
| popStackAndReturnValueToCaller (F->getReturnType (), Result); |
| return; |
| } |
| |
| // Get pointers to first LLVM BB & Instruction in function. |
| StackFrame.CurBB = F->begin(); |
| StackFrame.CurInst = StackFrame.CurBB->begin(); |
| |
| // Run through the function arguments and initialize their values... |
| assert((ArgVals.size() == F->arg_size() || |
| (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& |
| "Invalid number of values passed to function invocation!"); |
| |
| // Handle non-varargs arguments... |
| unsigned i = 0; |
| for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| AI != E; ++AI, ++i) |
| SetValue(AI, ArgVals[i], StackFrame); |
| |
| // Handle varargs arguments... |
| StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); |
| } |
| |
| static void PrintGenericValue(const GenericValue &Val, const Type* Ty) { |
| switch (Ty->getTypeID()) { |
| default: assert(0 && "Invalid GenericValue Type"); |
| case Type::VoidTyID: DOUT << "void"; break; |
| case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break; |
| case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break; |
| case Type::PointerTyID: DOUT << "void* " << unsigned(Val.PointerVal); break; |
| case Type::IntegerTyID: |
| DOUT << "i" << Val.IntVal.getBitWidth() << " " << Val.IntVal.toString(10) |
| << "\n"; |
| break; |
| } |
| } |
| |
| void Interpreter::run() { |
| while (!ECStack.empty()) { |
| // Interpret a single instruction & increment the "PC". |
| ExecutionContext &SF = ECStack.back(); // Current stack frame |
| Instruction &I = *SF.CurInst++; // Increment before execute |
| |
| // Track the number of dynamic instructions executed. |
| ++NumDynamicInsts; |
| |
| DOUT << "About to interpret: " << I; |
| visit(I); // Dispatch to one of the visit* methods... |
| #ifndef NDEBUG |
| if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && |
| I.getType() != Type::VoidTy) { |
| DOUT << " --> "; |
| PrintGenericValue(SF.Values[&I], I.getType()); |
| } |
| #endif |
| } |
| } |