| //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This register allocator allocates registers to a basic block at a time, |
| // attempting to keep values in registers and reusing registers as appropriate. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumStores, "Number of stores added"); |
| STATISTIC(NumLoads , "Number of loads added"); |
| |
| static RegisterRegAlloc |
| localRegAlloc("local", "local register allocator", |
| createLocalRegisterAllocator); |
| |
| namespace { |
| class RALocal : public MachineFunctionPass { |
| public: |
| static char ID; |
| RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {} |
| private: |
| const TargetMachine *TM; |
| MachineFunction *MF; |
| const TargetRegisterInfo *TRI; |
| const TargetInstrInfo *TII; |
| |
| // StackSlotForVirtReg - Maps virtual regs to the frame index where these |
| // values are spilled. |
| IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; |
| |
| // Virt2PhysRegMap - This map contains entries for each virtual register |
| // that is currently available in a physical register. |
| IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; |
| |
| unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { |
| return Virt2PhysRegMap[VirtReg]; |
| } |
| |
| // PhysRegsUsed - This array is effectively a map, containing entries for |
| // each physical register that currently has a value (ie, it is in |
| // Virt2PhysRegMap). The value mapped to is the virtual register |
| // corresponding to the physical register (the inverse of the |
| // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned |
| // because it is used by a future instruction, and to -2 if it is not |
| // allocatable. If the entry for a physical register is -1, then the |
| // physical register is "not in the map". |
| // |
| std::vector<int> PhysRegsUsed; |
| |
| // PhysRegsUseOrder - This contains a list of the physical registers that |
| // currently have a virtual register value in them. This list provides an |
| // ordering of registers, imposing a reallocation order. This list is only |
| // used if all registers are allocated and we have to spill one, in which |
| // case we spill the least recently used register. Entries at the front of |
| // the list are the least recently used registers, entries at the back are |
| // the most recently used. |
| // |
| std::vector<unsigned> PhysRegsUseOrder; |
| |
| // Virt2LastUseMap - This maps each virtual register to its last use |
| // (MachineInstr*, operand index pair). |
| IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor> |
| Virt2LastUseMap; |
| |
| std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| return Virt2LastUseMap[Reg]; |
| } |
| |
| // VirtRegModified - This bitset contains information about which virtual |
| // registers need to be spilled back to memory when their registers are |
| // scavenged. If a virtual register has simply been rematerialized, there |
| // is no reason to spill it to memory when we need the register back. |
| // |
| BitVector VirtRegModified; |
| |
| // UsedInMultipleBlocks - Tracks whether a particular register is used in |
| // more than one block. |
| BitVector UsedInMultipleBlocks; |
| |
| void markVirtRegModified(unsigned Reg, bool Val = true) { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| Reg -= TargetRegisterInfo::FirstVirtualRegister; |
| if (Val) |
| VirtRegModified.set(Reg); |
| else |
| VirtRegModified.reset(Reg); |
| } |
| |
| bool isVirtRegModified(unsigned Reg) const { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| assert(Reg - TargetRegisterInfo::FirstVirtualRegister < |
| VirtRegModified.size() && "Illegal virtual register!"); |
| return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; |
| } |
| |
| void AddToPhysRegsUseOrder(unsigned Reg) { |
| std::vector<unsigned>::iterator It = |
| std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg); |
| if (It != PhysRegsUseOrder.end()) |
| PhysRegsUseOrder.erase(It); |
| PhysRegsUseOrder.push_back(Reg); |
| } |
| |
| void MarkPhysRegRecentlyUsed(unsigned Reg) { |
| if (PhysRegsUseOrder.empty() || |
| PhysRegsUseOrder.back() == Reg) return; // Already most recently used |
| |
| for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) { |
| unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle |
| if (!areRegsEqual(Reg, RegMatch)) continue; |
| |
| PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); |
| // Add it to the end of the list |
| PhysRegsUseOrder.push_back(RegMatch); |
| if (RegMatch == Reg) |
| return; // Found an exact match, exit early |
| } |
| } |
| |
| public: |
| virtual const char *getPassName() const { |
| return "Local Register Allocator"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| /// runOnMachineFunction - Register allocate the whole function |
| bool runOnMachineFunction(MachineFunction &Fn); |
| |
| /// AllocateBasicBlock - Register allocate the specified basic block. |
| void AllocateBasicBlock(MachineBasicBlock &MBB); |
| |
| |
| /// areRegsEqual - This method returns true if the specified registers are |
| /// related to each other. To do this, it checks to see if they are equal |
| /// or if the first register is in the alias set of the second register. |
| /// |
| bool areRegsEqual(unsigned R1, unsigned R2) const { |
| if (R1 == R2) return true; |
