| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a simple peephole instruction selector for the x86 target |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicLowering.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "Support/Statistic.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> |
| NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); |
| |
| /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 |
| /// Representation. |
| /// |
| enum TypeClass { |
| cByte, cShort, cInt, cFP, cLong |
| }; |
| } |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline TypeClass getClass(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return cByte; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return cShort; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return cInt; // Int's and pointers are class #2 |
| |
| case Type::FloatTyID: |
| case Type::DoubleTyID: return cFP; // Floating Point is #3 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: return cLong; // Longs are class #4 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return cByte; // not reached |
| } |
| } |
| |
| // getClassB - Just like getClass, but treat boolean values as bytes. |
| static inline TypeClass getClassB(const Type *Ty) { |
| if (Ty == Type::BoolTy) return cByte; |
| return getClass(Ty); |
| } |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area |
| int ReturnAddressIndex; // FrameIndex for the return address |
| |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| // MBBMap - Mapping between LLVM BB -> Machine BB |
| std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; |
| |
| ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| // First pass over the function, lower any unknown intrinsic functions |
| // with the IntrinsicLowering class. |
| LowerUnknownIntrinsicFunctionCalls(Fn); |
| |
| F = &MachineFunction::construct(&Fn, TM); |
| |
| // Create all of the machine basic blocks for the function... |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); |
| |
| BB = &F->front(); |
| |
| // Set up a frame object for the return address. This is used by the |
| // llvm.returnaddress & llvm.frameaddress intrinisics. |
| ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); |
| |
| // Copy incoming arguments off of the stack... |
| LoadArgumentsToVirtualRegs(Fn); |
| |
| // Instruction select everything except PHI nodes |
| visit(Fn); |
| |
| // Select the PHI nodes |
| SelectPHINodes(); |
| |
| // Insert the FP_REG_KILL instructions into blocks that need them. |
| InsertFPRegKills(); |
| |
| RegMap.clear(); |
| MBBMap.clear(); |
| F = 0; |
| // We always build a machine code representation for the function |
| return true; |
| } |
| |
| virtual const char *getPassName() const { |
| return "X86 Simple Instruction Selection"; |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = MBBMap[&LLVM_BB]; |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void LowerUnknownIntrinsicFunctionCalls(Function &F); |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function |
| /// from the stack into virtual registers. |
| /// |
| void LoadArgumentsToVirtualRegs(Function &F); |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, |
| /// not the current one. |
| /// |
| void SelectPHINodes(); |
| |
| /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks |
| /// that need them. This only occurs due to the floating point stackifier |
| /// not being aggressive enough to handle arbitrary global stackification. |
| /// |
| void InsertFPRegKills(); |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed X86 code for each instruction. |
| // |
| |
| // Control flow operators |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| |
| struct ValueRecord { |
| Value *Val; |
| unsigned Reg; |
| const Type *Ty; |
| ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} |
| ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} |
| }; |
| void doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args); |
| void visitCallInst(CallInst &I); |
| void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); |
| |
| // Arithmetic operators |
| void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); |
| void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } |
| void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } |
| void visitMul(BinaryOperator &B); |
| |
| void visitDiv(BinaryOperator &B) { visitDivRem(B); } |
| void visitRem(BinaryOperator &B) { visitDivRem(B); } |
| void visitDivRem(BinaryOperator &B); |
| |
| // Bitwise operators |
| void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } |
| void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } |
| void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } |
| |
| // Comparison operators... |
| void visitSetCondInst(SetCondInst &I); |
| unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI); |
| void visitSelectInst(SelectInst &SI); |
| |
| |
| // Memory Instructions |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitMallocInst(MallocInst &I); |
| void visitFreeInst(FreeInst &I); |
| |
| // Other operators |
| void visitShiftInst(ShiftInst &I); |
| void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass |
| void visitCastInst(CastInst &I); |
| void visitVANextInst(VANextInst &I); |
| void visitVAArgInst(VAArgInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| /// promote32 - Make a value 32-bits wide, and put it somewhere. |
| /// |
| void promote32(unsigned targetReg, const ValueRecord &VR); |
| |
| /// getAddressingMode - Get the addressing mode to use to address the |
| /// specified value. The returned value should be used with addFullAddress. |
| void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, |
| unsigned &IndexReg, unsigned &Disp); |
| |
| |
| /// getGEPIndex - This is used to fold GEP instructions into X86 addressing |
| /// expressions. |
| void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| std::vector<Value*> &GEPOps, |
| std::vector<const Type*> &GEPTypes, unsigned &BaseReg, |
| unsigned &Scale, unsigned &IndexReg, unsigned &Disp); |
| |
| /// isGEPFoldable - Return true if the specified GEP can be completely |
| /// folded into the addressing mode of a load/store or lea instruction. |
| bool isGEPFoldable(MachineBasicBlock *MBB, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned &BaseReg, |
| unsigned &Scale, unsigned &IndexReg, unsigned &Disp); |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg); |
| |
| /// emitCastOperation - Common code shared between visitCastInst and |
| /// constant expression cast support. |
| /// |
| void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, unsigned TargetReg); |
| |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void emitSimpleBinaryOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned TargetReg); |
| |
| void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned Op0Reg, unsigned Op1Reg); |
| void doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned Op0Reg, unsigned Op1Val); |
| |
| void emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned TargetReg); |
| |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and |
| /// constant expression support. |
| /// |
| void emitSetCCOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned Opcode, |
| unsigned TargetReg); |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| /// |
| void emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg); |
| |
| /// emitSelectOperation - Common code shared between visitSelectInst and the |
| /// constant expression support. |
| void emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg); |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI, |
| Constant *C, unsigned Reg); |
| |
| /// makeAnotherReg - This method returns the next register number we haven't |
| /// yet used. |
| /// |
| /// Long values are handled somewhat specially. They are always allocated |
| /// as pairs of 32 bit integer values. The register number returned is the |
| /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits |
| /// of the long value. |
| /// |
| unsigned makeAnotherReg(const Type *Ty) { |
| assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) && |
| "Current target doesn't have X86 reg info??"); |
| const X86RegisterInfo *MRI = |
| static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); |
| if (Ty == Type::LongTy || Ty == Type::ULongTy) { |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); |
| // Create the lower part |
| F->getSSARegMap()->createVirtualRegister(RC); |
| // Create the upper part. |
| return F->getSSARegMap()->createVirtualRegister(RC)-1; |
| } |
| |
| // Add the mapping of regnumber => reg class to MachineFunction |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); |
| return F->getSSARegMap()->createVirtualRegister(RC); |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. This |
| /// is guaranteed to produce the same register number for a particular value |
| /// every time it is queried. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| // Just append to the end of the current bb. |
| MachineBasicBlock::iterator It = BB->end(); |
| return getReg(V, BB, It); |
| } |
| unsigned getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt) { |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| copyConstantToRegister(MBB, IPt, C, Reg); |
| return Reg; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| // Move the address of the global into the register |
| BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); |
| return Reg; |
| } else if (CastInst *CI = dyn_cast<CastInst>(V)) { |
| // Do not emit noop casts at all. |
| if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) |
| return getReg(CI->getOperand(0), MBB, IPt); |
| } |
| |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) { |
| Reg = makeAnotherReg(V->getType()); |
| RegMap[V] = Reg; |
| } |
| |
| return Reg; |
| } |
| }; |
| } |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Constant *C, unsigned R) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| unsigned Class = 0; |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| emitGEPOperation(MBB, IP, CE->getOperand(0), |
| CE->op_begin()+1, CE->op_end(), R); |
| return; |
| case Instruction::Cast: |
| emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); |
| return; |
| |
| case Instruction::Xor: ++Class; // FALL THROUGH |
| case Instruction::Or: ++Class; // FALL THROUGH |
| case Instruction::And: ++Class; // FALL THROUGH |
| case Instruction::Sub: ++Class; // FALL THROUGH |
| case Instruction::Add: |
| emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| Class, R); |
| return; |
| |
| case Instruction::Mul: |
| emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R); |
| return; |
| |
| case Instruction::Div: |
| case Instruction::Rem: |
| emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode() == Instruction::Div, R); |
| return; |
| |
| case Instruction::SetNE: |
| case Instruction::SetEQ: |
| case Instruction::SetLT: |
| case Instruction::SetGT: |
| case Instruction::SetLE: |
| case Instruction::SetGE: |
| emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode(), R); |
| return; |
| |
| case Instruction::Shl: |
| case Instruction::Shr: |
| emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode() == Instruction::Shl, CE->getType(), R); |
| return; |
| |
| case Instruction::Select: |
| emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOperand(2), R); |
| return; |
| |
| default: |
| std::cerr << "Offending expr: " << C << "\n"; |
| assert(0 && "Constant expression not yet handled!\n"); |
| } |
| } |
| |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClassB(C->getType()); |
| |
| if (Class == cLong) { |
| // Copy the value into the register pair. |
| uint64_t Val = cast<ConstantInt>(C)->getRawValue(); |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); |
| return; |
| } |
| |
| assert(Class <= cInt && "Type not handled yet!"); |
| |
| static const unsigned IntegralOpcodeTab[] = { |
| X86::MOV8ri, X86::MOV16ri, X86::MOV32ri |
| }; |
| |
| if (C->getType() == Type::BoolTy) { |
| BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); |
| } else { |
| ConstantInt *CI = cast<ConstantInt>(C); |
| BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); |
| } |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| if (CFP->isExactlyValue(+0.0)) |
| BuildMI(*MBB, IP, X86::FLD0, 0, R); |
| else if (CFP->isExactlyValue(+1.0)) |
| BuildMI(*MBB, IP, X86::FLD1, 0, R); |
| else { |
| // Otherwise we need to spill the constant to memory... |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; |
| addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); |
| } |
| |
| } else if (isa<ConstantPointerNull>(C)) { |
| // Copy zero (null pointer) to the register. |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); |
| } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) { |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue()); |
| } else { |
| std::cerr << "Offending constant: " << C << "\n"; |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from |
| /// the stack into virtual registers. |
| /// |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { |
| // Emit instructions to load the arguments... On entry to a function on the |
| // X86, the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is four bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| MachineFrameInfo *MFI = F->getFrameInfo(); |
| |
| for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { |
| bool ArgLive = !I->use_empty(); |
| unsigned Reg = ArgLive ? getReg(*I) : 0; |
| int FI; // Frame object index |
| |
| switch (getClassB(I->getType())) { |
| case cByte: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(1, ArgOffset); |
| addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); |
| } |
| break; |
| case cShort: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(2, ArgOffset); |
| addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); |
| } |
| break; |
| case cInt: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); |
| } |
| break; |
| case cLong: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); |
| addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); |
| } |
| ArgOffset += 4; // longs require 4 additional bytes |
| break; |
| case cFP: |
| if (ArgLive) { |
| unsigned Opcode; |
| if (I->getType() == Type::FloatTy) { |
| Opcode = X86::FLD32m; |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| } else { |
| Opcode = X86::FLD64m; |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| } |
| addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); |
| } |
| if (I->getType() == Type::DoubleTy) |
| ArgOffset += 4; // doubles require 4 additional bytes |
| break; |
| default: |
| assert(0 && "Unhandled argument type!"); |
| } |
| ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... |
| } |
| |
| // If the function takes variable number of arguments, add a frame offset for |
| // the start of the first vararg value... this is used to expand |
| // llvm.va_start. |
| if (Fn.getFunctionType()->isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| } |
| |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, not |
| /// the current one. |
| /// |
| void ISel::SelectPHINodes() { |
| const TargetInstrInfo &TII = TM.getInstrInfo(); |
| const Function &LF = *F->getFunction(); // The LLVM function... |
| for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { |
| const BasicBlock *BB = I; |
| MachineBasicBlock &MBB = *MBBMap[I]; |
| |
| // Loop over all of the PHI nodes in the LLVM basic block... |
| MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); |
| for (BasicBlock::const_iterator I = BB->begin(); |
| PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { |
| |
| // Create a new machine instr PHI node, and insert it. |
| unsigned PHIReg = getReg(*PN); |
| MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, |
| X86::PHI, PN->getNumOperands(), PHIReg); |
| |
| MachineInstr *LongPhiMI = 0; |
| if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) |
| LongPhiMI = BuildMI(MBB, PHIInsertPoint, |
| X86::PHI, PN->getNumOperands(), PHIReg+1); |
| |
| // PHIValues - Map of blocks to incoming virtual registers. We use this |
| // so that we only initialize one incoming value for a particular block, |
| // even if the block has multiple entries in the PHI node. |
| // |
| std::map<MachineBasicBlock*, unsigned> PHIValues; |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; |
| unsigned ValReg; |
| std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = |
| PHIValues.lower_bound(PredMBB); |
| |
| if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { |
| // We already inserted an initialization of the register for this |
| // predecessor. Recycle it. |
| ValReg = EntryIt->second; |
| |
| } else { |
| // Get the incoming value into a virtual register. |
| // |
| Value *Val = PN->getIncomingValue(i); |
| |
| // If this is a constant or GlobalValue, we may have to insert code |
| // into the basic block to compute it into a virtual register. |
| if (isa<Constant>(Val) || isa<GlobalValue>(Val)) { |
| if (isa<ConstantExpr>(Val)) { |
| // Because we don't want to clobber any values which might be in |
| // physical registers with the computation of this constant (which |
| // might be arbitrarily complex if it is a constant expression), |
| // just insert the computation at the top of the basic block. |
| MachineBasicBlock::iterator PI = PredMBB->begin(); |
| |
| // Skip over any PHI nodes though! |
| while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) |
| ++PI; |
| |
| ValReg = getReg(Val, PredMBB, PI); |
| } else { |
| // Simple constants get emitted at the end of the basic block, |
| // before any terminator instructions. We "know" that the code to |
| // move a constant into a register will never clobber any flags. |
| ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); |
| } |
| } else { |
| ValReg = getReg(Val); |
| } |
| |
| // Remember that we inserted a value for this PHI for this predecessor |
| PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); |
| } |
| |
| PhiMI->addRegOperand(ValReg); |
| PhiMI->addMachineBasicBlockOperand(PredMBB); |
| if (LongPhiMI) { |
| LongPhiMI->addRegOperand(ValReg+1); |
| LongPhiMI->addMachineBasicBlockOperand(PredMBB); |
| } |
| } |
| |
| // Now that we emitted all of the incoming values for the PHI node, make |
| // sure to reposition the InsertPoint after the PHI that we just added. |
| // This is needed because we might have inserted a constant into this |
| // block, right after the PHI's which is before the old insert point! |
| PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; |
| ++PHIInsertPoint; |
| } |
| } |
| } |
| |
| /// RequiresFPRegKill - The floating point stackifier pass cannot insert |
| /// compensation code on critical edges. As such, it requires that we kill all |
| /// FP registers on the exit from any blocks that either ARE critical edges, or |
| /// branch to a block that has incoming critical edges. |
| /// |
| /// Note that this kill instruction will eventually be eliminated when |
| /// restrictions in the stackifier are relaxed. |
| /// |
| static bool RequiresFPRegKill(const MachineBasicBlock *MBB) { |
| #if 0 |
| const BasicBlock *BB = MBB->getBasicBlock (); |
| for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { |
| const BasicBlock *Succ = *SI; |
| pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); |
| ++PI; // Block have at least one predecessory |
| if (PI != PE) { // If it has exactly one, this isn't crit edge |
| // If this block has more than one predecessor, check all of the |
| // predecessors to see if they have multiple successors. If so, then the |
| // block we are analyzing needs an FPRegKill. |
| for (PI = pred_begin(Succ); PI != PE; ++PI) { |
| const BasicBlock *Pred = *PI; |
| succ_const_iterator SI2 = succ_begin(Pred); |
| ++SI2; // There must be at least one successor of this block. |
| if (SI2 != succ_end(Pred)) |
| return true; // Yes, we must insert the kill on this edge. |
| } |
| } |
| } |
| // If we got this far, there is no need to insert the kill instruction. |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that |
| // need them. This only occurs due to the floating point stackifier not being |
| // aggressive enough to handle arbitrary global stackification. |
| // |
| // Currently we insert an FP_REG_KILL instruction into each block that uses or |
| // defines a floating point virtual register. |
| // |
| // When the global register allocators (like linear scan) finally update live |
| // variable analysis, we can keep floating point values in registers across |
| // portions of the CFG that do not involve critical edges. This will be a big |
| // win, but we are waiting on the global allocators before we can do this. |
| // |
| // With a bit of work, the floating point stackifier pass can be enhanced to |
| // break critical edges as needed (to make a place to put compensation code), |
| // but this will require some infrastructure improvements as well. |
| // |
| void ISel::InsertFPRegKills() { |
| SSARegMap &RegMap = *F->getSSARegMap(); |
| |
| for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { |
| for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = I->getOperand(i); |
| if (MO.isRegister() && MO.getReg()) { |
| unsigned Reg = MO.getReg(); |
| if (MRegisterInfo::isVirtualRegister(Reg)) |
| if (RegMap.getRegClass(Reg)->getSize() == 10) |
| goto UsesFPReg; |
| } |
| } |
| // If we haven't found an FP register use or def in this basic block, check |
| // to see if any of our successors has an FP PHI node, which will cause a |
| // copy to be inserted into this block. |
| for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), |
| SE = BB->succ_end(); SI != SE; ++SI) { |
| MachineBasicBlock *SBB = *SI; |
| for (MachineBasicBlock::iterator I = SBB->begin(); |
| I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { |
| if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) |
| goto UsesFPReg; |
| } |
| } |
| continue; |
| UsesFPReg: |
| // Okay, this block uses an FP register. If the block has successors (ie, |
| // it's not an unwind/return), insert the FP_REG_KILL instruction. |
| if (BB->succ_size () && RequiresFPRegKill(BB)) { |
| BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); |
| ++NumFPKill; |
| } |
| } |
| } |
| |
| |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold |
| // it into the conditional branch or select instruction which is the only user |
| // of the cc instruction. This is the case if the conditional branch is the |
| // only user of the setcc, and if the setcc is in the same basic block as the |
| // conditional branch. We also don't handle long arguments below, so we reject |
| // them here as well. |
| // |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { |
| if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) |
| if (SCI->hasOneUse()) { |
| Instruction *User = cast<Instruction>(SCI->use_back()); |
| if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && |
| SCI->getParent() == User->getParent() && |
| (getClassB(SCI->getOperand(0)->getType()) != cLong || |
| SCI->getOpcode() == Instruction::SetEQ || |
| SCI->getOpcode() == Instruction::SetNE)) |
| return SCI; |
| } |
| return 0; |
| } |
| |
| // Return a fixed numbering for setcc instructions which does not depend on the |
| // order of the opcodes. |
| // |
| static unsigned getSetCCNumber(unsigned Opcode) { |
| switch(Opcode) { |
| default: assert(0 && "Unknown setcc instruction!"); |
| case Instruction::SetEQ: return 0; |
| case Instruction::SetNE: return 1; |
| case Instruction::SetLT: return 2; |
| case Instruction::SetGE: return 3; |
| case Instruction::SetGT: return 4; |
| case Instruction::SetLE: return 5; |
| } |
| } |
| |
| // LLVM -> X86 signed X86 unsigned |
| // ----- ---------- ------------ |
| // seteq -> sete sete |
| // setne -> setne setne |
| // setlt -> setl setb |
| // setge -> setge setae |
| // setgt -> setg seta |
| // setle -> setle setbe |
| // ---- |
| // sets // Used by comparison with 0 optimization |
| // setns |
| static const unsigned SetCCOpcodeTab[2][8] = { |
| { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, |
| 0, 0 }, |
| { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, |
| X86::SETSr, X86::SETNSr }, |
| }; |
| |
| // EmitComparison - This function emits a comparison of the two operands, |
| // returning the extended setcc code to use. |
| unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP) { |
| // The arguments are already supposed to be of the same type. |
| const Type *CompTy = Op0->getType(); |
| unsigned Class = getClassB(CompTy); |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // Special case handling of: cmp R, i |
| if (isa<ConstantPointerNull>(Op1)) { |
| if (OpNum < 2) // seteq/setne -> test |
| BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r); |
| else |
| BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0); |
| return OpNum; |
| |
| } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| if (Class == cByte || Class == cShort || Class == cInt) { |
| unsigned Op1v = CI->getRawValue(); |
| |
| // Mask off any upper bits of the constant, if there are any... |
| Op1v &= (1ULL << (8 << Class)) - 1; |
| |
| // If this is a comparison against zero, emit more efficient code. We |
| // can't handle unsigned comparisons against zero unless they are == or |
| // !=. These should have been strength reduced already anyway. |
| if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { |
| static const unsigned TESTTab[] = { |
| X86::TEST8rr, X86::TEST16rr, X86::TEST32rr |
| }; |
| BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); |
| |
| if (OpNum == 2) return 6; // Map jl -> js |
| if (OpNum == 3) return 7; // Map jg -> jns |
| return OpNum; |
| } |
| |
| static const unsigned CMPTab[] = { |
| X86::CMP8ri, X86::CMP16ri, X86::CMP32ri |
| }; |
| |
| BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); |
| return OpNum; |
| } else { |
| assert(Class == cLong && "Unknown integer class!"); |
| unsigned LowCst = CI->getRawValue(); |
| unsigned HiCst = CI->getRawValue() >> 32; |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoTmp = Op0r; |
| if (LowCst != 0) { |
| LoTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst); |
| } |
| unsigned HiTmp = Op0r+1; |
| if (HiCst != 0) { |
| HiTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst); |
| } |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| return OpNum; |
| } else { |
| // Emit a sequence of code which compares the high and low parts once |
| // each, then uses a conditional move to handle the overflow case. For |
| // example, a setlt for long would generate code like this: |
| // |
| // AL = lo(op1) < lo(op2) // Signedness depends on operands |
| // BL = hi(op1) < hi(op2) // Always unsigned comparison |
| // dest = hi(op1) == hi(op2) ? AL : BL; |
| // |
| |
| // FIXME: This would be much better if we had hierarchical register |
| // classes! Until then, hardcode registers so that we can deal with |
| // their aliases (because we don't have conditional byte moves). |
| // |
| BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst); |
| BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); |
| BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst); |
| BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL); |
| BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); |
| BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); |
| BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) |
| .addReg(X86::AX); |
| // NOTE: visitSetCondInst knows that the value is dumped into the BL |
| // register at this point for long values... |
| return OpNum; |
| } |
| } |
| } |
| |
| // Special case handling of comparison against +/- 0.0 |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1)) |
| if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { |
| BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); |
| BuildMI(*MBB, IP, X86::FNSTSW8r, 0); |
| BuildMI(*MBB, IP, X86::SAHF, 1); |
| return OpNum; |
| } |
| |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| switch (Class) { |
| default: assert(0 && "Unknown type class!"); |
| // Emit: cmp <var1>, <var2> (do the comparison). We can |
| // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with |
| // 32-bit. |
| case cByte: |
| BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); |
| break; |
| case cShort: |
| BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); |
| break; |
| case cInt: |
| BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); |
| break; |
| case cFP: |
| if (0) { // for processors prior to the P6 |
| BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, X86::FNSTSW8r, 0); |
| BuildMI(*MBB, IP, X86::SAHF, 1); |
| } else { |
| BuildMI(*MBB, IP, X86::FpUCOMI, 2).addReg(Op0r).addReg(Op1r); |
| } |
| break; |
| |
| case cLong: |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoTmp = makeAnotherReg(Type::IntTy); |
| unsigned HiTmp = makeAnotherReg(Type::IntTy); |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| break; // Allow the sete or setne to be generated from flags set by OR |
| } else { |
| // Emit a sequence of code which compares the high and low parts once |
| // each, then uses a conditional move to handle the overflow case. For |
| // example, a setlt for long would generate code like this: |