| for (const unsigned *AliasSet = TRI->getAliasSet(R2); |
| *AliasSet; ++AliasSet) { |
| if (*AliasSet == R1) return true; |
| } |
| return false; |
| } |
| |
| /// getStackSpaceFor - This returns the frame index of the specified virtual |
| /// register on the stack, allocating space if necessary. |
| int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); |
| |
| /// removePhysReg - This method marks the specified physical register as no |
| /// longer being in use. |
| /// |
| void removePhysReg(unsigned PhysReg); |
| |
| /// spillVirtReg - This method spills the value specified by PhysReg into |
| /// the virtual register slot specified by VirtReg. It then updates the RA |
| /// data structures to indicate the fact that PhysReg is now available. |
| /// |
| void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| unsigned VirtReg, unsigned PhysReg); |
| |
| /// spillPhysReg - This method spills the specified physical register into |
| /// the virtual register slot associated with it. If OnlyVirtRegs is set to |
| /// true, then the request is ignored if the physical register does not |
| /// contain a virtual register. |
| /// |
| void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned PhysReg, bool OnlyVirtRegs = false); |
| |
| /// assignVirtToPhysReg - This method updates local state so that we know |
| /// that PhysReg is the proper container for VirtReg now. The physical |
| /// register must not be used for anything else when this is called. |
| /// |
| void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); |
| |
| /// isPhysRegAvailable - Return true if the specified physical register is |
| /// free and available for use. This also includes checking to see if |
| /// aliased registers are all free... |
| /// |
| bool isPhysRegAvailable(unsigned PhysReg) const; |
| |
| /// getFreeReg - Look to see if there is a free register available in the |
| /// specified register class. If not, return 0. |
| /// |
| unsigned getFreeReg(const TargetRegisterClass *RC); |
| |
| /// getReg - Find a physical register to hold the specified virtual |
| /// register. If all compatible physical registers are used, this method |
| /// spills the last used virtual register to the stack, and uses that |
| /// register. If NoFree is true, that means the caller knows there isn't |
| /// a free register, do not call getFreeReg(). |
| unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned VirtReg, bool NoFree = false); |
| |
| /// reloadVirtReg - This method transforms the specified virtual |
| /// register use to refer to a physical register. This method may do this |
| /// in one of several ways: if the register is available in a physical |
| /// register already, it uses that physical register. If the value is not |
| /// in a physical register, and if there are physical registers available, |
| /// it loads it into a register: PhysReg if that is an available physical |
| /// register, otherwise any physical register of the right class. |
| /// If register pressure is high, and it is possible, it tries to fold the |
| /// load of the virtual register into the instruction itself. It avoids |
| /// doing this if register pressure is low to improve the chance that |
| /// subsequent instructions can use the reloaded value. This method |
| /// returns the modified instruction. |
| /// |
| MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned OpNum, SmallSet<unsigned, 4> &RRegs, |
| unsigned PhysReg); |
| |
| /// ComputeLocalLiveness - Computes liveness of registers within a basic |
| /// block, setting the killed/dead flags as appropriate. |
| void ComputeLocalLiveness(MachineBasicBlock& MBB); |
| |
| void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, |
| unsigned PhysReg); |
| }; |
| char RALocal::ID = 0; |
| } |
| |
| /// getStackSpaceFor - This allocates space for the specified virtual register |
| /// to be held on the stack. |
| int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { |
| // Find the location Reg would belong... |
| int SS = StackSlotForVirtReg[VirtReg]; |
| if (SS != -1) |
| return SS; // Already has space allocated? |
| |
| // Allocate a new stack object for this spill location... |
| int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), |
| RC->getAlignment()); |
| |
| // Assign the slot. |
| StackSlotForVirtReg[VirtReg] = FrameIdx; |
| return FrameIdx; |
| } |
| |
| |
| /// removePhysReg - This method marks the specified physical register as no |
| /// longer being in use. |
| /// |
| void RALocal::removePhysReg(unsigned PhysReg) { |
| PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used |
| |
| std::vector<unsigned>::iterator It = |
| std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); |
| if (It != PhysRegsUseOrder.end()) |
| PhysRegsUseOrder.erase(It); |
| } |
| |
| |
| /// spillVirtReg - This method spills the value specified by PhysReg into the |
| /// virtual register slot specified by VirtReg. It then updates the RA data |
| /// structures to indicate the fact that PhysReg is now available. |
| /// |
| void RALocal::spillVirtReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned VirtReg, unsigned PhysReg) { |
| assert(VirtReg && "Spilling a physical register is illegal!" |
| " Must not have appropriate kill for the register or use exists beyond" |