| // |
| // AL = lo(op1) < lo(op2) // Signedness depends on operands |
| // BL = hi(op1) < hi(op2) // Always unsigned comparison |
| // dest = hi(op1) == hi(op2) ? AL : BL; |
| // |
| |
| // FIXME: This would be much better if we had hierarchical register |
| // classes! Until then, hardcode registers so that we can deal with their |
| // aliases (because we don't have conditional byte moves). |
| // |
| BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); |
| BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); |
| BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); |
| BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); |
| BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) |
| .addReg(X86::AX); |
| // NOTE: visitSetCondInst knows that the value is dumped into the BL |
| // register at this point for long values... |
| return OpNum; |
| } |
| } |
| return OpNum; |
| } |
| |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized |
| /// register, then move it to wherever the result should be. |
| /// |
| void ISel::visitSetCondInst(SetCondInst &I) { |
| if (canFoldSetCCIntoBranchOrSelect(&I)) |
| return; // Fold this into a branch or select. |
| |
| unsigned DestReg = getReg(I); |
| MachineBasicBlock::iterator MII = BB->end(); |
| emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), |
| DestReg); |
| } |
| |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and |
| /// constant expression support. |
| /// |
| void ISel::emitSetCCOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned Opcode, |
| unsigned TargetReg) { |
| unsigned OpNum = getSetCCNumber(Opcode); |
| OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); |
| |
| const Type *CompTy = Op0->getType(); |
| unsigned CompClass = getClassB(CompTy); |
| bool isSigned = CompTy->isSigned() && CompClass != cFP; |
| |
| if (CompClass != cLong || OpNum < 2) { |
| // Handle normal comparisons with a setcc instruction... |
| BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); |
| } else { |
| // Handle long comparisons by copying the value which is already in BL into |
| // the register we want... |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); |
| } |
| } |
| |
| void ISel::visitSelectInst(SelectInst &SI) { |
| unsigned DestReg = getReg(SI); |
| MachineBasicBlock::iterator MII = BB->end(); |
| emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), |
| SI.getFalseValue(), DestReg); |
| } |
| |
| /// emitSelect - Common code shared between visitSelectInst and the constant |
| /// expression support. |
| void ISel::emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg) { |
| unsigned SelectClass = getClassB(TrueVal->getType()); |
| |
| // We don't support 8-bit conditional moves. If we have incoming constants, |
| // transform them into 16-bit constants to avoid having a run-time conversion. |
| if (SelectClass == cByte) { |
| if (Constant *T = dyn_cast<Constant>(TrueVal)) |
| TrueVal = ConstantExpr::getCast(T, Type::ShortTy); |
| if (Constant *F = dyn_cast<Constant>(FalseVal)) |
| FalseVal = ConstantExpr::getCast(F, Type::ShortTy); |
| } |
| |
| unsigned TrueReg = getReg(TrueVal, MBB, IP); |
| unsigned FalseReg = getReg(FalseVal, MBB, IP); |
| if (TrueReg == FalseReg) { |
| static const unsigned Opcode[] = { |
| X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr |
| }; |
| BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg); |
| if (SelectClass == cLong) |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1); |
| return; |
| } |
| |
| unsigned Opcode; |
| if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { |
| // We successfully folded the setcc into the select instruction. |
| |
| unsigned OpNum = getSetCCNumber(SCI->getOpcode()); |
| OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, |
| IP); |
| |
| const Type *CompTy = SCI->getOperand(0)->getType(); |
| bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; |
| |
| // LLVM -> X86 signed X86 unsigned |
| // ----- ---------- ------------ |
| // seteq -> cmovNE cmovNE |
| // setne -> cmovE cmovE |
| // setlt -> cmovGE cmovAE |
| // setge -> cmovL cmovB |
| // setgt -> cmovLE cmovBE |
| // setle -> cmovG cmovA |
| // ---- |
| // cmovNS // Used by comparison with 0 optimization |
| // cmovS |
| |
| switch (SelectClass) { |
| default: assert(0 && "Unknown value class!"); |
| case cFP: { |
| // Annoyingly, we don't have a full set of floating point conditional |
| // moves. :( |
| static const unsigned OpcodeTab[2][8] = { |
| { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB, |
| X86::FCMOVBE, X86::FCMOVA, 0, 0 }, |
| { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 }, |
| }; |
| Opcode = OpcodeTab[isSigned][OpNum]; |
| |
| // If opcode == 0, we hit a case that we don't support. Output a setcc |
| // and compare the result against zero. |
| if (Opcode == 0) { |
| unsigned CompClass = getClassB(CompTy); |
| unsigned CondReg; |
| if (CompClass != cLong || OpNum < 2) { |
| CondReg = makeAnotherReg(Type::BoolTy); |
| // Handle normal comparisons with a setcc instruction... |
| BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg); |
| } else { |
| // Long comparisons end up in the BL register. |
| CondReg = X86::BL; |
| } |
| |
| BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); |
| Opcode = X86::FCMOVE; |
| } |
| break; |
| } |
| case cByte: |
| case cShort: { |
| static const unsigned OpcodeTab[2][8] = { |
| { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr, |
| X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 }, |
| { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr, |
| X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr }, |
| }; |
| Opcode = OpcodeTab[isSigned][OpNum]; |
| break; |
| } |
| case cInt: |
| case cLong: { |
| static const unsigned OpcodeTab[2][8] = { |
| { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr, |
| X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 }, |
| { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr, |
| X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr }, |
| }; |
| Opcode = OpcodeTab[isSigned][OpNum]; |
| break; |
| } |
| } |
| } else { |
| // Get the value being branched on, and use it to set the condition codes. |
| unsigned CondReg = getReg(Cond, MBB, IP); |
| BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); |
| switch (SelectClass) { |
| default: assert(0 && "Unknown value class!"); |
| case cFP: Opcode = X86::FCMOVE; break; |
| case cByte: |
| case cShort: Opcode = X86::CMOVE16rr; break; |
| case cInt: |
| case cLong: Opcode = X86::CMOVE32rr; break; |
| } |
| } |
| |
| unsigned RealDestReg = DestReg; |
| |
| |
| // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of |
| // this, we have to promote the incoming values to 16 bits, perform a 16-bit |
| // cmove, then truncate the result. |
| if (SelectClass == cByte) { |
| DestReg = makeAnotherReg(Type::ShortTy); |
| if (getClassB(TrueVal->getType()) == cByte) { |
| // Promote the true value, by storing it into AL, and reading from AX. |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg); |
| BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0); |
| TrueReg = makeAnotherReg(Type::ShortTy); |
| BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX); |
| } |
| if (getClassB(FalseVal->getType()) == cByte) { |
| // Promote the true value, by storing it into CL, and reading from CX. |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg); |
| BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0); |
| FalseReg = makeAnotherReg(Type::ShortTy); |
| BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX); |
| } |
| } |
| |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg); |
| |
| switch (SelectClass) { |
| case cByte: |
| // We did the computation with 16-bit registers. Truncate back to our |
| // result by copying into AX then copying out AL. |
| BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg); |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL); |
| break; |
| case cLong: |
| // Move the upper half of the value as well. |
| BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1); |
| break; |
| } |
| } |
| |
| |
| |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide |
| /// operand, in the specified target register. |
| /// |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { |
| bool isUnsigned = VR.Ty->isUnsigned(); |
| |
| Value *Val = VR.Val; |
| const Type *Ty = VR.Ty; |
| if (Val) { |
| if (Constant *C = dyn_cast<Constant>(Val)) { |
| Val = ConstantExpr::getCast(C, Type::IntTy); |
| Ty = Type::IntTy; |
| } |
| |
| // If this is a simple constant, just emit a MOVri directly to avoid the |
| // copy. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| int TheVal = CI->getRawValue() & 0xFFFFFFFF; |
| BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal); |
| return; |
| } |
| } |
| |
| // Make sure we have the register number for this value... |
| unsigned Reg = Val ? getReg(Val) : VR.Reg; |
| |
| switch (getClassB(Ty)) { |
| case cByte: |
| // Extend value into target register (8->32) |
| if (isUnsigned) |
| BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); |
| else |
| BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); |
| break; |
| case cShort: |
| // Extend value into target register (16->32) |
| if (isUnsigned) |
| BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); |
| else |
| BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); |
| break; |
| case cInt: |
| // Move value into target register (32->32) |
| BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); |
| break; |
| default: |
| assert(0 && "Unpromotable operand class in promote32"); |
| } |
| } |
| |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, |
| /// we have the following possibilities: |
| /// |
| /// ret void: No return value, simply emit a 'ret' instruction |
| /// ret sbyte, ubyte : Extend value into EAX and return |
| /// ret short, ushort: Extend value into EAX and return |
| /// ret int, uint : Move value into EAX and return |
| /// ret pointer : Move value into EAX and return |
| /// ret long, ulong : Move value into EAX/EDX and return |
| /// ret float/double : Top of FP stack |
| /// |
| void ISel::visitReturnInst(ReturnInst &I) { |
| if (I.getNumOperands() == 0) { |
| BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction |
| return; |
| } |
| |
| Value *RetVal = I.getOperand(0); |
| switch (getClassB(RetVal->getType())) { |
| case cByte: // integral return values: extend or move into EAX and return |
| case cShort: |
| case cInt: |
| promote32(X86::EAX, ValueRecord(RetVal)); |
| // Declare that EAX is live on exit |
| BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); |
| break; |
| case cFP: { // Floats & Doubles: Return in ST(0) |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); |
| // Declare that top-of-stack is live on exit |
| BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); |
| break; |
| } |
| case cLong: { |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); |
| // Declare that EAX & EDX are live on exit |
| BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) |
| .addReg(X86::ESP); |
| break; |
| } |
| default: |
| visitInstruction(I); |
| } |
| // Emit a 'ret' instruction |
| BuildMI(BB, X86::RET, 0); |
| } |
| |
| // getBlockAfter - Return the basic block which occurs lexically after the |
| // specified one. |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) { |
| Function::iterator I = BB; ++I; // Get iterator to next block |
| return I != BB->getParent()->end() ? &*I : 0; |
| } |
| |
| /// visitBranchInst - Handle conditional and unconditional branches here. Note |
| /// that since code layout is frozen at this point, that if we are trying to |
| /// jump to a block that is the immediate successor of the current block, we can |
| /// just make a fall-through (but we don't currently). |
| /// |
| void ISel::visitBranchInst(BranchInst &BI) { |
| // Update machine-CFG edges |
| BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); |
| if (BI.isConditional()) |
| BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); |
| |
| BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one |
| |
| if (!BI.isConditional()) { // Unconditional branch? |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); |
| return; |
| } |
| |
| // See if we can fold the setcc into the branch itself... |
| SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); |
| if (SCI == 0) { |
| // Nope, cannot fold setcc into this branch. Emit a branch on a condition |
| // computed some other way... |
| unsigned condReg = getReg(BI.getCondition()); |
| BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg); |
| if (BI.getSuccessor(1) == NextBB) { |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0)); |
| } else { |
| BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1)); |
| |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); |
| } |
| return; |
| } |
| |
| unsigned OpNum = getSetCCNumber(SCI->getOpcode()); |
| MachineBasicBlock::iterator MII = BB->end(); |
| OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); |
| |
| const Type *CompTy = SCI->getOperand(0)->getType(); |
| bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; |
| |
| |
| // LLVM -> X86 signed X86 unsigned |
| // ----- ---------- ------------ |
| // seteq -> je je |
| // setne -> jne jne |
| // setlt -> jl jb |
| // setge -> jge jae |
| // setgt -> jg ja |
| // setle -> jle jbe |
| // ---- |
| // js // Used by comparison with 0 optimization |
| // jns |
| |
| static const unsigned OpcodeTab[2][8] = { |
| { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, |
| { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, |
| X86::JS, X86::JNS }, |
| }; |
| |
| if (BI.getSuccessor(0) != NextBB) { |
| BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0)); |
| if (BI.getSuccessor(1) != NextBB) |
| BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1)); |
| } else { |
| // Change to the inverse condition... |
| if (BI.getSuccessor(1) != NextBB) { |
| OpNum ^= 1; |
| BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1)); |
| } |
| } |
| } |
| |
| |
| /// doCall - This emits an abstract call instruction, setting up the arguments |
| /// and the return value as appropriate. For the actual function call itself, |
| /// it inserts the specified CallMI instruction into the stream. |
| /// |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args) { |
| |
| // Count how many bytes are to be pushed on the stack... |
| unsigned NumBytes = 0; |
| |
| if (!Args.empty()) { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: case cShort: case cInt: |
| NumBytes += 4; break; |
| case cLong: |
| NumBytes += 8; break; |
| case cFP: |
| NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| // Adjust the stack pointer for the new arguments... |
| BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| unsigned ArgReg; |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: |
| case cShort: |
| if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { |
| // Zero/Sign extend constant, then stuff into memory. |
| ConstantInt *Val = cast<ConstantInt>(Args[i].Val); |
| Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy)); |
| addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) |
| .addImm(Val->getRawValue() & 0xFFFFFFFF); |
| } else { |
| // Promote arg to 32 bits wide into a temporary register... |
| ArgReg = makeAnotherReg(Type::UIntTy); |
| promote32(ArgReg, Args[i]); |
| addRegOffset(BuildMI(BB, X86::MOV32mr, 5), |
| X86::ESP, ArgOffset).addReg(ArgReg); |
| } |
| break; |
| case cInt: |
| if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { |
| unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); |
| addRegOffset(BuildMI(BB, X86::MOV32mi, 5), |
| X86::ESP, ArgOffset).addImm(Val); |
| } else { |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| addRegOffset(BuildMI(BB, X86::MOV32mr, 5), |
| X86::ESP, ArgOffset).addReg(ArgReg); |
| } |
| break; |
| case cLong: |
| if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { |
| uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); |
| addRegOffset(BuildMI(BB, X86::MOV32mi, 5), |
| X86::ESP, ArgOffset).addImm(Val & ~0U); |
| addRegOffset(BuildMI(BB, X86::MOV32mi, 5), |
| X86::ESP, ArgOffset+4).addImm(Val >> 32ULL); |
| } else { |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| addRegOffset(BuildMI(BB, X86::MOV32mr, 5), |
| X86::ESP, ArgOffset).addReg(ArgReg); |
| addRegOffset(BuildMI(BB, X86::MOV32mr, 5), |
| X86::ESP, ArgOffset+4).addReg(ArgReg+1); |
| } |
| ArgOffset += 4; // 8 byte entry, not 4. |
| break; |
| |
| case cFP: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| if (Args[i].Ty == Type::FloatTy) { |
| addRegOffset(BuildMI(BB, X86::FST32m, 5), |
| X86::ESP, ArgOffset).addReg(ArgReg); |
| } else { |
| assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); |
| addRegOffset(BuildMI(BB, X86::FST64m, 5), |
| X86::ESP, ArgOffset).addReg(ArgReg); |
| ArgOffset += 4; // 8 byte entry, not 4. |
| } |
| break; |
| |
| default: assert(0 && "Unknown class!"); |
| } |
| ArgOffset += 4; |
| } |
| } else { |
| BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); |
| } |
| |
| BB->push_back(CallMI); |
| |
| BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); |
| |
| // If there is a return value, scavenge the result from the location the call |
| // leaves it in... |
| // |
| if (Ret.Ty != Type::VoidTy) { |
| unsigned DestClass = getClassB(Ret.Ty); |
| switch (DestClass) { |
| case cByte: |
| case cShort: |
| case cInt: { |
| // Integral results are in %eax, or the appropriate portion |
| // thereof. |
| static const unsigned regRegMove[] = { |
| X86::MOV8rr, X86::MOV16rr, X86::MOV32rr |
| }; |
| static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; |
| BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); |
| break; |
| } |
| case cFP: // Floating-point return values live in %ST(0) |
| BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); |
| break; |
| case cLong: // Long values are left in EDX:EAX |
| BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); |
| BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| } |
| } |
| |
| |
| /// visitCallInst - Push args on stack and do a procedure call instruction. |
| void ISel::visitCallInst(CallInst &CI) { |
| MachineInstr *TheCall; |
| if (Function *F = CI.getCalledFunction()) { |
| // Is it an intrinsic function call? |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { |
| visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here |
| return; |
| } |
| |
| // Emit a CALL instruction with PC-relative displacement. |
| TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); |
| } else { // Emit an indirect call... |
| unsigned Reg = getReg(CI.getCalledValue()); |
| TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); |
| } |
| |
| std::vector<ValueRecord> Args; |
| for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) |
| Args.push_back(ValueRecord(CI.getOperand(i))); |
| |
| unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; |
| doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); |
| } |
| |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| case Intrinsic::memcpy: |
| case Intrinsic::memset: |
| case Intrinsic::readport: |
| case Intrinsic::writeport: |
| // We directly implement these intrinsics |
| break; |
| case Intrinsic::readio: { |
| // On X86, memory operations are in-order. Lower this intrinsic |
| // into a volatile load. |
| Instruction *Before = CI->getPrev(); |
| LoadInst * LI = new LoadInst (CI->getOperand(1), "", true, CI); |
| CI->replaceAllUsesWith (LI); |
| BB->getInstList().erase (CI); |
| break; |
| } |
| case Intrinsic::writeio: { |
| // On X86, memory operations are in-order. Lower this intrinsic |
| // into a volatile store. |
| Instruction *Before = CI->getPrev(); |
| StoreInst * LI = new StoreInst (CI->getOperand(1), |
| CI->getOperand(2), true, CI); |
| CI->replaceAllUsesWith (LI); |
| BB->getInstList().erase (CI); |
| break; |
| } |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| TM.getIntrinsicLowering().LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| |
| } |
| |
| void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { |
| unsigned TmpReg1, TmpReg2; |
| switch (ID) { |
| case Intrinsic::vastart: |
| // Get the address of the first vararg value... |
| TmpReg1 = getReg(CI); |
| addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); |
| return; |
| |
| case Intrinsic::vacopy: |
| TmpReg1 = getReg(CI); |
| TmpReg2 = getReg(CI.getOperand(1)); |
| BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); |
| return; |
| case Intrinsic::vaend: return; // Noop on X86 |
| |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| TmpReg1 = getReg(CI); |
| if (cast<Constant>(CI.getOperand(1))->isNullValue()) { |
| if (ID == Intrinsic::returnaddress) { |
| // Just load the return address |
| addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), |
| ReturnAddressIndex); |
| } else { |
| addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), |
| ReturnAddressIndex, -4); |
| } |
| } else { |
| // Values other than zero are not implemented yet. |
| BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); |
| } |
| return; |
| |
| case Intrinsic::memcpy: { |
| assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); |
| unsigned Align = 1; |
| if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { |
| Align = AlignC->getRawValue(); |
| if (Align == 0) Align = 1; |
| } |
| |
| // Turn the byte code into # iterations |
| unsigned CountReg; |
| unsigned Opcode; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { |
| CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); |
| } else { |
| CountReg = makeAnotherReg(Type::IntTy); |
| unsigned ByteReg = getReg(CI.getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); |
| } |
| Opcode = X86::REP_MOVSW; |
| break; |
| case 0: // DWORD aligned |
| if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { |
| CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); |
| } else { |
| CountReg = makeAnotherReg(Type::IntTy); |
| unsigned ByteReg = getReg(CI.getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); |
| } |
| Opcode = X86::REP_MOVSD; |
| break; |
| default: // BYTE aligned |
| CountReg = getReg(CI.getOperand(3)); |
| Opcode = X86::REP_MOVSB; |
| break; |
| } |
| |
| // No matter what the alignment is, we put the source in ESI, the |
| // destination in EDI, and the count in ECX. |
| TmpReg1 = getReg(CI.getOperand(1)); |
| TmpReg2 = getReg(CI.getOperand(2)); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); |
| BuildMI(BB, Opcode, 0); |
| return; |
| } |
| case Intrinsic::memset: { |
| assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); |
| unsigned Align = 1; |
| if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { |
| Align = AlignC->getRawValue(); |
| if (Align == 0) Align = 1; |
| } |
| |
| // Turn the byte code into # iterations |
| unsigned CountReg; |
| unsigned Opcode; |
| if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) { |
| unsigned Val = ValC->getRawValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger copies. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { |
| CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); |
| } else { |
| CountReg = makeAnotherReg(Type::IntTy); |
| unsigned ByteReg = getReg(CI.getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); |
| } |
| BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); |
| Opcode = X86::REP_STOSW; |
| break; |
| case 0: // DWORD aligned |
| if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { |
| CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); |
| } else { |
| CountReg = makeAnotherReg(Type::IntTy); |
| unsigned ByteReg = getReg(CI.getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); |
| } |
| Val = (Val << 8) | Val; |
| BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); |
| Opcode = X86::REP_STOSD; |
| break; |
| default: // BYTE aligned |
| CountReg = getReg(CI.getOperand(3)); |
| BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); |
| Opcode = X86::REP_STOSB; |
| break; |
| } |
| } else { |
| // If it's not a constant value we are storing, just fall back. We could |
| // try to be clever to form 16 bit and 32 bit values, but we don't yet. |
| unsigned ValReg = getReg(CI.getOperand(2)); |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); |
| CountReg = getReg(CI.getOperand(3)); |
| Opcode = X86::REP_STOSB; |
| } |
| |
| // No matter what the alignment is, we put the source in ESI, the |
| // destination in EDI, and the count in ECX. |
| TmpReg1 = getReg(CI.getOperand(1)); |
| //TmpReg2 = getReg(CI.getOperand(2)); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); |
| BuildMI(BB, Opcode, 0); |
| return; |
| } |
| |
| case Intrinsic::readport: { |
| // First, determine that the size of the operand falls within the acceptable |
| // range for this architecture. |
| // |
| if (getClassB(CI.getOperand(1)->getType()) != cShort) { |
| std::cerr << "llvm.readport: Address size is not 16 bits\n"; |
| exit(1); |
| } |
| |
| // Now, move the I/O port address into the DX register and use the IN |
| // instruction to get the input data. |
| // |
| unsigned Class = getClass(CI.getCalledFunction()->getReturnType()); |
| unsigned DestReg = getReg(CI); |
| |
| // If the port is a single-byte constant, use the immediate form. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1))) |
| if ((C->getRawValue() & 255) == C->getRawValue()) { |
| switch (Class) { |
| case cByte: |
| BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue()); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); |
| return; |
| case cShort: |
| BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue()); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); |
| return; |
| case cInt: |
| BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue()); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); |
| return; |
| } |
| } |
| |
| unsigned Reg = getReg(CI.getOperand(1)); |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); |
| switch (Class) { |
| case cByte: |
| BuildMI(BB, X86::IN8rr, 0); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); |
| break; |
| case cShort: |
| BuildMI(BB, X86::IN16rr, 0); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); |
| break; |
| case cInt: |
| BuildMI(BB, X86::IN32rr, 0); |
| BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); |
| break; |
| default: |
| std::cerr << "Cannot do input on this data type"; |
| exit (1); |
| } |
| return; |
| } |
| |
| case Intrinsic::writeport: { |
| // First, determine that the size of the operand falls within the |
| // acceptable range for this architecture. |
| if (getClass(CI.getOperand(2)->getType()) != cShort) { |
| std::cerr << "llvm.writeport: Address size is not 16 bits\n"; |
| exit(1); |
| } |
| |
| unsigned Class = getClassB(CI.getOperand(1)->getType()); |
| unsigned ValReg = getReg(CI.getOperand(1)); |
| switch (Class) { |
| case cByte: |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); |
| break; |
| case cShort: |
| BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg); |
| break; |
| case cInt: |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg); |
| break; |
| default: |
| std::cerr << "llvm.writeport: invalid data type for X86 target"; |
| exit(1); |
| } |
| |
| |
| // If the port is a single-byte constant, use the immediate form. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2))) |
| if ((C->getRawValue() & 255) == C->getRawValue()) { |
| static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir }; |
| BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue()); |
| return; |
| } |
| |
| // Otherwise, move the I/O port address into the DX register and the value |
| // to write into the AL/AX/EAX register. |
| static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr }; |
| unsigned Reg = getReg(CI.getOperand(2)); |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); |
| BuildMI(BB, Opc[Class], 0); |
| return; |
| } |
| |
| default: assert(0 && "Error: unknown intrinsics should have been lowered!"); |
| } |
| } |
| |
| static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { |
| if (LI.getParent() != User.getParent()) |
| return false; |
| BasicBlock::iterator It = &LI; |
| // Check all of the instructions between the load and the user. We should |
| // really use alias analysis here, but for now we just do something simple. |
| for (++It; It != BasicBlock::iterator(&User); ++It) { |
| switch (It->getOpcode()) { |
| case Instruction::Free: |
| case Instruction::Store: |
| case Instruction::Call: |
| case Instruction::Invoke: |
| return false; |
| case Instruction::Load: |
| if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile()) |
| return false; |
| break; |
| } |
| } |
| return true; |
| } |
| |
| /// visitSimpleBinary - Implement simple binary operators for integral types... |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for |
| /// Xor. |
| /// |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { |
| unsigned DestReg = getReg(B); |
| MachineBasicBlock::iterator MI = BB->end(); |
| Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); |
| |
| // Special case: op Reg, load [mem] |
| if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1)) |
| if (!B.swapOperands()) |
| std::swap(Op0, Op1); // Make sure any loads are in the RHS. |
| |
| unsigned Class = getClassB(B.getType()); |
| if (isa<LoadInst>(Op1) && Class != cLong && |
| isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) { |
| |
| unsigned Opcode; |
| if (Class != cFP) { |
| static const unsigned OpcodeTab[][3] = { |
| // Arithmetic operators |
| { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD |
| { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB |
| |
| // Bitwise operators |
| { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND |
| { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR |
| { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR |
| }; |
| Opcode = OpcodeTab[OperatorClass][Class]; |
| } else { |
| static const unsigned OpcodeTab[][2] = { |
| { X86::FADD32m, X86::FADD64m }, // ADD |
| { X86::FSUB32m, X86::FSUB64m }, // SUB |
| }; |
| const Type *Ty = Op0->getType(); |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy]; |
| } |
| |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg, |
| Scale, IndexReg, Disp); |
| |
| unsigned Op0r = getReg(Op0); |
| addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } |
| |
| // If this is a floating point subtract, check to see if we can fold the first |
| // operand in. |
| if (Class == cFP && OperatorClass == 1 && |
| isa<LoadInst>(Op0) && |
| isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) { |
| const Type *Ty = Op0->getType(); |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m; |
| |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg, |
| Scale, IndexReg, Disp); |
| |
| unsigned Op1r = getReg(Op1); |
| addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op1r), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } |
| |
| emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); |
| } |
| |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| |
| // Special case: op Reg, <const fp> |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) |
| if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) { |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(Op1C); |
| const Type *Ty = Op1->getType(); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float |
| { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double |
| }; |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op0r = getReg(Op0, BB, IP); |
| addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, |
| DestReg).addReg(Op0r), CPI); |
| return; |
| } |
| |
| // Special case: R1 = op <const fp>, R2 |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) |
| if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { |
| // -0.0 - X === -X |
| unsigned op1Reg = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); |
| return; |
| } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) { |
| // R1 = op CST, R2 --> R1 = opr R2, CST |
| |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float |
| { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double |
| }; |
| |
| assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op1r = getReg(Op1, BB, IP); |
| addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, |
| DestReg).addReg(Op1r), CPI); |
| return; |
| } |
| |
| // General case. |
| static const unsigned OpcodeTab[4] = { |
| X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| unsigned Op0r = getReg(Op0, BB, IP); |
| unsigned Op1r = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| } |
| |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral |
| /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for |
| /// Or, 4 for Xor. |
| /// |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| unsigned Class = getClassB(Op0->getType()); |
| |
| if (Class == cFP) { |
| assert(OperatorClass < 2 && "No logical ops for FP!"); |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); |
| return; |
| } |
| |
| // sub 0, X -> neg X |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) |
| if (OperatorClass == 1 && CI->isNullValue()) { |
| unsigned op1Reg = getReg(Op1, MBB, IP); |
| static unsigned const NEGTab[] = { |
| X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r |
| }; |
| BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); |
| |
| if (Class == cLong) { |
| // We just emitted: Dl = neg Sl |
| // Now emit : T = addc Sh, 0 |
| // : Dh = neg T |
| unsigned T = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0); |
| BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T); |
| } |
| return; |
| } |
| |
| // Special case: op Reg, <const int> |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // xor X, -1 -> not X |
| if (OperatorClass == 4 && Op1C->isAllOnesValue()) { |
| static unsigned const NOTTab[] = { |
| X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r |
| }; |
| BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); |
| if (Class == cLong) // Invert the top part too |
| BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1); |
| return; |
| } |
| |
| // add X, -1 -> dec X |
| if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) { |
| // Note that we can't use dec for 64-bit decrements, because it does not |
| // set the carry flag! |
| static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; |
| BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); |
| return; |
| } |
| |
| // add X, 1 -> inc X |
| if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) { |
| // Note that we can't use inc for 64-bit increments, because it does not |
| // set the carry flag! |
| static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; |
| BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); |
| return; |
| } |
| |
| static const unsigned OpcodeTab[][5] = { |
| // Arithmetic operators |
| { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD |
| { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB |
| |
| // Bitwise operators |
| { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND |
| { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR |
| { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass][Class]; |
| unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue(); |
| |
| if (Class != cLong) { |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); |
| return; |
| } |
| |
| // If this is a long value and the high or low bits have a special |
| // property, emit some special cases. |
| unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; |
| |
| // If the constant is zero in the low 32-bits, just copy the low part |
| // across and apply the normal 32-bit operation to the high parts. There |
| // will be no carry or borrow into the top. |
| if (Op1l == 0) { |
| if (OperatorClass != 2) // All but and... |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r); |
| else |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); |
| BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1) |
| .addReg(Op0r+1).addImm(Op1h); |
| return; |
| } |
| |
| // If this is a logical operation and the top 32-bits are zero, just |
| // operate on the lower 32. |
| if (Op1h == 0 && OperatorClass > 1) { |
| BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg) |
| .addReg(Op0r).addImm(Op1l); |
| if (OperatorClass != 2) // All but and |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1); |
| else |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); |
| return; |
| } |
| |
| // TODO: We could handle lots of other special cases here, such as AND'ing |
| // with 0xFFFFFFFF00000000 -> noop, etc. |
| |
| // Otherwise, code generate the full operation with a constant. |
| static const unsigned TopTab[] = { |
| X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri |
| }; |
| |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) |
| .addReg(Op0r+1).addImm(Op1h); |
| return; |
| } |
| |
| // Finally, handle the general case now. |
| static const unsigned OpcodeTab[][5] = { |
| // Arithmetic operators |
| { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD |
| { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB |
| |
| // Bitwise operators |
| { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND |
| { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR |
| { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass][Class]; |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| |
| if (Class == cLong) { // Handle the upper 32 bits of long values... |
| static const unsigned TopTab[] = { |
| X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr |
| }; |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, |
| DestReg+1).addReg(Op0r+1).addReg(Op1r+1); |
| } |
| } |
| |
| /// doMultiply - Emit appropriate instructions to multiply together the |
| /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the |
| /// result should be given as DestTy. |
| /// |
| void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned op0Reg, unsigned op1Reg) { |
| unsigned Class = getClass(DestTy); |
| switch (Class) { |
| case cInt: |
| case cShort: |
| BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) |
| .addReg(op0Reg).addReg(op1Reg); |
| return; |
| case cByte: |
| // Must use the MUL instruction, which forces use of AL... |
| BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); |
| BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); |
| BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); |
| return; |
| default: |
| case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); |
| } |
| } |
| |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It |
| // returns zero when the input is not exactly a power of two. |
| static unsigned ExactLog2(unsigned Val) { |
| if (Val == 0 || (Val & (Val-1))) return 0; |
| unsigned Count = 0; |
| while (Val != 1) { |
| Val >>= 1; |
| ++Count; |
| } |
| return Count+1; |
| } |
| |
| |
| /// doMultiplyConst - This function is specialized to efficiently codegen an 8, |
| /// 16, or 32-bit integer multiply by a constant. |
| void ISel::doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, const Type *DestTy, |
| unsigned op0Reg, unsigned ConstRHS) { |
| static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr}; |
| static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri}; |
| static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr}; |
| |
| unsigned Class = getClass(DestTy); |
| |
| // Handle special cases here. |
| switch (ConstRHS) { |
| case 0: |
| BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0); |
| return; |
| case 1: |
| BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg); |
| return; |
| case 2: |
| BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg); |
| return; |
| case 3: |
| case 5: |
| case 9: |
| if (Class == cInt) { |
| addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), |
| op0Reg, ConstRHS-1, op0Reg, 0); |
| return; |
| } |
| } |
| |
| // If the element size is exactly a power of 2, use a shift to get it. |
| if (unsigned Shift = ExactLog2(ConstRHS)) { |
| switch (Class) { |
| default: assert(0 && "Unknown class for this function!"); |
| case cByte: |
| BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); |
| return; |
| case cShort: |
| BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); |
| return; |
| case cInt: |
| BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); |
| return; |
| } |
| } |
| |
| if (Class == cShort) { |
| BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); |
| return; |
| } else if (Class == cInt) { |
| BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); |
| return; |
| } |
| |
| // Most general case, emit a normal multiply... |
| unsigned TmpReg = makeAnotherReg(DestTy); |
| BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); |
| |
| // Emit a MUL to multiply the register holding the index by |
| // elementSize, putting the result in OffsetReg. |
| doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); |
| } |
| |
| /// visitMul - Multiplies are not simple binary operators because they must deal |
| /// with the EAX register explicitly. |
| /// |
| void ISel::visitMul(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| |
| // Fold loads into floating point multiplies. |
| if (getClass(Op0->getType()) == cFP) { |
| if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1)) |
| if (!I.swapOperands()) |
| std::swap(Op0, Op1); // Make sure any loads are in the RHS. |
| if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) |
| if (isSafeToFoldLoadIntoInstruction(*LI, I)) { |
| const Type *Ty = Op0->getType(); |
| assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m; |
| |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(LI->getOperand(0), BaseReg, |
| Scale, IndexReg, Disp); |
| |
| unsigned Op0r = getReg(Op0); |
| addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } |
| } |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitMultiply(BB, IP, Op0, Op1, ResultReg); |
| } |
| |
| void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned DestReg) { |
| MachineBasicBlock &BB = *MBB; |
| TypeClass Class = getClass(Op0->getType()); |
| |
| // Simple scalar multiply? |
| unsigned Op0Reg = getReg(Op0, &BB, IP); |
| switch (Class) { |
| case cByte: |
| case cShort: |
| case cInt: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant |
| doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); |
| } else { |
| unsigned Op1Reg = getReg(Op1, &BB, IP); |
| doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); |
| } |
| return; |
| case cFP: |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); |
| return; |
| case cLong: |
| break; |
| } |
| |
| // Long value. We have to do things the hard way... |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| unsigned CLow = CI->getRawValue(); |
| unsigned CHi = CI->getRawValue() >> 32; |
| |
| if (CLow == 0) { |
| // If the low part of the constant is all zeros, things are simple. |
| BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0); |
| doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); |
| return; |
| } |
| |
| // Multiply the two low parts... capturing carry into EDX |
| unsigned OverflowReg = 0; |
| if (CLow == 1) { |
| BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg); |
| } else { |
| unsigned Op1RegL = makeAnotherReg(Type::UIntTy); |
| OverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow); |
| BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); |
| BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL |
| |
| BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL |
| BuildMI(BB, IP, X86::MOV32rr, 1, |
| OverflowReg).addReg(X86::EDX); // AL*BL >> 32 |
| } |
| |
| unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL |
| doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); |
| |
| unsigned AHBLplusOverflowReg; |
| if (OverflowReg) { |
| AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) |
| AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); |
| } else { |
| AHBLplusOverflowReg = AHBLReg; |