| " the intended one."); |
| DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg) |
| << " containing %reg" << VirtReg); |
| |
| if (!isVirtRegModified(VirtReg)) { |
| DEBUG(dbgs() << " which has not been modified, so no store necessary!"); |
| std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg); |
| if (LastUse.first) |
| LastUse.first->getOperand(LastUse.second).setIsKill(); |
| } else { |
| // Otherwise, there is a virtual register corresponding to this physical |
| // register. We only need to spill it into its stack slot if it has been |
| // modified. |
| const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); |
| int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| DEBUG(dbgs() << " to stack slot #" << FrameIndex); |
| // If the instruction reads the register that's spilled, (e.g. this can |
| // happen if it is a move to a physical register), then the spill |
| // instruction is not a kill. |
| bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg)); |
| TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC); |
| ++NumStores; // Update statistics |
| } |
| |
| getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available |
| |
| DEBUG(dbgs() << '\n'); |
| removePhysReg(PhysReg); |
| } |
| |
| |
| /// spillPhysReg - This method spills the specified physical register into the |
| /// virtual register slot associated with it. If OnlyVirtRegs is set to true, |
| /// then the request is ignored if the physical register does not contain a |
| /// virtual register. |
| /// |
| void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned PhysReg, bool OnlyVirtRegs) { |
| if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! |
| assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); |
| if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) |
| spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); |
| return; |
| } |
| |
| // If the selected register aliases any other registers, we must make |
| // sure that one of the aliases isn't alive. |
| for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] == -1 || // Spill aliased register. |
| PhysRegsUsed[*AliasSet] == -2) // If allocatable. |
| continue; |
| |
| if (PhysRegsUsed[*AliasSet]) |
| spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); |
| } |
| } |
| |
| |
| /// assignVirtToPhysReg - This method updates local state so that we know |
| /// that PhysReg is the proper container for VirtReg now. The physical |
| /// register must not be used for anything else when this is called. |
| /// |
| void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { |
| assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); |
| // Update information to note the fact that this register was just used, and |
| // it holds VirtReg. |
| PhysRegsUsed[PhysReg] = VirtReg; |
| getVirt2PhysRegMapSlot(VirtReg) = PhysReg; |
| AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg |
| } |
| |
| |
| /// isPhysRegAvailable - Return true if the specified physical register is free |
| /// and available for use. This also includes checking to see if aliased |
| /// registers are all free... |
| /// |
| bool RALocal::isPhysRegAvailable(unsigned PhysReg) const { |
| if (PhysRegsUsed[PhysReg] != -1) return false; |
| |
| // If the selected register aliases any other allocated registers, it is |
| // not free! |
| for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) |
| if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? |
| return false; // Can't use this reg then. |
| return true; |
| } |
| |
| |
| /// getFreeReg - Look to see if there is a free register available in the |
| /// specified register class. If not, return 0. |
| /// |
| unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) { |
| // Get iterators defining the range of registers that are valid to allocate in |
| // this class, which also specifies the preferred allocation order. |
| TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); |
| TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); |
| |
| for (; RI != RE; ++RI) |
| if (isPhysRegAvailable(*RI)) { // Is reg unused? |
| assert(*RI != 0 && "Cannot use register!"); |
| return *RI; // Found an unused register! |
| } |
| return 0; |
| } |
| |
| |
| /// getReg - Find a physical register to hold the specified virtual |
| /// register. If all compatible physical registers are used, this method spills |
| /// the last used virtual register to the stack, and uses that register. |
| /// |
| unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned VirtReg, bool NoFree) { |
| const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); |
| |
| // First check to see if we have a free register of the requested type... |
| unsigned PhysReg = NoFree ? 0 : getFreeReg(RC); |
| |
| if (PhysReg != 0) { |
| // Assign the register. |
| assignVirtToPhysReg(VirtReg, PhysReg); |
| return PhysReg; |
| } |
| |
| // If we didn't find an unused register, scavenge one now! |
| assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); |
| |
| // Loop over all of the preallocated registers from the least recently used |
| // to the most recently used. When we find one that is capable of holding |
| // our register, use it. |
| for (unsigned i = 0; PhysReg == 0; ++i) { |
| assert(i != PhysRegsUseOrder.size() && |
| "Couldn't find a register of the appropriate class!"); |