| } |
| |
| if (CHi == 0) { |
| BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg); |
| } else { |
| unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH |
| doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); |
| |
| BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) |
| DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); |
| } |
| return; |
| } |
| |
| // General 64x64 multiply |
| |
| unsigned Op1Reg = getReg(Op1, &BB, IP); |
| // Multiply the two low parts... capturing carry into EDX |
| BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); |
| BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL |
| |
| unsigned OverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL |
| BuildMI(BB, IP, X86::MOV32rr, 1, |
| OverflowReg).addReg(X86::EDX); // AL*BL >> 32 |
| |
| unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL |
| BuildMI(BB, IP, X86::IMUL32rr, 2, |
| AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); |
| |
| unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) |
| AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); |
| |
| unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH |
| BuildMI(BB, IP, X86::IMUL32rr, 2, |
| ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); |
| |
| BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) |
| DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); |
| } |
| |
| |
| /// visitDivRem - Handle division and remainder instructions... these |
| /// instruction both require the same instructions to be generated, they just |
| /// select the result from a different register. Note that both of these |
| /// instructions work differently for signed and unsigned operands. |
| /// |
| void ISel::visitDivRem(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // Fold loads into floating point divides. |
| if (getClass(Op0->getType()) == cFP) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) |
| if (isSafeToFoldLoadIntoInstruction(*LI, I)) { |
| const Type *Ty = Op0->getType(); |
| assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m; |
| |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(LI->getOperand(0), BaseReg, |
| Scale, IndexReg, Disp); |
| |
| unsigned Op0r = getReg(Op0); |
| addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(Op0)) |
| if (isSafeToFoldLoadIntoInstruction(*LI, I)) { |
| const Type *Ty = Op0->getType(); |
| assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m; |
| |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(LI->getOperand(0), BaseReg, |
| Scale, IndexReg, Disp); |
| |
| unsigned Op1r = getReg(Op1); |
| addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op1r), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } |
| } |
| |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitDivRemOperation(BB, IP, Op0, Op1, |
| I.getOpcode() == Instruction::Div, ResultReg); |
| } |
| |
| void ISel::emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned ResultReg) { |
| const Type *Ty = Op0->getType(); |
| unsigned Class = getClass(Ty); |
| switch (Class) { |
| case cFP: // Floating point divide |
| if (isDiv) { |
| emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); |
| return; |
| } else { // Floating point remainder... |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| MachineInstr *TheCall = |
| BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); |
| doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); |
| } |
| return; |
| case cLong: { |
| static const char *FnName[] = |
| { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; |
| MachineInstr *TheCall = |
| BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); |
| doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); |
| return; |
| } |
| case cByte: case cShort: case cInt: |
| break; // Small integrals, handled below... |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; |
| static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r }; |
| static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; |
| static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }; |
| static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr }; |
| |
| // Special case signed division by power of 2. |
| if (isDiv) |
| if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { |
| assert(Class != cLong && "This doesn't handle 64-bit divides!"); |
| int V = CI->getValue(); |
| |
| if (V == 1) { // X /s 1 => X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg); |
| return; |
| } |
| |
| if (V == -1) { // X /s -1 => -X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg); |
| return; |
| } |
| |
| bool isNeg = false; |
| if (V < 0) { // Not a positive power of 2? |
| V = -V; |
| isNeg = true; // Maybe it's a negative power of 2. |
| } |
| if (unsigned Log = ExactLog2(V)) { |
| --Log; |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned TmpReg = makeAnotherReg(Op0->getType()); |
| if (Log != 1) |
| BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg) |
| .addReg(Op0Reg).addImm(Log-1); |
| else |
| BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg); |
| unsigned TmpReg2 = makeAnotherReg(Op0->getType()); |
| BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2) |
| .addReg(TmpReg).addImm(32-Log); |
| unsigned TmpReg3 = makeAnotherReg(Op0->getType()); |
| BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3) |
| .addReg(Op0Reg).addReg(TmpReg2); |
| |
| unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; |
| BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4) |
| .addReg(Op0Reg).addImm(Log); |
| if (isNeg) |
| BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4); |
| return; |
| } |
| } |
| |
| static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; |
| static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; |
| static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; |
| |
| static const unsigned DivOpcode[][4] = { |
| { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division |
| { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division |
| }; |
| |
| unsigned Reg = Regs[Class]; |
| unsigned ExtReg = ExtRegs[Class]; |
| |
| // Put the first operand into one of the A registers... |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); |
| |
| if (Ty->isSigned()) { |
| // Emit a sign extension instruction... |
| unsigned ShiftResult = makeAnotherReg(Op0->getType()); |
| BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); |
| BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); |
| |
| // Emit the appropriate divide or remainder instruction... |
| BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg); |
| } else { |
| // If unsigned, emit a zeroing instruction... (reg = 0) |
| BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); |
| |
| // Emit the appropriate divide or remainder instruction... |
| BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg); |
| } |
| |
| // Figure out which register we want to pick the result out of... |
| unsigned DestReg = isDiv ? Reg : ExtReg; |
| |
| // Put the result into the destination register... |
| BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); |
| } |
| |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void ISel::visitShiftInst(ShiftInst &I) { |
| MachineBasicBlock::iterator IP = BB->end (); |
| emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), |
| I.getOpcode () == Instruction::Shl, I.getType (), |
| getReg (I)); |
| } |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| void ISel::emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg) { |
| unsigned SrcReg = getReg (Op, MBB, IP); |
| bool isSigned = ResultTy->isSigned (); |
| unsigned Class = getClass (ResultTy); |
| |
| static const unsigned ConstantOperand[][4] = { |
| { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR |
| { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR |
| { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL |
| { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL |
| }; |
| |
| static const unsigned NonConstantOperand[][4] = { |
| { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR |
| { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR |
| { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL |
| { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL |
| }; |
| |
| // Longs, as usual, are handled specially... |
| if (Class == cLong) { |
| // If we have a constant shift, we can generate much more efficient code |
| // than otherwise... |
| // |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| unsigned Amount = CUI->getValue(); |
| if (Amount < 32) { |
| const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, Opc[3], 3, |
| DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); |
| BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); |
| } else { |
| BuildMI(*MBB, IP, Opc[3], 3, |
| DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); |
| BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); |
| } |
| } else { // Shifting more than 32 bits |
| Amount -= 32; |
| if (isLeftShift) { |
| if (Amount != 0) { |
| BuildMI(*MBB, IP, X86::SHL32ri, 2, |
| DestReg + 1).addReg(SrcReg).addImm(Amount); |
| } else { |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg); |
| } |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); |
| } else { |
| if (Amount != 0) { |
| BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2, |
| DestReg).addReg(SrcReg+1).addImm(Amount); |
| } else { |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1); |
| } |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); |
| } |
| } |
| } else { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| |
| if (!isLeftShift && isSigned) { |
| // If this is a SHR of a Long, then we need to do funny sign extension |
| // stuff. TmpReg gets the value to use as the high-part if we are |
| // shifting more than 32 bits. |
| BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); |
| } else { |
| // Other shifts use a fixed zero value if the shift is more than 32 |
| // bits. |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); |
| } |
| |
| // Initialize CL with the shift amount... |
| unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); |
| |
| unsigned TmpReg2 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg3 = makeAnotherReg(Type::IntTy); |
| if (isLeftShift) { |
| // TmpReg2 = shld inHi, inLo |
| BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) |
| .addReg(SrcReg); |
| // TmpReg3 = shl inLo, CL |
| BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); |
| |
| // Set the flags to indicate whether the shift was by more than 32 bits. |
| BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); |
| |
| // DestHi = (>32) ? TmpReg3 : TmpReg2; |
| BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, |
| DestReg+1).addReg(TmpReg2).addReg(TmpReg3); |
| // DestLo = (>32) ? TmpReg : TmpReg3; |
| BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, |
| DestReg).addReg(TmpReg3).addReg(TmpReg); |
| } else { |
| // TmpReg2 = shrd inLo, inHi |
| BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) |
| .addReg(SrcReg+1); |
| // TmpReg3 = s[ah]r inHi, CL |
| BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) |
| .addReg(SrcReg+1); |
| |
| // Set the flags to indicate whether the shift was by more than 32 bits. |
| BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); |
| |
| // DestLo = (>32) ? TmpReg3 : TmpReg2; |
| BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, |
| DestReg).addReg(TmpReg2).addReg(TmpReg3); |
| |
| // DestHi = (>32) ? TmpReg : TmpReg3; |
| BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, |
| DestReg+1).addReg(TmpReg3).addReg(TmpReg); |
| } |
| } |
| return; |
| } |
| |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| |
| const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; |
| BuildMI(*MBB, IP, Opc[Class], 2, |
| DestReg).addReg(SrcReg).addImm(CUI->getValue()); |
| } else { // The shift amount is non-constant. |
| unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); |
| BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); |
| |
| const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; |
| BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); |
| } |
| } |
| |
| |
| void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, |
| unsigned &IndexReg, unsigned &Disp) { |
| BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) { |
| if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), |
| BaseReg, Scale, IndexReg, Disp)) |
| return; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr) |
| if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), |
| BaseReg, Scale, IndexReg, Disp)) |
| return; |
| } |
| |
| // If it's not foldable, reset addr mode. |
| BaseReg = getReg(Addr); |
| Scale = 1; IndexReg = 0; Disp = 0; |
| } |
| |
| |
| /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' |
| /// instruction. The load and store instructions are the only place where we |
| /// need to worry about the memory layout of the target machine. |
| /// |
| void ISel::visitLoadInst(LoadInst &I) { |
| // Check to see if this load instruction is going to be folded into a binary |
| // instruction, like add. If so, we don't want to emit it. Wouldn't a real |
| // pattern matching instruction selector be nice? |
| unsigned Class = getClassB(I.getType()); |
| if (I.hasOneUse()) { |
| Instruction *User = cast<Instruction>(I.use_back()); |
| switch (User->getOpcode()) { |
| case Instruction::Cast: |
| // If this is a cast from a signed-integer type to a floating point type, |
| // fold the cast here. |
| if (getClass(User->getType()) == cFP && |
| (I.getType() == Type::ShortTy || I.getType() == Type::IntTy || |
| I.getType() == Type::LongTy)) { |
| unsigned DestReg = getReg(User); |
| static const unsigned Opcode[] = { |
| 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m |
| }; |
| unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; |
| getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); |
| addFullAddress(BuildMI(BB, Opcode[Class], 5, DestReg), |
| BaseReg, Scale, IndexReg, Disp); |
| return; |
| } else { |
| User = 0; |
| } |
| break; |
| |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| if (Class == cLong) User = 0; |
| break; |
| case Instruction::Mul: |
| case Instruction::Div: |
| if (Class != cFP) User = 0; |
| break; // Folding only implemented for floating point. |
| default: User = 0; break; |
| } |
| |
| if (User) { |
| // Okay, we found a user. If the load is the first operand and there is |
| // no second operand load, reverse the operand ordering. Note that this |
| // can fail for a subtract (ie, no change will be made). |
| if (!isa<LoadInst>(User->getOperand(1))) |
| cast<BinaryOperator>(User)->swapOperands(); |
| |
| // Okay, now that everything is set up, if this load is used by the second |
| // operand, and if there are no instructions that invalidate the load |
| // before the binary operator, eliminate the load. |
| if (User->getOperand(1) == &I && |
| isSafeToFoldLoadIntoInstruction(I, *User)) |
| return; // Eliminate the load! |
| |
| // If this is a floating point sub or div, we won't be able to swap the |
| // operands, but we will still be able to eliminate the load. |
| if (Class == cFP && User->getOperand(0) == &I && |
| !isa<LoadInst>(User->getOperand(1)) && |
| (User->getOpcode() == Instruction::Sub || |
| User->getOpcode() == Instruction::Div) && |
| isSafeToFoldLoadIntoInstruction(I, *User)) |
| return; // Eliminate the load! |
| } |
| } |
| |
| unsigned DestReg = getReg(I); |
| unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; |
| getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); |
| |
| if (Class == cLong) { |
| addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), |
| BaseReg, Scale, IndexReg, Disp); |
| addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), |
| BaseReg, Scale, IndexReg, Disp+4); |
| return; |
| } |
| |
| static const unsigned Opcodes[] = { |
| X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m |
| }; |
| unsigned Opcode = Opcodes[Class]; |
| if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; |
| addFullAddress(BuildMI(BB, Opcode, 4, DestReg), |
| BaseReg, Scale, IndexReg, Disp); |
| } |
| |
| /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' |
| /// instruction. |
| /// |
| void ISel::visitStoreInst(StoreInst &I) { |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); |
| |
| const Type *ValTy = I.getOperand(0)->getType(); |
| unsigned Class = getClassB(ValTy); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) { |
| uint64_t Val = CI->getRawValue(); |
| if (Class == cLong) { |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 5), |
| BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 5), |
| BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); |
| } else { |
| static const unsigned Opcodes[] = { |
| X86::MOV8mi, X86::MOV16mi, X86::MOV32mi |
| }; |
| unsigned Opcode = Opcodes[Class]; |
| addFullAddress(BuildMI(BB, Opcode, 5), |
| BaseReg, Scale, IndexReg, Disp).addImm(Val); |
| } |
| } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) { |
| addFullAddress(BuildMI(BB, X86::MOV8mi, 5), |
| BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) { |
| // Store constant FP values with integer instructions to avoid having to |
| // load the constants from the constant pool then do a store. |
| if (CFP->getType() == Type::FloatTy) { |
| union { |
| unsigned I; |
| float F; |
| } V; |
| V.F = CFP->getValue(); |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 5), |
| BaseReg, Scale, IndexReg, Disp).addImm(V.I); |
| } else { |
| union { |
| uint64_t I; |
| double F; |
| } V; |
| V.F = CFP->getValue(); |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 5), |
| BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I); |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 5), |
| BaseReg, Scale, IndexReg, Disp+4).addImm( |
| unsigned(V.I >> 32)); |
| } |
| |
| } else if (Class == cLong) { |
| unsigned ValReg = getReg(I.getOperand(0)); |
| addFullAddress(BuildMI(BB, X86::MOV32mr, 5), |
| BaseReg, Scale, IndexReg, Disp).addReg(ValReg); |
| addFullAddress(BuildMI(BB, X86::MOV32mr, 5), |
| BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); |
| } else { |
| unsigned ValReg = getReg(I.getOperand(0)); |
| static const unsigned Opcodes[] = { |
| X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m |
| }; |
| unsigned Opcode = Opcodes[Class]; |
| if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; |
| addFullAddress(BuildMI(BB, Opcode, 1+4), |
| BaseReg, Scale, IndexReg, Disp).addReg(ValReg); |
| } |
| } |
| |
| |
| /// visitCastInst - Here we have various kinds of copying with or without sign |
| /// extension going on. |
| /// |
| void ISel::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| |
| unsigned SrcClass = getClassB(Op->getType()); |
| unsigned DestClass = getClassB(CI.getType()); |
| // Noop casts are not emitted: getReg will return the source operand as the |
| // register to use for any uses of the noop cast. |
| if (DestClass == SrcClass) |
| return; |
| |
| // If this is a cast from a 32-bit integer to a Long type, and the only uses |
| // of the case are GEP instructions, then the cast does not need to be |
| // generated explicitly, it will be folded into the GEP. |
| if (DestClass == cLong && SrcClass == cInt) { |
| bool AllUsesAreGEPs = true; |
| for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) |
| if (!isa<GetElementPtrInst>(*I)) { |
| AllUsesAreGEPs = false; |
| break; |
| } |
| |
| // No need to codegen this cast if all users are getelementptr instrs... |
| if (AllUsesAreGEPs) return; |
| } |
| |
| // If this cast converts a load from a short,int, or long integer to a FP |
| // value, we will have folded this cast away. |
| if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() && |
| (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy || |
| Op->getType() == Type::LongTy)) |
| return; |
| |
| |
| unsigned DestReg = getReg(CI); |
| MachineBasicBlock::iterator MI = BB->end(); |
| emitCastOperation(BB, MI, Op, CI.getType(), DestReg); |
| } |
| |
| /// emitCastOperation - Common code shared between visitCastInst and constant |
| /// expression cast support. |
| /// |
| void ISel::emitCastOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, |
| unsigned DestReg) { |
| const Type *SrcTy = Src->getType(); |
| unsigned SrcClass = getClassB(SrcTy); |
| unsigned DestClass = getClassB(DestTy); |
| unsigned SrcReg = getReg(Src, BB, IP); |
| |
| // Implement casts to bool by using compare on the operand followed by set if |
| // not zero on the result. |
| if (DestTy == Type::BoolTy) { |
| switch (SrcClass) { |
| case cByte: |
| BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); |
| break; |
| case cShort: |
| BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); |
| break; |
| case cInt: |
| BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); |
| break; |
| case cLong: { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); |
| break; |
| } |
| case cFP: |
| BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); |
| BuildMI(*BB, IP, X86::FNSTSW8r, 0); |
| BuildMI(*BB, IP, X86::SAHF, 1); |
| break; |
| } |
| |
| // If the zero flag is not set, then the value is true, set the byte to |
| // true. |
| BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); |
| return; |
| } |
| |
| static const unsigned RegRegMove[] = { |
| X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr |
| }; |
| |
| // Implement casts between values of the same type class (as determined by |
| // getClass) by using a register-to-register move. |
| if (SrcClass == DestClass) { |
| if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { |
| BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); |
| } else if (SrcClass == cFP) { |
| if (SrcTy == Type::FloatTy) { // double -> float |
| assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); |
| BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); |
| } else { // float -> double |
| assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && |
| "Unknown cFP member!"); |
| // Truncate from double to float by storing to memory as short, then |
| // reading it back. |
| unsigned FltAlign = TM.getTargetData().getFloatAlignment(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); |
| addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); |
| addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); |
| } |
| } else if (SrcClass == cLong) { |
| BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); |
| BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); |
| } else { |
| assert(0 && "Cannot handle this type of cast instruction!"); |
| abort(); |
| } |
| return; |
| } |
| |
| // Handle cast of SMALLER int to LARGER int using a move with sign extension |
| // or zero extension, depending on whether the source type was signed. |
| if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && |
| SrcClass < DestClass) { |
| bool isLong = DestClass == cLong; |
| if (isLong) DestClass = cInt; |
| |
| static const unsigned Opc[][4] = { |
| { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s |
| { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u |
| }; |
| |
| bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; |
| BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, |
| DestReg).addReg(SrcReg); |
| |
| if (isLong) { // Handle upper 32 bits as appropriate... |
| if (isUnsigned) // Zero out top bits... |
| BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); |
| else // Sign extend bottom half... |
| BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); |
| } |
| return; |
| } |
| |
| // Special case long -> int ... |
| if (SrcClass == cLong && DestClass == cInt) { |
| BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); |
| return; |
| } |
| |
| // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a |
| // move out of AX or AL. |
| if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt |
| && SrcClass > DestClass) { |
| static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; |
| BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); |
| BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); |
| return; |
| } |
| |
| // Handle casts from integer to floating point now... |
| if (DestClass == cFP) { |
| // Promote the integer to a type supported by FLD. We do this because there |
| // are no unsigned FLD instructions, so we must promote an unsigned value to |
| // a larger signed value, then use FLD on the larger value. |
| // |
| const Type *PromoteType = 0; |
| unsigned PromoteOpcode = 0; |
| unsigned RealDestReg = DestReg; |
| switch (SrcTy->getPrimitiveID()) { |
| case Type::BoolTyID: |
| case Type::SByteTyID: |
| // We don't have the facilities for directly loading byte sized data from |
| // memory (even signed). Promote it to 16 bits. |
| PromoteType = Type::ShortTy; |
| PromoteOpcode = X86::MOVSX16rr8; |
| break; |
| case Type::UByteTyID: |
| PromoteType = Type::ShortTy; |
| PromoteOpcode = X86::MOVZX16rr8; |
| break; |
| case Type::UShortTyID: |
| PromoteType = Type::IntTy; |
| PromoteOpcode = X86::MOVZX32rr16; |
| break; |
| case Type::UIntTyID: { |
| // Make a 64 bit temporary... and zero out the top of it... |
| unsigned TmpReg = makeAnotherReg(Type::LongTy); |
| BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); |
| BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); |
| SrcTy = Type::LongTy; |
| SrcClass = cLong; |
| SrcReg = TmpReg; |
| break; |
| } |
| case Type::ULongTyID: |
| // Don't fild into the read destination. |
| DestReg = makeAnotherReg(Type::DoubleTy); |
| break; |
| default: // No promotion needed... |
| break; |
| } |
| |
| if (PromoteType) { |
| unsigned TmpReg = makeAnotherReg(PromoteType); |
| BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg); |
| SrcTy = PromoteType; |
| SrcClass = getClass(PromoteType); |
| SrcReg = TmpReg; |
| } |
| |
| // Spill the integer to memory and reload it from there... |
| int FrameIdx = |
| F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); |
| |
| if (SrcClass == cLong) { |
| addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), |
| FrameIdx).addReg(SrcReg); |
| addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), |
| FrameIdx, 4).addReg(SrcReg+1); |
| } else { |
| static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; |
| addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), |
| FrameIdx).addReg(SrcReg); |
| } |
| |
| static const unsigned Op2[] = |
| { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; |
| addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); |
| |
| // We need special handling for unsigned 64-bit integer sources. If the |
| // input number has the "sign bit" set, then we loaded it incorrectly as a |
| // negative 64-bit number. In this case, add an offset value. |
| if (SrcTy == Type::ULongTy) { |
| // Emit a test instruction to see if the dynamic input value was signed. |
| BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); |
| |
| // If the sign bit is set, get a pointer to an offset, otherwise get a |
| // pointer to a zero. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned Zero = makeAnotherReg(Type::IntTy); |
| Constant *Null = Constant::getNullValue(Type::UIntTy); |
| addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), |
| CP->getConstantPoolIndex(Null)); |
| unsigned Offset = makeAnotherReg(Type::IntTy); |
| Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); |
| |
| addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), |
| CP->getConstantPoolIndex(OffsetCst)); |
| unsigned Addr = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); |
| |
| // Load the constant for an add. FIXME: this could make an 'fadd' that |
| // reads directly from memory, but we don't support these yet. |
| unsigned ConstReg = makeAnotherReg(Type::DoubleTy); |
| addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); |
| |
| BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) |
| .addReg(ConstReg).addReg(DestReg); |
| } |
| |
| return; |
| } |
| |
| // Handle casts from floating point to integer now... |
| if (SrcClass == cFP) { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| // |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); |
| addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), |
| CWFrameIdx, 1); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), |
| CWFrameIdx, 1).addImm(12); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), |
| CWFrameIdx, 1).addReg(HighPartOfCW); |
| |
| // We don't have the facilities for directly storing byte sized data to |
| // memory. Promote it to 16 bits. We also must promote unsigned values to |
| // larger classes because we only have signed FP stores. |
| unsigned StoreClass = DestClass; |
| const Type *StoreTy = DestTy; |
| if (StoreClass == cByte || DestTy->isUnsigned()) |
| switch (StoreClass) { |
| case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; |
| case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; |
| case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; |
| // The following treatment of cLong may not be perfectly right, |
| // but it survives chains of casts of the form |
| // double->ulong->double. |
| case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; |
| default: assert(0 && "Unknown store class!"); |
| } |
| |
| // Spill the integer to memory and reload it from there... |