| |
| unsigned R = PhysRegsUseOrder[i]; |
| |
| // We can only use this register if it holds a virtual register (ie, it |
| // can be spilled). Do not use it if it is an explicitly allocated |
| // physical register! |
| assert(PhysRegsUsed[R] != -1 && |
| "PhysReg in PhysRegsUseOrder, but is not allocated?"); |
| if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) { |
| // If the current register is compatible, use it. |
| if (RC->contains(R)) { |
| PhysReg = R; |
| break; |
| } |
| |
| // If one of the registers aliased to the current register is |
| // compatible, use it. |
| for (const unsigned *AliasIt = TRI->getAliasSet(R); |
| *AliasIt; ++AliasIt) { |
| if (!RC->contains(*AliasIt)) continue; |
| |
| // If this is pinned down for some reason, don't use it. For |
| // example, if CL is pinned, and we run across CH, don't use |
| // CH as justification for using scavenging ECX (which will |
| // fail). |
| if (PhysRegsUsed[*AliasIt] == 0) continue; |
| |
| // Make sure the register is allocatable. Don't allocate SIL on |
| // x86-32. |
| if (PhysRegsUsed[*AliasIt] == -2) continue; |
| |
| PhysReg = *AliasIt; // Take an aliased register |
| break; |
| } |
| } |
| } |
| |
| assert(PhysReg && "Physical register not assigned!?!?"); |
| |
| // At this point PhysRegsUseOrder[i] is the least recently used register of |
| // compatible register class. Spill it to memory and reap its remains. |
| spillPhysReg(MBB, I, PhysReg); |
| |
| // Now that we know which register we need to assign this to, do it now! |
| assignVirtToPhysReg(VirtReg, PhysReg); |
| return PhysReg; |
| } |
| |
| |
| /// reloadVirtReg - This method transforms the specified virtual |
| /// register use to refer to a physical register. This method may do this in |
| /// one of several ways: if the register is available in a physical register |
| /// already, it uses that physical register. If the value is not in a physical |
| /// register, and if there are physical registers available, it loads it into a |
| /// register: PhysReg if that is an available physical register, otherwise any |
| /// register. If register pressure is high, and it is possible, it tries to |
| /// fold the load of the virtual register into the instruction itself. It |
| /// avoids doing this if register pressure is low to improve the chance that |
| /// subsequent instructions can use the reloaded value. This method returns |
| /// the modified instruction. |
| /// |
| MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned OpNum, |
| SmallSet<unsigned, 4> &ReloadedRegs, |
| unsigned PhysReg) { |
| unsigned VirtReg = MI->getOperand(OpNum).getReg(); |
| |
| // If the virtual register is already available, just update the instruction |
| // and return. |
| if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { |
| MI->getOperand(OpNum).setReg(PR); // Assign the input register |
| if (!MI->isDebugValue()) { |
| // Do not do these for DBG_VALUE as they can affect codegen. |
| MarkPhysRegRecentlyUsed(PR); // Already have this value available! |
| getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); |
| } |
| return MI; |
| } |
| |
| // Otherwise, we need to fold it into the current instruction, or reload it. |
| // If we have registers available to hold the value, use them. |
| const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); |
| // If we already have a PhysReg (this happens when the instruction is a |
| // reg-to-reg copy with a PhysReg destination) use that. |
| if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) || |
| !isPhysRegAvailable(PhysReg)) |
| PhysReg = getFreeReg(RC); |
| int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| |
| if (PhysReg) { // Register is available, allocate it! |
| assignVirtToPhysReg(VirtReg, PhysReg); |
| } else { // No registers available. |
| // Force some poor hapless value out of the register file to |
| // make room for the new register, and reload it. |
| PhysReg = getReg(MBB, MI, VirtReg, true); |
| } |
| |
| markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded |
| |
| DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into " |
| << TRI->getName(PhysReg) << "\n"); |
| |
| // Add move instruction(s) |
| TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); |
| ++NumLoads; // Update statistics |
| |
| MF->getRegInfo().setPhysRegUsed(PhysReg); |
| MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register |
| getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); |
| |
| if (!ReloadedRegs.insert(PhysReg)) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Ran out of registers during register allocation!"; |
| if (MI->isInlineAsm()) { |
| Msg << "\nPlease check your inline asm statement for invalid " |
| << "constraints:\n"; |
| MI->print(Msg, TM); |
| } |
| report_fatal_error(Msg.str()); |
| } |
| for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); |
| *SubRegs; ++SubRegs) { |
| if (ReloadedRegs.insert(*SubRegs)) continue; |
| |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Ran out of registers during register allocation!"; |
| if (MI->isInlineAsm()) { |
| Msg << "\nPlease check your inline asm statement for invalid " |
| << "constraints:\n"; |
| MI->print(Msg, TM); |
| } |
| report_fatal_error(Msg.str()); |
| } |
| |
| return MI; |
| } |
| |
| /// isReadModWriteImplicitKill - True if this is an implicit kill for a |
| /// read/mod/write register, i.e. update partial register. |
| static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && |
| MO.isDef() && !MO.isDead()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isReadModWriteImplicitDef - True if this is an implicit def for a |
| /// read/mod/write register, i.e. update partial register. |
| static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && |
| !MO.isDef() && MO.isKill()) |
| return true; |
| } |
| return false; |
| } |
| |
| // precedes - Helper function to determine with MachineInstr A |
| // precedes MachineInstr B within the same MBB. |
| static bool precedes(MachineBasicBlock::iterator A, |
| MachineBasicBlock::iterator B) { |
| if (A == B) |
| return false; |
| |
| MachineBasicBlock::iterator I = A->getParent()->begin(); |
| while (I != A->getParent()->end()) { |
| if (I == A) |
| return true; |
| else if (I == B) |
| return false; |
| |
| ++I; |
| } |
| |
| return false; |
| } |
| |
| /// ComputeLocalLiveness - Computes liveness of registers within a basic |
| /// block, setting the killed/dead flags as appropriate. |
| void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) { |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| // Keep track of the most recently seen previous use or def of each reg, |
| // so that we can update them with dead/kill markers. |
| DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef; |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) { |
| if (I->isDebugValue()) |
| continue; |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = I->getOperand(i); |
| // Uses don't trigger any flags, but we need to save |
| // them for later. Also, we have to process these |
| // _before_ processing the defs, since an instr |
| // uses regs before it defs them. |
| if (!MO.isReg() || !MO.getReg() || !MO.isUse()) |
| continue; |
| |
| LastUseDef[MO.getReg()] = std::make_pair(I, i); |
| |
| if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; |
| |
| const unsigned *Aliases = TRI->getAliasSet(MO.getReg()); |
| if (Aliases == 0) |
| continue; |
| |
| while (*Aliases) { |
| DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator |
| alias = LastUseDef.find(*Aliases); |
| |
| if (alias != LastUseDef.end() && alias->second.first != I) |
| LastUseDef[*Aliases] = std::make_pair(I, i); |
| |
| ++Aliases; |
| } |
| } |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = I->getOperand(i); |
| // Defs others than 2-addr redefs _do_ trigger flag changes: |
| // - A def followed by a def is dead |
| // - A use followed by a def is a kill |
| if (!MO.isReg() || !MO.getReg() || !MO.isDef()) continue; |
| |
| DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator |
| last = LastUseDef.find(MO.getReg()); |
| if (last != LastUseDef.end()) { |
| // Check if this is a two address instruction. If so, then |
| // the def does not kill the use. |
| if (last->second.first == I && |
| I->isRegTiedToUseOperand(i)) |
| continue; |
| |
| MachineOperand &lastUD = |
| last->second.first->getOperand(last->second.second); |
| if (lastUD.isDef()) |
| lastUD.setIsDead(true); |
| else |
| lastUD.setIsKill(true); |
| } |
| |
| LastUseDef[MO.getReg()] = std::make_pair(I, i); |
| } |
| } |
| |
| // Live-out (of the function) registers contain return values of the function, |
| // so we need to make sure they are alive at return time. |
| MachineBasicBlock::iterator Ret = MBB.getFirstTerminator(); |
| bool BBEndsInReturn = (Ret != MBB.end() && Ret->getDesc().isReturn()); |
| |
| if (BBEndsInReturn) |
| for (MachineRegisterInfo::liveout_iterator |
| I = MF->getRegInfo().liveout_begin(), |
| E = MF->getRegInfo().liveout_end(); I != E; ++I) |
| if (!Ret->readsRegister(*I)) { |
| Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); |
| LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1); |
| } |
| |
| // Finally, loop over the final use/def of each reg |
| // in the block and determine if it is dead. |
| for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator |
| I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) { |
| MachineInstr *MI = I->second.first; |
| unsigned idx = I->second.second; |
| MachineOperand &MO = MI->getOperand(idx); |
| |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg()); |
| |
| // A crude approximation of "live-out" calculation |
| bool usedOutsideBlock = isPhysReg ? false : |
| UsedInMultipleBlocks.test(MO.getReg() - |
| TargetRegisterInfo::FirstVirtualRegister); |
| |
| // If the machine BB ends in a return instruction, then the value isn't used |
| // outside of the BB. |
| if (!isPhysReg && (!usedOutsideBlock || BBEndsInReturn)) { |
| // DBG_VALUE complicates this: if the only refs of a register outside |
| // this block are DBG_VALUE, we can't keep the reg live just for that, |
| // as it will cause the reg to be spilled at the end of this block when |
| // it wouldn't have been otherwise. Nullify the DBG_VALUEs when that |
| // happens. |
| bool UsedByDebugValueOnly = false; |
| for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()), |
| UE = MRI.reg_end(); UI != UE; ++UI) { |
| // Two cases: |
| // - used in another block |
| // - used in the same block before it is defined (loop) |
| if (UI->getParent() == &MBB && |
| !(MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) |
| continue; |
| |
| if (UI->isDebugValue()) { |
| UsedByDebugValueOnly = true; |
| continue; |
| } |
| |
| // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone. |
| UsedInMultipleBlocks.set(MO.getReg() - |
| TargetRegisterInfo::FirstVirtualRegister); |
| usedOutsideBlock = true; |
| UsedByDebugValueOnly = false; |
| break; |
| } |
| |
| if (UsedByDebugValueOnly) |
| for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()), |
| UE = MRI.reg_end(); UI != UE; ++UI) |
| if (UI->isDebugValue() && |
| (UI->getParent() != &MBB || |
| (MO.isDef() && precedes(&*UI, MI)))) |
| UI.getOperand().setReg(0U); |
| } |
| |
| // Physical registers and those that are not live-out of the block are |
| // killed/dead at their last use/def within this block. |
| if (isPhysReg || !usedOutsideBlock || BBEndsInReturn) { |
| if (MO.isUse()) { |
| // Don't mark uses that are tied to defs as kills. |
| if (!MI->isRegTiedToDefOperand(idx)) |
| MO.setIsKill(true); |
| } else { |
| MO.setIsDead(true); |
| } |
| } |
| } |
| } |
| |
| void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) { |
| // loop over each instruction |
| MachineBasicBlock::iterator MII = MBB.begin(); |
| |
| DEBUG({ |
| const BasicBlock *LBB = MBB.getBasicBlock(); |
| if (LBB) |
| dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName(); |
| }); |
| |
| // Add live-in registers as active. |
| for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(), |
| E = MBB.livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| MF->getRegInfo().setPhysRegUsed(Reg); |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| AddToPhysRegsUseOrder(Reg); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| *SubRegs; ++SubRegs) { |
| if (PhysRegsUsed[*SubRegs] == -2) continue; |
| |
| AddToPhysRegsUseOrder(*SubRegs); |
| PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now |
| MF->getRegInfo().setPhysRegUsed(*SubRegs); |
| } |
| } |
| |
| ComputeLocalLiveness(MBB); |
| |
| // Otherwise, sequentially allocate each instruction in the MBB. |
| while (MII != MBB.end()) { |
| MachineInstr *MI = MII++; |
| const TargetInstrDesc &TID = MI->getDesc(); |
| DEBUG({ |
| dbgs() << "\nStarting RegAlloc of: " << *MI; |
| dbgs() << " Regs have values: "; |
| for (unsigned i = 0; i != TRI->getNumRegs(); ++i) |
| if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) |
| dbgs() << "[" << TRI->getName(i) |
| << ",%reg" << PhysRegsUsed[i] << "] "; |
| dbgs() << '\n'; |
| }); |
| |
| // Determine whether this is a copy instruction. The cases where the |
| // source or destination are phys regs are handled specially. |
| unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg; |
| unsigned SrcCopyPhysReg = 0U; |
| bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, |
| SrcCopySubReg, DstCopySubReg); |
| if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg)) |
| SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg); |
| |
| // Loop over the implicit uses, making sure that they are at the head of the |
| // use order list, so they don't get reallocated. |
| if (TID.ImplicitUses) { |
| for (const unsigned *ImplicitUses = TID.ImplicitUses; |
| *ImplicitUses; ++ImplicitUses) |
| MarkPhysRegRecentlyUsed(*ImplicitUses); |
| } |
| |
| SmallVector<unsigned, 8> Kills; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isKill()) continue; |
| |
| if (!MO.isImplicit()) |
| Kills.push_back(MO.getReg()); |
| else if (!isReadModWriteImplicitKill(MI, MO.getReg())) |
| // These are extra physical register kills when a sub-register |
| // is defined (def of a sub-register is a read/mod/write of the |
| // larger registers). Ignore. |
| Kills.push_back(MO.getReg()); |
| } |
| |
| // If any physical regs are earlyclobber, spill any value they might |
| // have in them, then mark them unallocatable. |
| // If any virtual regs are earlyclobber, allocate them now (before |
| // freeing inputs that are killed). |
| if (MI->isInlineAsm()) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber() || |
| !MO.getReg()) |
| continue; |
| |
| if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned DestVirtReg = MO.getReg(); |
| unsigned DestPhysReg; |
| |
| // If DestVirtReg already has a value, use it. |
| if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) |
| DestPhysReg = getReg(MBB, MI, DestVirtReg); |
| MF->getRegInfo().setPhysRegUsed(DestPhysReg); |
| markVirtRegModified(DestVirtReg); |
| getVirtRegLastUse(DestVirtReg) = |
| std::make_pair((MachineInstr*)0, 0); |
| DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) |
| << " to %reg" << DestVirtReg << "\n"); |
| MO.setReg(DestPhysReg); // Assign the earlyclobber register |
| } else { |
| unsigned Reg = MO.getReg(); |
| if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. |
| // These are extra physical register defs when a sub-register |
| // is defined (def of a sub-register is a read/mod/write of the |
| // larger registers). Ignore. |
| if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; |
| |
| MF->getRegInfo().setPhysRegUsed(Reg); |
| spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| AddToPhysRegsUseOrder(Reg); |
| |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| *SubRegs; ++SubRegs) { |
| if (PhysRegsUsed[*SubRegs] == -2) continue; |
| MF->getRegInfo().setPhysRegUsed(*SubRegs); |
| PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now |
| AddToPhysRegsUseOrder(*SubRegs); |
| } |
| } |
| } |
| } |
| |
| // If a DBG_VALUE says something is located in a spilled register, |
| // change the DBG_VALUE to be undef, which prevents the register |
| // from being reloaded here. Doing that would change the generated |
| // code, unless another use immediately follows this instruction. |
| if (MI->isDebugValue() && |
| MI->getNumOperands()==3 && MI->getOperand(0).isReg()) { |
| unsigned VirtReg = MI->getOperand(0).getReg(); |
| if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| !getVirt2PhysRegMapSlot(VirtReg)) |
| MI->getOperand(0).setReg(0U); |
| } |
| |
| // Get the used operands into registers. This has the potential to spill |
| // incoming values if we are out of registers. Note that we completely |
| // ignore physical register uses here. We assume that if an explicit |
| // physical register is referenced by the instruction, that it is guaranteed |
| // to be live-in, or the input is badly hosed. |
| // |
| SmallSet<unsigned, 4> ReloadedRegs; |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| // here we are looking for only used operands (never def&use) |
| if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && |
| TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| MI = reloadVirtReg(MBB, MI, i, ReloadedRegs, |
| isCopy ? DstCopyReg : 0); |
| } |
| |
| // If this instruction is the last user of this register, kill the |
| // value, freeing the register being used, so it doesn't need to be |
| // spilled to memory. |
| // |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) { |
| unsigned VirtReg = Kills[i]; |
| unsigned PhysReg = VirtReg; |
| if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { |
| // If the virtual register was never materialized into a register, it |
| // might not be in the map, but it won't hurt to zero it out anyway. |
| unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| PhysReg = PhysRegSlot; |
| PhysRegSlot = 0; |
| } else if (PhysRegsUsed[PhysReg] == -2) { |
| // Unallocatable register dead, ignore. |
| continue; |
| } else { |
| assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && |
| "Silently clearing a virtual register?"); |
| } |
| |
| if (!PhysReg) continue; |
| |
| DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg) |
| << "[%reg" << VirtReg <<"], removing it from live set\n"); |
| removePhysReg(PhysReg); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); |
| *SubRegs; ++SubRegs) { |
| if (PhysRegsUsed[*SubRegs] != -2) { |
| DEBUG(dbgs() << " Last use of " |
| << TRI->getName(*SubRegs) << "[%reg" << VirtReg |
| <<"], removing it from live set\n"); |
| removePhysReg(*SubRegs); |
| } |
| } |
| } |
| |
| // Loop over all of the operands of the instruction, spilling registers that |
| // are defined, and marking explicit destinations in the PhysRegsUsed map. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || MO.isImplicit() || !MO.getReg() || |
| MO.isEarlyClobber() || |
| !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. |
| // These are extra physical register defs when a sub-register |
| // is defined (def of a sub-register is a read/mod/write of the |
| // larger registers). Ignore. |
| if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; |
| |
| MF->getRegInfo().setPhysRegUsed(Reg); |
| spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| AddToPhysRegsUseOrder(Reg); |
| |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| *SubRegs; ++SubRegs) { |
| if (PhysRegsUsed[*SubRegs] == -2) continue; |
| |
| MF->getRegInfo().setPhysRegUsed(*SubRegs); |
| PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now |
| AddToPhysRegsUseOrder(*SubRegs); |
| } |
| } |
| |
| // Loop over the implicit defs, spilling them as well. |
| if (TID.ImplicitDefs) { |
| for (const unsigned *ImplicitDefs = TID.ImplicitDefs; |
| *ImplicitDefs; ++ImplicitDefs) { |
| unsigned Reg = *ImplicitDefs; |
| if (PhysRegsUsed[Reg] != -2) { |
| spillPhysReg(MBB, MI, Reg, true); |
| AddToPhysRegsUseOrder(Reg); |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| } |
| MF->getRegInfo().setPhysRegUsed(Reg); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| *SubRegs; ++SubRegs) { |
| if (PhysRegsUsed[*SubRegs] == -2) continue; |
| |
| AddToPhysRegsUseOrder(*SubRegs); |
| PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now |
| MF->getRegInfo().setPhysRegUsed(*SubRegs); |
| } |
| } |
| } |
| |
| SmallVector<unsigned, 8> DeadDefs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDead()) |
| DeadDefs.push_back(MO.getReg()); |
| } |
| |
| // Okay, we have allocated all of the source operands and spilled any values |
| // that would be destroyed by defs of this instruction. Loop over the |
| // explicit defs and assign them to a register, spilling incoming values if |
| // we need to scavenge a register. |
| // |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || !MO.getReg() || |
| MO.isEarlyClobber() || |
| !TargetRegisterInfo::isVirtualRegister(MO.getReg())) |
| continue; |
| |
| unsigned DestVirtReg = MO.getReg(); |
| unsigned DestPhysReg; |
| |
| // If DestVirtReg already has a value, use it. |
| if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) { |
| // If this is a copy try to reuse the input as the output; |
| // that will make the copy go away. |
| // If this is a copy, the source reg is a phys reg, and |
| // that reg is available, use that phys reg for DestPhysReg. |
| // If this is a copy, the source reg is a virtual reg, and |
| // the phys reg that was assigned to that virtual reg is now |
| // available, use that phys reg for DestPhysReg. (If it's now |
| // available that means this was the last use of the source.) |
| if (isCopy && |
| TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) && |
| isPhysRegAvailable(SrcCopyReg)) { |
| DestPhysReg = SrcCopyReg; |
| assignVirtToPhysReg(DestVirtReg, DestPhysReg); |
| } else if (isCopy && |
| TargetRegisterInfo::isVirtualRegister(SrcCopyReg) && |
| SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) && |
| MF->getRegInfo().getRegClass(DestVirtReg)-> |
| contains(SrcCopyPhysReg)) { |
| DestPhysReg = SrcCopyPhysReg; |
| assignVirtToPhysReg(DestVirtReg, DestPhysReg); |
| } else |
| DestPhysReg = getReg(MBB, MI, DestVirtReg); |
| } |
| MF->getRegInfo().setPhysRegUsed(DestPhysReg); |
| markVirtRegModified(DestVirtReg); |
| getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); |
| DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) |
| << " to %reg" << DestVirtReg << "\n"); |
| MO.setReg(DestPhysReg); // Assign the output register |
| } |
| |
| // If this instruction defines any registers that are immediately dead, |
| // kill them now. |
| // |
| for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { |
| unsigned VirtReg = DeadDefs[i]; |
| unsigned PhysReg = VirtReg; |
| if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { |
| unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| PhysReg = PhysRegSlot; |
| assert(PhysReg != 0); |
| PhysRegSlot = 0; |
| } else if (PhysRegsUsed[PhysReg] == -2) { |
| // Unallocatable register dead, ignore. |
| continue; |
| } else if (!PhysReg) |
| continue; |
| |
| DEBUG(dbgs() << " Register " << TRI->getName(PhysReg) |
| << " [%reg" << VirtReg |
| << "] is never used, removing it from live set\n"); |
| removePhysReg(PhysReg); |
| for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet) |
| << " [%reg" << *AliasSet |
| << "] is never used, removing it from live set\n"); |
| removePhysReg(*AliasSet); |
| } |
| } |
| } |
| |
| // Finally, if this is a noop copy instruction, zap it. (Except that if |
| // the copy is dead, it must be kept to avoid messing up liveness info for |
| // the register scavenger. See pr4100.) |
| if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, |
| SrcCopySubReg, DstCopySubReg) && |
| SrcCopyReg == DstCopyReg && DeadDefs.empty()) |
| MBB.erase(MI); |
| } |
| |
| MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); |
| |
| // Spill all physical registers holding virtual registers now. |
| for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) |
| if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { |
| if (unsigned VirtReg = PhysRegsUsed[i]) |
| spillVirtReg(MBB, MI, VirtReg, i); |
| else |
| removePhysReg(i); |
| } |
| |
| #if 0 |
| // This checking code is very expensive. |
| bool AllOk = true; |
| for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, |
| e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i) |
| if (unsigned PR = Virt2PhysRegMap[i]) { |
| cerr << "Register still mapped: " << i << " -> " << PR << "\n"; |
| AllOk = false; |
| } |
| assert(AllOk && "Virtual registers still in phys regs?"); |
| #endif |
| |
| // Clear any physical register which appear live at the end of the basic |
| // block, but which do not hold any virtual registers. e.g., the stack |
| // pointer. |
| PhysRegsUseOrder.clear(); |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool RALocal::runOnMachineFunction(MachineFunction &Fn) { |
| DEBUG(dbgs() << "Machine Function\n"); |
| MF = &Fn; |
| TM = &Fn.getTarget(); |
| TRI = TM->getRegisterInfo(); |
| TII = TM->getInstrInfo(); |
| |
| PhysRegsUsed.assign(TRI->getNumRegs(), -1); |
| |
| // At various places we want to efficiently check to see whether a register |
| // is allocatable. To handle this, we mark all unallocatable registers as |
| // being pinned down, permanently. |
| { |
| BitVector Allocable = TRI->getAllocatableSet(Fn); |
| for (unsigned i = 0, e = Allocable.size(); i != e; ++i) |
| if (!Allocable[i]) |
| PhysRegsUsed[i] = -2; // Mark the reg unallocable. |
| } |
| |
| // initialize the virtual->physical register map to have a 'null' |
| // mapping for all virtual registers |
| unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg(); |
| StackSlotForVirtReg.grow(LastVirtReg); |
| Virt2PhysRegMap.grow(LastVirtReg); |
| Virt2LastUseMap.grow(LastVirtReg); |
| VirtRegModified.resize(LastVirtReg+1 - |
| TargetRegisterInfo::FirstVirtualRegister); |
| UsedInMultipleBlocks.resize(LastVirtReg+1 - |
| TargetRegisterInfo::FirstVirtualRegister); |
| |
| // Loop over all of the basic blocks, eliminating virtual register references |
| for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| MBB != MBBe; ++MBB) |
| AllocateBasicBlock(*MBB); |
| |
| StackSlotForVirtReg.clear(); |
| PhysRegsUsed.clear(); |
| VirtRegModified.clear(); |
| UsedInMultipleBlocks.clear(); |
| Virt2PhysRegMap.clear(); |
| Virt2LastUseMap.clear(); |
| return true; |
| } |
| |
| FunctionPass *llvm::createLocalRegisterAllocator() { |
| return new RALocal(); |
| } |