| int FrameIdx = |
| F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); |
| |
| static const unsigned Op1[] = |
| { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; |
| addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), |
| FrameIdx).addReg(SrcReg); |
| |
| if (DestClass == cLong) { |
| addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); |
| addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), |
| FrameIdx, 4); |
| } else { |
| static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; |
| addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); |
| } |
| |
| // Reload the original control word now... |
| addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); |
| return; |
| } |
| |
| // Anything we haven't handled already, we can't (yet) handle at all. |
| assert(0 && "Unhandled cast instruction!"); |
| abort(); |
| } |
| |
| /// visitVANextInst - Implement the va_next instruction... |
| /// |
| void ISel::visitVANextInst(VANextInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| unsigned Size; |
| switch (I.getArgType()->getPrimitiveID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| Size = 4; |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| case Type::DoubleTyID: |
| Size = 8; |
| break; |
| } |
| |
| // Increment the VAList pointer... |
| BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); |
| } |
| |
| void ISel::visitVAArgInst(VAArgInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| switch (I.getType()->getPrimitiveID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); |
| addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); |
| break; |
| case Type::DoubleTyID: |
| addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); |
| break; |
| } |
| } |
| |
| /// visitGetElementPtrInst - instruction-select GEP instructions |
| /// |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { |
| // If this GEP instruction will be folded into all of its users, we don't need |
| // to explicitly calculate it! |
| unsigned A, B, C, D; |
| if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { |
| // Check all of the users of the instruction to see if they are loads and |
| // stores. |
| bool AllWillFold = true; |
| for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load) |
| if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store || |
| cast<Instruction>(*UI)->getOperand(0) == &I) { |
| AllWillFold = false; |
| break; |
| } |
| |
| // If the instruction is foldable, and will be folded into all users, don't |
| // emit it! |
| if (AllWillFold) return; |
| } |
| |
| unsigned outputReg = getReg(I); |
| emitGEPOperation(BB, BB->end(), I.getOperand(0), |
| I.op_begin()+1, I.op_end(), outputReg); |
| } |
| |
| /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and |
| /// GEPTypes (the derived types being stepped through at each level). On return |
| /// from this function, if some indexes of the instruction are representable as |
| /// an X86 lea instruction, the machine operands are put into the Ops |
| /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes |
| /// lists. Otherwise, GEPOps.size() is returned. If this returns a an |
| /// addressing mode that only partially consumes the input, the BaseReg input of |
| /// the addressing mode must be left free. |
| /// |
| /// Note that there is one fewer entry in GEPTypes than there is in GEPOps. |
| /// |
| void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| std::vector<Value*> &GEPOps, |
| std::vector<const Type*> &GEPTypes, unsigned &BaseReg, |
| unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { |
| const TargetData &TD = TM.getTargetData(); |
| |
| // Clear out the state we are working with... |
| BaseReg = 0; // No base register |
| Scale = 1; // Unit scale |
| IndexReg = 0; // No index register |
| Disp = 0; // No displacement |
| |
| // While there are GEP indexes that can be folded into the current address, |
| // keep processing them. |
| while (!GEPTypes.empty()) { |
| if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) { |
| // It's a struct access. CUI is the index into the structure, |
| // which names the field. This index must have unsigned type. |
| const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back()); |
| |
| // Use the TargetData structure to pick out what the layout of the |
| // structure is in memory. Since the structure index must be constant, we |
| // can get its value and use it to find the right byte offset from the |
| // StructLayout class's list of structure member offsets. |
| Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; |
| GEPOps.pop_back(); // Consume a GEP operand |
| GEPTypes.pop_back(); |
| } else { |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); |
| Value *idx = GEPOps.back(); |
| |
| // idx is the index into the array. Unlike with structure |
| // indices, we may not know its actual value at code-generation |
| // time. |
| |
| // If idx is a constant, fold it into the offset. |
| unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); |
| if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) { |
| Disp += TypeSize*CSI->getValue(); |
| } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) { |
| Disp += TypeSize*CUI->getValue(); |
| } else { |
| // If the index reg is already taken, we can't handle this index. |
| if (IndexReg) return; |
| |
| // If this is a size that we can handle, then add the index as |
| switch (TypeSize) { |
| case 1: case 2: case 4: case 8: |
| // These are all acceptable scales on X86. |
| Scale = TypeSize; |
| break; |
| default: |
| // Otherwise, we can't handle this scale |
| return; |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(idx)) |
| if (CI->getOperand(0)->getType() == Type::IntTy || |
| CI->getOperand(0)->getType() == Type::UIntTy) |
| idx = CI->getOperand(0); |
| |
| IndexReg = MBB ? getReg(idx, MBB, IP) : 1; |
| } |
| |
| GEPOps.pop_back(); // Consume a GEP operand |
| GEPTypes.pop_back(); |
| } |
| } |
| |
| // GEPTypes is empty, which means we have a single operand left. See if we |
| // can set it as the base register. |
| // |
| // FIXME: When addressing modes are more powerful/correct, we could load |
| // global addresses directly as 32-bit immediates. |
| assert(BaseReg == 0); |
| BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; |
| GEPOps.pop_back(); // Consume the last GEP operand |
| } |
| |
| |
| /// isGEPFoldable - Return true if the specified GEP can be completely |
| /// folded into the addressing mode of a load/store or lea instruction. |
| bool ISel::isGEPFoldable(MachineBasicBlock *MBB, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned &BaseReg, |
| unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { |
| if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) |
| Src = CPR->getValue(); |
| |
| std::vector<Value*> GEPOps; |
| GEPOps.resize(IdxEnd-IdxBegin+1); |
| GEPOps[0] = Src; |
| std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); |
| |
| std::vector<const Type*> GEPTypes; |
| GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), |
| gep_type_end(Src->getType(), IdxBegin, IdxEnd)); |
| |
| MachineBasicBlock::iterator IP; |
| if (MBB) IP = MBB->end(); |
| getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); |
| |
| // We can fold it away iff the getGEPIndex call eliminated all operands. |
| return GEPOps.empty(); |
| } |
| |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg) { |
| const TargetData &TD = TM.getTargetData(); |
| if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) |
| Src = CPR->getValue(); |
| |
| std::vector<Value*> GEPOps; |
| GEPOps.resize(IdxEnd-IdxBegin+1); |
| GEPOps[0] = Src; |
| std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); |
| |
| std::vector<const Type*> GEPTypes; |
| GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), |
| gep_type_end(Src->getType(), IdxBegin, IdxEnd)); |
| |
| // Keep emitting instructions until we consume the entire GEP instruction. |
| while (!GEPOps.empty()) { |
| unsigned OldSize = GEPOps.size(); |
| unsigned BaseReg, Scale, IndexReg, Disp; |
| getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); |
| |
| if (GEPOps.size() != OldSize) { |
| // getGEPIndex consumed some of the input. Build an LEA instruction here. |
| unsigned NextTarget = 0; |
| if (!GEPOps.empty()) { |
| assert(BaseReg == 0 && |
| "getGEPIndex should have left the base register open for chaining!"); |
| NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); |
| } |
| |
| if (IndexReg == 0 && Disp == 0) |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); |
| else |
| addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), |
| BaseReg, Scale, IndexReg, Disp); |
| --IP; |
| TargetReg = NextTarget; |
| } else if (GEPTypes.empty()) { |
| // The getGEPIndex operation didn't want to build an LEA. Check to see if |
| // all operands are consumed but the base pointer. If so, just load it |
| // into the register. |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) { |
| BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); |
| } else { |
| unsigned BaseReg = getReg(GEPOps[0], MBB, IP); |
| BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); |
| } |
| break; // we are now done |
| |
| } else { |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); |
| Value *idx = GEPOps.back(); |
| GEPOps.pop_back(); // Consume a GEP operand |
| GEPTypes.pop_back(); |
| |
| // Many GEP instructions use a [cast (int/uint) to LongTy] as their |
| // operand on X86. Handle this case directly now... |
| if (CastInst *CI = dyn_cast<CastInst>(idx)) |
| if (CI->getOperand(0)->getType() == Type::IntTy || |
| CI->getOperand(0)->getType() == Type::UIntTy) |
| idx = CI->getOperand(0); |
| |
| // We want to add BaseReg to(idxReg * sizeof ElementType). First, we |
| // must find the size of the pointed-to type (Not coincidentally, the next |
| // type is the type of the elements in the array). |
| const Type *ElTy = SqTy->getElementType(); |
| unsigned elementSize = TD.getTypeSize(ElTy); |
| |
| // If idxReg is a constant, we don't need to perform the multiply! |
| if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) { |
| if (!CSI->isNullValue()) { |
| unsigned Offset = elementSize*CSI->getRawValue(); |
| unsigned Reg = makeAnotherReg(Type::UIntTy); |
| BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) |
| .addReg(Reg).addImm(Offset); |
| --IP; // Insert the next instruction before this one. |
| TargetReg = Reg; // Codegen the rest of the GEP into this |
| } |
| } else if (elementSize == 1) { |
| // If the element size is 1, we don't have to multiply, just add |
| unsigned idxReg = getReg(idx, MBB, IP); |
| unsigned Reg = makeAnotherReg(Type::UIntTy); |
| BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); |
| --IP; // Insert the next instruction before this one. |
| TargetReg = Reg; // Codegen the rest of the GEP into this |
| } else { |
| unsigned idxReg = getReg(idx, MBB, IP); |
| unsigned OffsetReg = makeAnotherReg(Type::UIntTy); |
| |
| // Make sure we can back the iterator up to point to the first |
| // instruction emitted. |
| MachineBasicBlock::iterator BeforeIt = IP; |
| if (IP == MBB->begin()) |
| BeforeIt = MBB->end(); |
| else |
| --BeforeIt; |
| doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); |
| |
| // Emit an ADD to add OffsetReg to the basePtr. |
| unsigned Reg = makeAnotherReg(Type::UIntTy); |
| BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) |
| .addReg(Reg).addReg(OffsetReg); |
| |
| // Step to the first instruction of the multiply. |
| if (BeforeIt == MBB->end()) |
| IP = MBB->begin(); |
| else |
| IP = ++BeforeIt; |
| |
| TargetReg = Reg; // Codegen the rest of the GEP into this |
| } |
| } |
| } |
| } |
| |
| |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the |
| /// frame manager, otherwise do it the hard way. |
| /// |
| void ISel::visitAllocaInst(AllocaInst &I) { |
| // Find the data size of the alloca inst's getAllocatedType. |
| const Type *Ty = I.getAllocatedType(); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| |
| // If this is a fixed size alloca in the entry block for the function, |
| // statically stack allocate the space. |
| // |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) { |
| if (I.getParent() == I.getParent()->getParent()->begin()) { |
| TySize *= CUI->getValue(); // Get total allocated size... |
| unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); |
| |
| // Create a new stack object using the frame manager... |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); |
| addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx); |
| return; |
| } |
| } |
| |
| // Create a register to hold the temporary result of multiplying the type size |
| // constant by the variable amount. |
| unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); |
| unsigned SrcReg1 = getReg(I.getArraySize()); |
| |
| // TotalSizeReg = mul <numelements>, <TypeSize> |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); |
| |
| // AddedSize = add <TotalSizeReg>, 15 |
| unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); |
| |
| // AlignedSize = and <AddedSize>, ~15 |
| unsigned AlignedSize = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); |
| |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); |
| |
| // Put a pointer to the space into the result register, by copying |
| // the stack pointer. |
| BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| F->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| /// visitMallocInst - Malloc instructions are code generated into direct calls |
| /// to the library malloc. |
| /// |
| void ISel::visitMallocInst(MallocInst &I) { |
| unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); |
| unsigned Arg; |
| |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { |
| Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); |
| } else { |
| Arg = makeAnotherReg(Type::UIntTy); |
| unsigned Op0Reg = getReg(I.getOperand(0)); |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); |
| } |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Arg, Type::UIntTy)); |
| MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, |
| 1).addExternalSymbol("malloc", true); |
| doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); |
| } |
| |
| |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc |
| /// function. |
| /// |
| void ISel::visitFreeInst(FreeInst &I) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(I.getOperand(0))); |
| MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, |
| 1).addExternalSymbol("free", true); |
| doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); |
| } |
| |
| /// createX86SimpleInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |