| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a target specifier matcher for converting parsed |
| // assembly operands in the MCInst structures. It also emits a matcher for |
| // custom operand parsing. |
| // |
| // Converting assembly operands into MCInst structures |
| // --------------------------------------------------- |
| // |
| // The input to the target specific matcher is a list of literal tokens and |
| // operands. The target specific parser should generally eliminate any syntax |
| // which is not relevant for matching; for example, comma tokens should have |
| // already been consumed and eliminated by the parser. Most instructions will |
| // end up with a single literal token (the instruction name) and some number of |
| // operands. |
| // |
| // Some example inputs, for X86: |
| // 'addl' (immediate ...) (register ...) |
| // 'add' (immediate ...) (memory ...) |
| // 'call' '*' %epc |
| // |
| // The assembly matcher is responsible for converting this input into a precise |
| // machine instruction (i.e., an instruction with a well defined encoding). This |
| // mapping has several properties which complicate matching: |
| // |
| // - It may be ambiguous; many architectures can legally encode particular |
| // variants of an instruction in different ways (for example, using a smaller |
| // encoding for small immediates). Such ambiguities should never be |
| // arbitrarily resolved by the assembler, the assembler is always responsible |
| // for choosing the "best" available instruction. |
| // |
| // - It may depend on the subtarget or the assembler context. Instructions |
| // which are invalid for the current mode, but otherwise unambiguous (e.g., |
| // an SSE instruction in a file being assembled for i486) should be accepted |
| // and rejected by the assembler front end. However, if the proper encoding |
| // for an instruction is dependent on the assembler context then the matcher |
| // is responsible for selecting the correct machine instruction for the |
| // current mode. |
| // |
| // The core matching algorithm attempts to exploit the regularity in most |
| // instruction sets to quickly determine the set of possibly matching |
| // instructions, and the simplify the generated code. Additionally, this helps |
| // to ensure that the ambiguities are intentionally resolved by the user. |
| // |
| // The matching is divided into two distinct phases: |
| // |
| // 1. Classification: Each operand is mapped to the unique set which (a) |
| // contains it, and (b) is the largest such subset for which a single |
| // instruction could match all members. |
| // |
| // For register classes, we can generate these subgroups automatically. For |
| // arbitrary operands, we expect the user to define the classes and their |
| // relations to one another (for example, 8-bit signed immediates as a |
| // subset of 32-bit immediates). |
| // |
| // By partitioning the operands in this way, we guarantee that for any |
| // tuple of classes, any single instruction must match either all or none |
| // of the sets of operands which could classify to that tuple. |
| // |
| // In addition, the subset relation amongst classes induces a partial order |
| // on such tuples, which we use to resolve ambiguities. |
| // |
| // 2. The input can now be treated as a tuple of classes (static tokens are |
| // simple singleton sets). Each such tuple should generally map to a single |
| // instruction (we currently ignore cases where this isn't true, whee!!!), |
| // which we can emit a simple matcher for. |
| // |
| // Custom Operand Parsing |
| // ---------------------- |
| // |
| // Some targets need a custom way to parse operands, some specific instructions |
| // can contain arguments that can represent processor flags and other kinds of |
| // identifiers that need to be mapped to specific values in the final encoded |
| // instructions. The target specific custom operand parsing works in the |
| // following way: |
| // |
| // 1. A operand match table is built, each entry contains a mnemonic, an |
| // operand class, a mask for all operand positions for that same |
| // class/mnemonic and target features to be checked while trying to match. |
| // |
| // 2. The operand matcher will try every possible entry with the same |
| // mnemonic and will check if the target feature for this mnemonic also |
| // matches. After that, if the operand to be matched has its index |
| // present in the mask, a successful match occurs. Otherwise, fallback |
| // to the regular operand parsing. |
| // |
| // 3. For a match success, each operand class that has a 'ParserMethod' |
| // becomes part of a switch from where the custom method is called. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenTarget.h" |
| #include "StringToOffsetTable.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/PointerUnion.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/StringMatcher.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <cassert> |
| #include <map> |
| #include <set> |
| using namespace llvm; |
| |
| static cl::opt<std::string> |
| MatchPrefix("match-prefix", cl::init(""), |
| cl::desc("Only match instructions with the given prefix")); |
| |
| namespace { |
| class AsmMatcherInfo; |
| struct SubtargetFeatureInfo; |
| |
| class AsmMatcherEmitter { |
| RecordKeeper &Records; |
| public: |
| AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} |
| |
| void run(raw_ostream &o); |
| }; |
| |
| /// ClassInfo - Helper class for storing the information about a particular |
| /// class of operands which can be matched. |
| struct ClassInfo { |
| enum ClassInfoKind { |
| /// Invalid kind, for use as a sentinel value. |
| Invalid = 0, |
| |
| /// The class for a particular token. |
| Token, |
| |
| /// The (first) register class, subsequent register classes are |
| /// RegisterClass0+1, and so on. |
| RegisterClass0, |
| |
| /// The (first) user defined class, subsequent user defined classes are |
| /// UserClass0+1, and so on. |
| UserClass0 = 1<<16 |
| }; |
| |
| /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + |
| /// N) for the Nth user defined class. |
| unsigned Kind; |
| |
| /// SuperClasses - The super classes of this class. Note that for simplicities |
| /// sake user operands only record their immediate super class, while register |
| /// operands include all superclasses. |
| std::vector<ClassInfo*> SuperClasses; |
| |
| /// Name - The full class name, suitable for use in an enum. |
| std::string Name; |
| |
| /// ClassName - The unadorned generic name for this class (e.g., Token). |
| std::string ClassName; |
| |
| /// ValueName - The name of the value this class represents; for a token this |
| /// is the literal token string, for an operand it is the TableGen class (or |
| /// empty if this is a derived class). |
| std::string ValueName; |
| |
| /// PredicateMethod - The name of the operand method to test whether the |
| /// operand matches this class; this is not valid for Token or register kinds. |
| std::string PredicateMethod; |
| |
| /// RenderMethod - The name of the operand method to add this operand to an |
| /// MCInst; this is not valid for Token or register kinds. |
| std::string RenderMethod; |
| |
| /// ParserMethod - The name of the operand method to do a target specific |
| /// parsing on the operand. |
| std::string ParserMethod; |
| |
| /// For register classes, the records for all the registers in this class. |
| std::set<Record*> Registers; |
| |
| /// For custom match classes, he diagnostic kind for when the predicate fails. |
| std::string DiagnosticType; |
| public: |
| /// isRegisterClass() - Check if this is a register class. |
| bool isRegisterClass() const { |
| return Kind >= RegisterClass0 && Kind < UserClass0; |
| } |
| |
| /// isUserClass() - Check if this is a user defined class. |
| bool isUserClass() const { |
| return Kind >= UserClass0; |
| } |
| |
| /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes |
| /// are related if they are in the same class hierarchy. |
| bool isRelatedTo(const ClassInfo &RHS) const { |
| // Tokens are only related to tokens. |
| if (Kind == Token || RHS.Kind == Token) |
| return Kind == Token && RHS.Kind == Token; |
| |
| // Registers classes are only related to registers classes, and only if |
| // their intersection is non-empty. |
| if (isRegisterClass() || RHS.isRegisterClass()) { |
| if (!isRegisterClass() || !RHS.isRegisterClass()) |
| return false; |
| |
| std::set<Record*> Tmp; |
| std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin()); |
| std::set_intersection(Registers.begin(), Registers.end(), |
| RHS.Registers.begin(), RHS.Registers.end(), |
| II); |
| |
| return !Tmp.empty(); |
| } |
| |
| // Otherwise we have two users operands; they are related if they are in the |
| // same class hierarchy. |
| // |
| // FIXME: This is an oversimplification, they should only be related if they |
| // intersect, however we don't have that information. |
| assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); |
| const ClassInfo *Root = this; |
| while (!Root->SuperClasses.empty()) |
| Root = Root->SuperClasses.front(); |
| |
| const ClassInfo *RHSRoot = &RHS; |
| while (!RHSRoot->SuperClasses.empty()) |
| RHSRoot = RHSRoot->SuperClasses.front(); |
| |
| return Root == RHSRoot; |
| } |
| |
| /// isSubsetOf - Test whether this class is a subset of \p RHS. |
| bool isSubsetOf(const ClassInfo &RHS) const { |
| // This is a subset of RHS if it is the same class... |
| if (this == &RHS) |
| return true; |
| |
| // ... or if any of its super classes are a subset of RHS. |
| for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(), |
| ie = SuperClasses.end(); it != ie; ++it) |
| if ((*it)->isSubsetOf(RHS)) |
| return true; |
| |
| return false; |
| } |
| |
| /// operator< - Compare two classes. |
| bool operator<(const ClassInfo &RHS) const { |
| if (this == &RHS) |
| return false; |
| |
| // Unrelated classes can be ordered by kind. |
| if (!isRelatedTo(RHS)) |
| return Kind < RHS.Kind; |
| |
| switch (Kind) { |
| case Invalid: |
| llvm_unreachable("Invalid kind!"); |
| |
| default: |
| // This class precedes the RHS if it is a proper subset of the RHS. |
| if (isSubsetOf(RHS)) |
| return true; |
| if (RHS.isSubsetOf(*this)) |
| return false; |
| |
| // Otherwise, order by name to ensure we have a total ordering. |
| return ValueName < RHS.ValueName; |
| } |
| } |
| }; |
| |
| namespace { |
| /// Sort ClassInfo pointers independently of pointer value. |
| struct LessClassInfoPtr { |
| bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const { |
| return *LHS < *RHS; |
| } |
| }; |
| } |
| |
| /// MatchableInfo - Helper class for storing the necessary information for an |
| /// instruction or alias which is capable of being matched. |
| struct MatchableInfo { |
| struct AsmOperand { |
| /// Token - This is the token that the operand came from. |
| StringRef Token; |
| |
| /// The unique class instance this operand should match. |
| ClassInfo *Class; |
| |
| /// The operand name this is, if anything. |
| StringRef SrcOpName; |
| |
| /// The suboperand index within SrcOpName, or -1 for the entire operand. |
| int SubOpIdx; |
| |
| /// Register record if this token is singleton register. |
| Record *SingletonReg; |
| |
| explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1), |
| SingletonReg(0) {} |
| }; |
| |
| /// ResOperand - This represents a single operand in the result instruction |
| /// generated by the match. In cases (like addressing modes) where a single |
| /// assembler operand expands to multiple MCOperands, this represents the |
| /// single assembler operand, not the MCOperand. |
| struct ResOperand { |
| enum { |
| /// RenderAsmOperand - This represents an operand result that is |
| /// generated by calling the render method on the assembly operand. The |
| /// corresponding AsmOperand is specified by AsmOperandNum. |
| RenderAsmOperand, |
| |
| /// TiedOperand - This represents a result operand that is a duplicate of |
| /// a previous result operand. |
| TiedOperand, |
| |
| /// ImmOperand - This represents an immediate value that is dumped into |
| /// the operand. |
| ImmOperand, |
| |
| /// RegOperand - This represents a fixed register that is dumped in. |
| RegOperand |
| } Kind; |
| |
| union { |
| /// This is the operand # in the AsmOperands list that this should be |
| /// copied from. |
| unsigned AsmOperandNum; |
| |
| /// TiedOperandNum - This is the (earlier) result operand that should be |
| /// copied from. |
| unsigned TiedOperandNum; |
| |
| /// ImmVal - This is the immediate value added to the instruction. |
| int64_t ImmVal; |
| |
| /// Register - This is the register record. |
| Record *Register; |
| }; |
| |
| /// MINumOperands - The number of MCInst operands populated by this |
| /// operand. |
| unsigned MINumOperands; |
| |
| static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { |
| ResOperand X; |
| X.Kind = RenderAsmOperand; |
| X.AsmOperandNum = AsmOpNum; |
| X.MINumOperands = NumOperands; |
| return X; |
| } |
| |
| static ResOperand getTiedOp(unsigned TiedOperandNum) { |
| ResOperand X; |
| X.Kind = TiedOperand; |
| X.TiedOperandNum = TiedOperandNum; |
| X.MINumOperands = 1; |
| return X; |
| } |
| |
| static ResOperand getImmOp(int64_t Val) { |
| ResOperand X; |
| X.Kind = ImmOperand; |
| X.ImmVal = Val; |
| X.MINumOperands = 1; |
| return X; |
| } |
| |
| static ResOperand getRegOp(Record *Reg) { |
| ResOperand X; |
| X.Kind = RegOperand; |
| X.Register = Reg; |
| X.MINumOperands = 1; |
| return X; |
| } |
| }; |
| |
| /// AsmVariantID - Target's assembly syntax variant no. |
| int AsmVariantID; |
| |
| /// TheDef - This is the definition of the instruction or InstAlias that this |
| /// matchable came from. |
| Record *const TheDef; |
| |
| /// DefRec - This is the definition that it came from. |
| PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; |
| |
| const CodeGenInstruction *getResultInst() const { |
| if (DefRec.is<const CodeGenInstruction*>()) |
| return DefRec.get<const CodeGenInstruction*>(); |
| return DefRec.get<const CodeGenInstAlias*>()->ResultInst; |
| } |
| |
| /// ResOperands - This is the operand list that should be built for the result |
| /// MCInst. |
| SmallVector<ResOperand, 8> ResOperands; |
| |
| /// AsmString - The assembly string for this instruction (with variants |
| /// removed), e.g. "movsx $src, $dst". |
| std::string AsmString; |
| |
| /// Mnemonic - This is the first token of the matched instruction, its |
| /// mnemonic. |
| StringRef Mnemonic; |
| |
| /// AsmOperands - The textual operands that this instruction matches, |
| /// annotated with a class and where in the OperandList they were defined. |
| /// This directly corresponds to the tokenized AsmString after the mnemonic is |
| /// removed. |
| SmallVector<AsmOperand, 8> AsmOperands; |
| |
| /// Predicates - The required subtarget features to match this instruction. |
| SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures; |
| |
| /// ConversionFnKind - The enum value which is passed to the generated |
| /// convertToMCInst to convert parsed operands into an MCInst for this |
| /// function. |
| std::string ConversionFnKind; |
| |
| MatchableInfo(const CodeGenInstruction &CGI) |
| : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI), |
| AsmString(CGI.AsmString) { |
| } |
| |
| MatchableInfo(const CodeGenInstAlias *Alias) |
| : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias), |
| AsmString(Alias->AsmString) { |
| } |
| |
| // Two-operand aliases clone from the main matchable, but mark the second |
| // operand as a tied operand of the first for purposes of the assembler. |
| void formTwoOperandAlias(StringRef Constraint); |
| |
| void initialize(const AsmMatcherInfo &Info, |
| SmallPtrSet<Record*, 16> &SingletonRegisters, |
| int AsmVariantNo, std::string &RegisterPrefix); |
| |
| /// validate - Return true if this matchable is a valid thing to match against |
| /// and perform a bunch of validity checking. |
| bool validate(StringRef CommentDelimiter, bool Hack) const; |
| |
| /// extractSingletonRegisterForAsmOperand - Extract singleton register, |
| /// if present, from specified token. |
| void |
| extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info, |
| std::string &RegisterPrefix); |
| |
| /// findAsmOperand - Find the AsmOperand with the specified name and |
| /// suboperand index. |
| int findAsmOperand(StringRef N, int SubOpIdx) const { |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) |
| if (N == AsmOperands[i].SrcOpName && |
| SubOpIdx == AsmOperands[i].SubOpIdx) |
| return i; |
| return -1; |
| } |
| |
| /// findAsmOperandNamed - Find the first AsmOperand with the specified name. |
| /// This does not check the suboperand index. |
| int findAsmOperandNamed(StringRef N) const { |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) |
| if (N == AsmOperands[i].SrcOpName) |
| return i; |
| return -1; |
| } |
| |
| void buildInstructionResultOperands(); |
| void buildAliasResultOperands(); |
| |
| /// operator< - Compare two matchables. |
| bool operator<(const MatchableInfo &RHS) const { |
| // The primary comparator is the instruction mnemonic. |
| if (Mnemonic != RHS.Mnemonic) |
| return Mnemonic < RHS.Mnemonic; |
| |
| if (AsmOperands.size() != RHS.AsmOperands.size()) |
| return AsmOperands.size() < RHS.AsmOperands.size(); |
| |
| // Compare lexicographically by operand. The matcher validates that other |
| // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) |
| return true; |
| if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| return false; |
| } |
| |
| // Give matches that require more features higher precedence. This is useful |
| // because we cannot define AssemblerPredicates with the negation of |
| // processor features. For example, ARM v6 "nop" may be either a HINT or |
| // MOV. With v6, we want to match HINT. The assembler has no way to |
| // predicate MOV under "NoV6", but HINT will always match first because it |
| // requires V6 while MOV does not. |
| if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) |
| return RequiredFeatures.size() > RHS.RequiredFeatures.size(); |
| |
| return false; |
| } |
| |
| /// couldMatchAmbiguouslyWith - Check whether this matchable could |
| /// ambiguously match the same set of operands as \p RHS (without being a |
| /// strictly superior match). |
| bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) { |
| // The primary comparator is the instruction mnemonic. |
| if (Mnemonic != RHS.Mnemonic) |
| return false; |
| |
| // The number of operands is unambiguous. |
| if (AsmOperands.size() != RHS.AsmOperands.size()) |
| return false; |
| |
| // Otherwise, make sure the ordering of the two instructions is unambiguous |
| // by checking that either (a) a token or operand kind discriminates them, |
| // or (b) the ordering among equivalent kinds is consistent. |
| |
| // Tokens and operand kinds are unambiguous (assuming a correct target |
| // specific parser). |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) |
| if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || |
| AsmOperands[i].Class->Kind == ClassInfo::Token) |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || |
| *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| return false; |
| |
| // Otherwise, this operand could commute if all operands are equivalent, or |
| // there is a pair of operands that compare less than and a pair that |
| // compare greater than. |
| bool HasLT = false, HasGT = false; |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) |
| HasLT = true; |
| if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| HasGT = true; |
| } |
| |
| return !(HasLT ^ HasGT); |
| } |
| |
| void dump(); |
| |
| private: |
| void tokenizeAsmString(const AsmMatcherInfo &Info); |
| }; |
| |
| /// SubtargetFeatureInfo - Helper class for storing information on a subtarget |
| /// feature which participates in instruction matching. |
| struct SubtargetFeatureInfo { |
| /// \brief The predicate record for this feature. |
| Record *TheDef; |
| |
| /// \brief An unique index assigned to represent this feature. |
| unsigned Index; |
| |
| SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {} |
| |
| /// \brief The name of the enumerated constant identifying this feature. |
| std::string getEnumName() const { |
| return "Feature_" + TheDef->getName(); |
| } |
| }; |
| |
| struct OperandMatchEntry { |
| unsigned OperandMask; |
| MatchableInfo* MI; |
| ClassInfo *CI; |
| |
| static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci, |
| unsigned opMask) { |
| OperandMatchEntry X; |
| X.OperandMask = opMask; |
| X.CI = ci; |
| X.MI = mi; |
| return X; |
| } |
| }; |
| |
| |
| class AsmMatcherInfo { |
| public: |
| /// Tracked Records |
| RecordKeeper &Records; |
| |
| /// The tablegen AsmParser record. |
| Record *AsmParser; |
| |
| /// Target - The target information. |
| CodeGenTarget &Target; |
| |
| /// The classes which are needed for matching. |
| std::vector<ClassInfo*> Classes; |
| |
| /// The information on the matchables to match. |
| std::vector<MatchableInfo*> Matchables; |
| |
| /// Info for custom matching operands by user defined methods. |
| std::vector<OperandMatchEntry> OperandMatchInfo; |
| |
| /// Map of Register records to their class information. |
| typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; |
| RegisterClassesTy RegisterClasses; |
| |
| /// Map of Predicate records to their subtarget information. |
| std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures; |
| |
| /// Map of AsmOperandClass records to their class information. |
| std::map<Record*, ClassInfo*> AsmOperandClasses; |
| |
| private: |
| /// Map of token to class information which has already been constructed. |
| std::map<std::string, ClassInfo*> TokenClasses; |
| |
| /// Map of RegisterClass records to their class information. |
| std::map<Record*, ClassInfo*> RegisterClassClasses; |
| |
| private: |
| /// getTokenClass - Lookup or create the class for the given token. |
| ClassInfo *getTokenClass(StringRef Token); |
| |
| /// getOperandClass - Lookup or create the class for the given operand. |
| ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, |
| int SubOpIdx); |
| ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); |
| |
| /// buildRegisterClasses - Build the ClassInfo* instances for register |
| /// classes. |
| void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters); |
| |
| /// buildOperandClasses - Build the ClassInfo* instances for user defined |
| /// operand classes. |
| void buildOperandClasses(); |
| |
| void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, |
| unsigned AsmOpIdx); |
| void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, |
| MatchableInfo::AsmOperand &Op); |
| |
| public: |
| AsmMatcherInfo(Record *AsmParser, |
| CodeGenTarget &Target, |
| RecordKeeper &Records); |
| |
| /// buildInfo - Construct the various tables used during matching. |
| void buildInfo(); |
| |
| /// buildOperandMatchInfo - Build the necessary information to handle user |
| /// defined operand parsing methods. |
| void buildOperandMatchInfo(); |
| |
| /// getSubtargetFeature - Lookup or create the subtarget feature info for the |
| /// given operand. |
| SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { |
| assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); |
| std::map<Record*, SubtargetFeatureInfo*>::const_iterator I = |
| SubtargetFeatures.find(Def); |
| return I == SubtargetFeatures.end() ? 0 : I->second; |
| } |
| |
| RecordKeeper &getRecords() const { |
| return Records; |
| } |
| }; |
| |
| } // End anonymous namespace |
| |
| void MatchableInfo::dump() { |
| errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; |
| |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| AsmOperand &Op = AsmOperands[i]; |
| errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; |
| errs() << '\"' << Op.Token << "\"\n"; |
| } |
| } |
| |
| static std::pair<StringRef, StringRef> |
| parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { |
| // Split via the '='. |
| std::pair<StringRef, StringRef> Ops = S.split('='); |
| if (Ops.second == "") |
| PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); |
| // Trim whitespace and the leading '$' on the operand names. |
| size_t start = Ops.first.find_first_of('$'); |
| if (start == std::string::npos) |
| PrintFatalError(Loc, "expected '$' prefix on asm operand name"); |
| Ops.first = Ops.first.slice(start + 1, std::string::npos); |
| size_t end = Ops.first.find_last_of(" \t"); |
| Ops.first = Ops.first.slice(0, end); |
| // Now the second operand. |
| start = Ops.second.find_first_of('$'); |
| if (start == std::string::npos) |
| PrintFatalError(Loc, "expected '$' prefix on asm operand name"); |
| Ops.second = Ops.second.slice(start + 1, std::string::npos); |
| end = Ops.second.find_last_of(" \t"); |
| Ops.first = Ops.first.slice(0, end); |
| return Ops; |
| } |
| |
| void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { |
| // Figure out which operands are aliased and mark them as tied. |
| std::pair<StringRef, StringRef> Ops = |
| parseTwoOperandConstraint(Constraint, TheDef->getLoc()); |
| |
| // Find the AsmOperands that refer to the operands we're aliasing. |
| int SrcAsmOperand = findAsmOperandNamed(Ops.first); |
| int DstAsmOperand = findAsmOperandNamed(Ops.second); |
| if (SrcAsmOperand == -1) |
| PrintFatalError(TheDef->getLoc(), |
| "unknown source two-operand alias operand '" + |
| Ops.first.str() + "'."); |
| if (DstAsmOperand == -1) |
| PrintFatalError(TheDef->getLoc(), |
| "unknown destination two-operand alias operand '" + |
| Ops.second.str() + "'."); |
| |
| // Find the ResOperand that refers to the operand we're aliasing away |
| // and update it to refer to the combined operand instead. |
| for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { |
| ResOperand &Op = ResOperands[i]; |
| if (Op.Kind == ResOperand::RenderAsmOperand && |
| Op.AsmOperandNum == (unsigned)SrcAsmOperand) { |
| Op.AsmOperandNum = DstAsmOperand; |
| break; |
| } |
| } |
| // Remove the AsmOperand for the alias operand. |
| AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); |
| // Adjust the ResOperand references to any AsmOperands that followed |
| // the one we just deleted. |
| for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { |
| ResOperand &Op = ResOperands[i]; |
| switch(Op.Kind) { |
| default: |
| // Nothing to do for operands that don't reference AsmOperands. |
| break; |
| case ResOperand::RenderAsmOperand: |
| if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) |
| --Op.AsmOperandNum; |
| break; |
| case ResOperand::TiedOperand: |
| if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) |
| --Op.TiedOperandNum; |
| break; |
| } |
| } |
| } |
| |
| void MatchableInfo::initialize(const AsmMatcherInfo &Info, |
| SmallPtrSet<Record*, 16> &SingletonRegisters, |
| int AsmVariantNo, std::string &RegisterPrefix) { |
| AsmVariantID = AsmVariantNo; |
| AsmString = |
| CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo); |
| |
| tokenizeAsmString(Info); |
| |
| // Compute the require features. |
| std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates"); |
| for (unsigned i = 0, e = Predicates.size(); i != e; ++i) |
| if (SubtargetFeatureInfo *Feature = |
| Info.getSubtargetFeature(Predicates[i])) |
| RequiredFeatures.push_back(Feature); |
| |
| // Collect singleton registers, if used. |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix); |
| if (Record *Reg = AsmOperands[i].SingletonReg) |
| SingletonRegisters.insert(Reg); |
| } |
| } |
| |
| /// tokenizeAsmString - Tokenize a simplified assembly string. |
| void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) { |
| StringRef String = AsmString; |
| unsigned Prev = 0; |
| bool InTok = true; |
| for (unsigned i = 0, e = String.size(); i != e; ++i) { |
| switch (String[i]) { |
| case '[': |
| case ']': |
| case '*': |
| case '!': |
| case ' ': |
| case '\t': |
| case ',': |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| if (!isspace(String[i]) && String[i] != ',') |
| AsmOperands.push_back(AsmOperand(String.substr(i, 1))); |
| Prev = i + 1; |
| break; |
| |
| case '\\': |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| ++i; |
| assert(i != String.size() && "Invalid quoted character"); |
| AsmOperands.push_back(AsmOperand(String.substr(i, 1))); |
| Prev = i + 1; |
| break; |
| |
| case '$': { |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| |
| // If this isn't "${", treat like a normal token. |
| if (i + 1 == String.size() || String[i + 1] != '{') { |
| Prev = i; |
| break; |
| } |
| |
| StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); |
| assert(End != String.end() && "Missing brace in operand reference!"); |
| size_t EndPos = End - String.begin(); |
| AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1))); |
| Prev = EndPos + 1; |
| i = EndPos; |
| break; |
| } |
| |
| case '.': |
| if (InTok) |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| Prev = i; |
| InTok = true; |
| break; |
| |
| default: |
| InTok = true; |
| } |
| } |
| if (InTok && Prev != String.size()) |
| AsmOperands.push_back(AsmOperand(String.substr(Prev))); |
| |
| // The first token of the instruction is the mnemonic, which must be a |
| // simple string, not a $foo variable or a singleton register. |
| if (AsmOperands.empty()) |
| PrintFatalError(TheDef->getLoc(), |
| "Instruction '" + TheDef->getName() + "' has no tokens"); |
| Mnemonic = AsmOperands[0].Token; |
| if (Mnemonic.empty()) |
| PrintFatalError(TheDef->getLoc(), |
| "Missing instruction mnemonic"); |
| // FIXME : Check and raise an error if it is a register. |
| if (Mnemonic[0] == '$') |
| PrintFatalError(TheDef->getLoc(), |
| "Invalid instruction mnemonic '" + Mnemonic.str() + "'!"); |
| |
| // Remove the first operand, it is tracked in the mnemonic field. |
| AsmOperands.erase(AsmOperands.begin()); |
| } |
| |
| bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { |
| // Reject matchables with no .s string. |
| if (AsmString.empty()) |
| PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); |
| |
| // Reject any matchables with a newline in them, they should be marked |
| // isCodeGenOnly if they are pseudo instructions. |
| if (AsmString.find('\n') != std::string::npos) |
| PrintFatalError(TheDef->getLoc(), |
| "multiline instruction is not valid for the asmparser, " |
| "mark it isCodeGenOnly"); |
| |
| // Remove comments from the asm string. We know that the asmstring only |
| // has one line. |
| if (!CommentDelimiter.empty() && |
| StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) |
| PrintFatalError(TheDef->getLoc(), |
| "asmstring for instruction has comment character in it, " |
| "mark it isCodeGenOnly"); |
| |
| // Reject matchables with operand modifiers, these aren't something we can |
| // handle, the target should be refactored to use operands instead of |
| // modifiers. |
| // |
| // Also, check for instructions which reference the operand multiple times; |
| // this implies a constraint we would not honor. |
| std::set<std::string> OperandNames; |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| StringRef Tok = AsmOperands[i].Token; |
| if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) |
| PrintFatalError(TheDef->getLoc(), |
| "matchable with operand modifier '" + Tok.str() + |
| "' not supported by asm matcher. Mark isCodeGenOnly!"); |
| |
| // Verify that any operand is only mentioned once. |
| // We reject aliases and ignore instructions for now. |
| if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { |
| if (!Hack) |
| PrintFatalError(TheDef->getLoc(), |
| "ERROR: matchable with tied operand '" + Tok.str() + |
| "' can never be matched!"); |
| // FIXME: Should reject these. The ARM backend hits this with $lane in a |
| // bunch of instructions. It is unclear what the right answer is. |
| DEBUG({ |
| errs() << "warning: '" << TheDef->getName() << "': " |
| << "ignoring instruction with tied operand '" |
| << Tok.str() << "'\n"; |
| }); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// extractSingletonRegisterForAsmOperand - Extract singleton register, |
| /// if present, from specified token. |
| void MatchableInfo:: |
| extractSingletonRegisterForAsmOperand(unsigned OperandNo, |
| const AsmMatcherInfo &Info, |
| std::string &RegisterPrefix) { |
| StringRef Tok = AsmOperands[OperandNo].Token; |
| if (RegisterPrefix.empty()) { |
| std::string LoweredTok = Tok.lower(); |
| if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) |
| AsmOperands[OperandNo].SingletonReg = Reg->TheDef; |
| return; |
| } |
| |
| if (!Tok.startswith(RegisterPrefix)) |
| return; |
| |
| StringRef RegName = Tok.substr(RegisterPrefix.size()); |
| if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) |
| AsmOperands[OperandNo].SingletonReg = Reg->TheDef; |
| |
| // If there is no register prefix (i.e. "%" in "%eax"), then this may |
| // be some random non-register token, just ignore it. |
| return; |
| } |
| |
| static std::string getEnumNameForToken(StringRef Str) { |
| std::string Res; |
| |
| for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { |
| switch (*it) { |
| case '*': Res += "_STAR_"; break; |
| case '%': Res += "_PCT_"; break; |
| case ':': Res += "_COLON_"; break; |
| case '!': Res += "_EXCLAIM_"; break; |
| case '.': Res += "_DOT_"; break; |
| default: |
| if (isalnum(*it)) |
| Res += *it; |
| else |
| Res += "_" + utostr((unsigned) *it) + "_"; |
| } |
| } |
| |
| return Res; |
| } |
| |
| ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { |
| ClassInfo *&Entry = TokenClasses[Token]; |
| |
| if (!Entry) { |
| Entry = new ClassInfo(); |
| Entry->Kind = ClassInfo::Token; |
| Entry->ClassName = "Token"; |
| Entry->Name = "MCK_" + getEnumNameForToken(Token); |
| Entry->ValueName = Token; |
| Entry->PredicateMethod = "<invalid>"; |
| Entry->RenderMethod = "<invalid>"; |
| Entry->ParserMethod = ""; |
| Entry->DiagnosticType = ""; |
| Classes.push_back(Entry); |
| } |
| |
| return Entry; |
| } |
| |
| ClassInfo * |
| AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, |
| int SubOpIdx) { |
| Record *Rec = OI.Rec; |
| if (SubOpIdx != -1) |
| Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); |
| return getOperandClass(Rec, SubOpIdx); |
| } |
| |
| ClassInfo * |
| AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { |
| if (Rec->isSubClassOf("RegisterOperand")) { |
| // RegisterOperand may have an associated ParserMatchClass. If it does, |
| // use it, else just fall back to the underlying register class. |
| const RecordVal *R = Rec->getValue("ParserMatchClass"); |
| if (R == 0 || R->getValue() == 0) |
| PrintFatalError("Record `" + Rec->getName() + |
| "' does not have a ParserMatchClass!\n"); |
| |
| if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { |
| Record *MatchClass = DI->getDef(); |
| if (ClassInfo *CI = AsmOperandClasses[MatchClass]) |
| return CI; |
| } |
| |
| // No custom match class. Just use the register class. |
| Record *ClassRec = Rec->getValueAsDef("RegClass"); |
| if (!ClassRec) |
| PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + |
| "' has no associated register class!\n"); |
| if (ClassInfo *CI = RegisterClassClasses[ClassRec]) |
| return CI; |
| PrintFatalError(Rec->getLoc(), "register class has no class info!"); |
| } |
| |
| |
| if (Rec->isSubClassOf("RegisterClass")) { |
| if (ClassInfo *CI = RegisterClassClasses[Rec]) |
| return CI; |
| PrintFatalError(Rec->getLoc(), "register class has no class info!"); |
| } |
| |
| if (!Rec->isSubClassOf("Operand")) |
| PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + |
| "' does not derive from class Operand!\n"); |
| Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); |
| if (ClassInfo *CI = AsmOperandClasses[MatchClass]) |
| return CI; |
| |
| PrintFatalError(Rec->getLoc(), "operand has no match class!"); |
| } |
| |
| void AsmMatcherInfo:: |
| buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) { |
| const std::vector<CodeGenRegister*> &Registers = |
| Target.getRegBank().getRegisters(); |
| ArrayRef<CodeGenRegisterClass*> RegClassList = |
| Target.getRegBank().getRegClasses(); |
| |
| // The register sets used for matching. |
| std::set< std::set<Record*> > RegisterSets; |
| |
| // Gather the defined sets. |
| for (ArrayRef<CodeGenRegisterClass*>::const_iterator it = |
| RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) |
| RegisterSets.insert(std::set<Record*>( |
| (*it)->getOrder().begin(), (*it)->getOrder().end())); |
| |
| // Add any required singleton sets. |
| for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), |
| ie = SingletonRegisters.end(); it != ie; ++it) { |
| Record *Rec = *it; |
| RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1)); |
| } |
| |
| // Introduce derived sets where necessary (when a register does not determine |
| // a unique register set class), and build the mapping of registers to the set |
| // they should classify to. |
| std::map<Record*, std::set<Record*> > RegisterMap; |
| for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(), |
| ie = Registers.end(); it != ie; ++it) { |
| const CodeGenRegister &CGR = **it; |
| // Compute the intersection of all sets containing this register. |
| std::set<Record*> ContainingSet; |
| |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it) { |
| if (!it->count(CGR.TheDef)) |
| continue; |
| |
| if (ContainingSet.empty()) { |
| ContainingSet = *it; |
| continue; |
| } |
| |
| std::set<Record*> Tmp; |
| std::swap(Tmp, ContainingSet); |
| std::insert_iterator< std::set<Record*> > II(ContainingSet, |
| ContainingSet.begin()); |
| std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II); |
| } |
| |
| if (!ContainingSet.empty()) { |
| RegisterSets.insert(ContainingSet); |
| RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); |
| } |
| } |
| |
| // Construct the register classes. |
| std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses; |
| unsigned Index = 0; |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it, ++Index) { |
| ClassInfo *CI = new ClassInfo(); |
| CI->Kind = ClassInfo::RegisterClass0 + Index; |
| CI->ClassName = "Reg" + utostr(Index); |
| CI->Name = "MCK_Reg" + utostr(Index); |
| CI->ValueName = ""; |
| CI->PredicateMethod = ""; // unused |
| CI->RenderMethod = "addRegOperands"; |
| CI->Registers = *it; |
| // FIXME: diagnostic type. |
| CI->DiagnosticType = ""; |
| Classes.push_back(CI); |
| RegisterSetClasses.insert(std::make_pair(*it, CI)); |
| } |
| |
| // Find the superclasses; we could compute only the subgroup lattice edges, |
| // but there isn't really a point. |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it) { |
| ClassInfo *CI = RegisterSetClasses[*it]; |
| for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(), |
| ie2 = RegisterSets.end(); it2 != ie2; ++it2) |
| if (*it != *it2 && |
| std::includes(it2->begin(), it2->end(), it->begin(), it->end())) |
| CI->SuperClasses.push_back(RegisterSetClasses[*it2]); |
| } |
| |
| // Name the register classes which correspond to a user defined RegisterClass. |
| for (ArrayRef<CodeGenRegisterClass*>::const_iterator |
| it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) { |
| const CodeGenRegisterClass &RC = **it; |
| // Def will be NULL for non-user defined register classes. |
| Record *Def = RC.getDef(); |
| if (!Def) |
| continue; |
| ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(), |
| RC.getOrder().end())]; |
| if (CI->ValueName.empty()) { |
| CI->ClassName = RC.getName(); |
| CI->Name = "MCK_" + RC.getName(); |
| CI->ValueName = RC.getName(); |
| } else |
| CI->ValueName = CI->ValueName + "," + RC.getName(); |
| |
| RegisterClassClasses.insert(std::make_pair(Def, CI)); |
| } |
| |
| // Populate the map for individual registers. |
| for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(), |
| ie = RegisterMap.end(); it != ie; ++it) |
| RegisterClasses[it->first] = RegisterSetClasses[it->second]; |
| |
| // Name the register classes which correspond to singleton registers. |
| for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), |
| ie = SingletonRegisters.end(); it != ie; ++it) { |
| Record *Rec = *it; |
| ClassInfo *CI = RegisterClasses[Rec]; |
| assert(CI && "Missing singleton register class info!"); |
| |
| if (CI->ValueName.empty()) { |
| CI->ClassName = Rec->getName(); |
| CI->Name = "MCK_" + Rec->getName(); |
| CI->ValueName = Rec->getName(); |
| } else |
| CI->ValueName = CI->ValueName + "," + Rec->getName(); |
| } |
| } |
| |
| void AsmMatcherInfo::buildOperandClasses() { |
| std::vector<Record*> AsmOperands = |
| Records.getAllDerivedDefinitions("AsmOperandClass"); |
| |
| // Pre-populate AsmOperandClasses map. |
| for (std::vector<Record*>::iterator it = AsmOperands.begin(), |
| ie = AsmOperands.end(); it != ie; ++it) |
| AsmOperandClasses[*it] = new ClassInfo(); |
| |
| unsigned Index = 0; |
| for (std::vector<Record*>::iterator it = AsmOperands.begin(), |
| ie = AsmOperands.end(); it != ie; ++it, ++Index) { |
| ClassInfo *CI = AsmOperandClasses[*it]; |
| CI->Kind = ClassInfo::UserClass0 + Index; |
| |
| ListInit *Supers = (*it)->getValueAsListInit("SuperClasses"); |
| for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) { |
| DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i)); |
| if (!DI) { |
| PrintError((*it)->getLoc(), "Invalid super class reference!"); |
| continue; |
| } |
| |
| ClassInfo *SC = AsmOperandClasses[DI->getDef()]; |
| if (!SC) |
| PrintError((*it)->getLoc(), "Invalid super class reference!"); |
| else |
| CI->SuperClasses.push_back(SC); |
| } |
| CI->ClassName = (*it)->getValueAsString("Name"); |
| CI->Name = "MCK_" + CI->ClassName; |
| CI->ValueName = (*it)->getName(); |
| |
| // Get or construct the predicate method name. |
| Init *PMName = (*it)->getValueInit("PredicateMethod"); |
| if (StringInit *SI = dyn_cast<StringInit>(PMName)) { |
| CI->PredicateMethod = SI->getValue(); |
| } else { |
| assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); |
| CI->PredicateMethod = "is" + CI->ClassName; |
| } |
| |
| // Get or construct the render method name. |
| Init *RMName = (*it)->getValueInit("RenderMethod"); |
| if (StringInit *SI = dyn_cast<StringInit>(RMName)) { |
| CI->RenderMethod = SI->getValue(); |
| } else { |
| assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); |
| CI->RenderMethod = "add" + CI->ClassName + "Operands"; |
| } |
| |
| // Get the parse method name or leave it as empty. |
| Init *PRMName = (*it)->getValueInit("ParserMethod"); |
| if (StringInit *SI = dyn_cast<StringInit>(PRMName)) |
| CI->ParserMethod = SI->getValue(); |
| |
| // Get the diagnostic type or leave it as empty. |
| // Get the parse method name or leave it as empty. |
| Init *DiagnosticType = (*it)->getValueInit("DiagnosticType"); |
| if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) |
| CI->DiagnosticType = SI->getValue(); |
| |
| AsmOperandClasses[*it] = CI; |
| Classes.push_back(CI); |
| } |
| } |
| |
| AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, |
| CodeGenTarget &target, |
| RecordKeeper &records) |
| : Records(records), AsmParser(asmParser), Target(target) { |
| } |
| |
| /// buildOperandMatchInfo - Build the necessary information to handle user |
| /// defined operand parsing methods. |
| void AsmMatcherInfo::buildOperandMatchInfo() { |
| |
| /// Map containing a mask with all operands indices that can be found for |
| /// that class inside a instruction. |
| typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy; |
| OpClassMaskTy OpClassMask; |
| |
| for (std::vector<MatchableInfo*>::const_iterator it = |
| Matchables.begin(), ie = Matchables.end(); |
| it != ie; ++it) { |
| MatchableInfo &II = **it; |
| OpClassMask.clear(); |
| |
| // Keep track of all operands of this instructions which belong to the |
| // same class. |
| for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { |
| MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; |
| if (Op.Class->ParserMethod.empty()) |
| continue; |
| unsigned &OperandMask = OpClassMask[Op.Class]; |
| OperandMask |= (1 << i); |
| } |
| |
| // Generate operand match info for each mnemonic/operand class pair. |
| for (OpClassMaskTy::iterator iit = OpClassMask.begin(), |
| iie = OpClassMask.end(); iit != iie; ++iit) { |
| unsigned OpMask = iit->second; |
| ClassInfo *CI = iit->first; |
| OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask)); |
| } |
| } |
| } |
| |
| void AsmMatcherInfo::buildInfo() { |
| // Build information about all of the AssemblerPredicates. |
| std::vector<Record*> AllPredicates = |
| Records.getAllDerivedDefinitions("Predicate"); |
| for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { |
| Record *Pred = AllPredicates[i]; |
| // Ignore predicates that are not intended for the assembler. |
| if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) |
| continue; |
| |
| if (Pred->getName().empty()) |
| PrintFatalError(Pred->getLoc(), "Predicate has no name!"); |
| |
| unsigned FeatureNo = SubtargetFeatures.size(); |
| SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo); |
| assert(FeatureNo < 32 && "Too many subtarget features!"); |
| } |
| |
| // Parse the instructions; we need to do this first so that we can gather the |
| // singleton register classes. |
| SmallPtrSet<Record*, 16> SingletonRegisters; |
| unsigned VariantCount = Target.getAsmParserVariantCount(); |
| for (unsigned VC = 0; VC != VariantCount; ++VC) { |
| Record *AsmVariant = Target.getAsmParserVariant(VC); |
| std::string CommentDelimiter = |
| AsmVariant->getValueAsString("CommentDelimiter"); |
| std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); |
| int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); |
| |
| for (CodeGenTarget::inst_iterator I = Target.inst_begin(), |
| E = Target.inst_end(); I != E; ++I) { |
| const CodeGenInstruction &CGI = **I; |
| |
| // If the tblgen -match-prefix option is specified (for tblgen hackers), |
| // filter the set of instructions we consider. |
| if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix)) |
| continue; |
| |
| // Ignore "codegen only" instructions. |
| if (CGI.TheDef->getValueAsBit("isCodeGenOnly")) |
| continue; |
| |
| // Validate the operand list to ensure we can handle this instruction. |
| for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &OI = CGI.Operands[i]; |
| |
| // Validate tied operands. |
| if (OI.getTiedRegister() != -1) { |
| // If we have a tied operand that consists of multiple MCOperands, |
| // reject it. We reject aliases and ignore instructions for now. |
| if (OI.MINumOperands != 1) { |
| // FIXME: Should reject these. The ARM backend hits this with $lane |
| // in a bunch of instructions. The right answer is unclear. |
| DEBUG({ |
| errs() << "warning: '" << CGI.TheDef->getName() << "': " |
| << "ignoring instruction with multi-operand tied operand '" |
| << OI.Name << "'\n"; |
| }); |
| continue; |
| } |
| } |
| } |
| |
| OwningPtr<MatchableInfo> II(new MatchableInfo(CGI)); |
| |
| II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); |
| |
| // Ignore instructions which shouldn't be matched and diagnose invalid |
| // instruction definitions with an error. |
| if (!II->validate(CommentDelimiter, true)) |
| continue; |
| |
| // Ignore "Int_*" and "*_Int" instructions, which are internal aliases. |
| // |
| // FIXME: This is a total hack. |
| if (StringRef(II->TheDef->getName()).startswith("Int_") || |
| StringRef(II->TheDef->getName()).endswith("_Int")) |
| continue; |
| |
| Matchables.push_back(II.take()); |
| } |
| |
| // Parse all of the InstAlias definitions and stick them in the list of |
| // matchables. |
| std::vector<Record*> AllInstAliases = |
| Records.getAllDerivedDefinitions("InstAlias"); |
| for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { |
| CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target); |
| |
| // If the tblgen -match-prefix option is specified (for tblgen hackers), |
| // filter the set of instruction aliases we consider, based on the target |
| // instruction. |
| if (!StringRef(Alias->ResultInst->TheDef->getName()) |
| .startswith( MatchPrefix)) |
| continue; |
| |
| OwningPtr<MatchableInfo> II(new MatchableInfo(Alias)); |
| |
| II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); |
| |
| // Validate the alias definitions. |
| II->validate(CommentDelimiter, false); |
| |
| Matchables.push_back(II.take()); |
| } |
| } |
| |
| // Build info for the register classes. |
| buildRegisterClasses(SingletonRegisters); |
| |
| // Build info for the user defined assembly operand classes. |
| buildOperandClasses(); |
| |
| // Build the information about matchables, now that we have fully formed |
| // classes. |
| std::vector<MatchableInfo*> NewMatchables; |
| for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(), |
| ie = Matchables.end(); it != ie; ++it) { |
| MatchableInfo *II = *it; |
| |
| // Parse the tokens after the mnemonic. |
| // Note: buildInstructionOperandReference may insert new AsmOperands, so |
| // don't precompute the loop bound. |
| for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { |
| MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; |
| StringRef Token = Op.Token; |
| |
| // Check for singleton registers. |
| if (Record *RegRecord = II->AsmOperands[i].SingletonReg) { |
| Op.Class = RegisterClasses[RegRecord]; |
| assert(Op.Class && Op.Class->Registers.size() == 1 && |
| "Unexpected class for singleton register"); |
| continue; |
| } |
| |
| // Check for simple tokens. |
| if (Token[0] != '$') { |
| Op.Class = getTokenClass(Token); |
| continue; |
| } |
| |
| if (Token.size() > 1 && isdigit(Token[1])) { |
| Op.Class = getTokenClass(Token); |
| continue; |
| } |
| |
| // Otherwise this is an operand reference. |
| StringRef OperandName; |
| if (Token[1] == '{') |
| OperandName = Token.substr(2, Token.size() - 3); |
| else |
| OperandName = Token.substr(1); |
| |
| if (II->DefRec.is<const CodeGenInstruction*>()) |
| buildInstructionOperandReference(II, OperandName, i); |
| else |
| buildAliasOperandReference(II, OperandName, Op); |
| } |
| |
| if (II->DefRec.is<const CodeGenInstruction*>()) { |
| II->buildInstructionResultOperands(); |
| // If the instruction has a two-operand alias, build up the |
| // matchable here. We'll add them in bulk at the end to avoid |
| // confusing this loop. |
| std::string Constraint = |
| II->TheDef->getValueAsString("TwoOperandAliasConstraint"); |
| if (Constraint != "") { |
| // Start by making a copy of the original matchable. |
| OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II)); |
| |
| // Adjust it to be a two-operand alias. |
| AliasII->formTwoOperandAlias(Constraint); |
| |
| // Add the alias to the matchables list. |
| NewMatchables.push_back(AliasII.take()); |
| } |
| } else |
| II->buildAliasResultOperands(); |
| } |
| if (!NewMatchables.empty()) |
| Matchables.insert(Matchables.end(), NewMatchables.begin(), |
| NewMatchables.end()); |
| |
| // Process token alias definitions and set up the associated superclass |
| // information. |
| std::vector<Record*> AllTokenAliases = |
| Records.getAllDerivedDefinitions("TokenAlias"); |
| for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) { |
| Record *Rec = AllTokenAliases[i]; |
| ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); |
| ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); |
| if (FromClass == ToClass) |
| PrintFatalError(Rec->getLoc(), |
| "error: Destination value identical to source value."); |
| FromClass->SuperClasses.push_back(ToClass); |
| } |
| |
| // Reorder classes so that classes precede super classes. |
| std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>()); |
| } |
| |
| /// buildInstructionOperandReference - The specified operand is a reference to a |
| /// named operand such as $src. Resolve the Class and OperandInfo pointers. |
| void AsmMatcherInfo:: |
| buildInstructionOperandReference(MatchableInfo *II, |
| StringRef OperandName, |
| unsigned AsmOpIdx) { |
| const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); |
| const CGIOperandList &Operands = CGI.Operands; |
| MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; |
| |
| // Map this token to an operand. |
| unsigned Idx; |
| if (!Operands.hasOperandNamed(OperandName, Idx)) |
| PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + |
| OperandName.str() + "'"); |
| |
| // If the instruction operand has multiple suboperands, but the parser |
| // match class for the asm operand is still the default "ImmAsmOperand", |
| // then handle each suboperand separately. |
| if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { |
| Record *Rec = Operands[Idx].Rec; |
| assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); |
| Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); |
| if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { |
| // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. |
| StringRef Token = Op->Token; // save this in case Op gets moved |
| for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { |
| MatchableInfo::AsmOperand NewAsmOp(Token); |
| NewAsmOp.SubOpIdx = SI; |
| II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); |
| } |
| // Replace Op with first suboperand. |
| Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved |
| Op->SubOpIdx = 0; |
| } |
| } |
| |
| // Set up the operand class. |
| Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); |
| |
| // If the named operand is tied, canonicalize it to the untied operand. |
| // For example, something like: |
| // (outs GPR:$dst), (ins GPR:$src) |
| // with an asmstring of |
| // "inc $src" |
| // we want to canonicalize to: |
| // "inc $dst" |
| // so that we know how to provide the $dst operand when filling in the result. |
| int OITied = Operands[Idx].getTiedRegister(); |
| if (OITied != -1) { |
| // The tied operand index is an MIOperand index, find the operand that |
| // contains it. |
| std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); |
| OperandName = Operands[Idx.first].Name; |
| Op->SubOpIdx = Idx.second; |
| } |
| |
| Op->SrcOpName = OperandName; |
| } |
| |
| /// buildAliasOperandReference - When parsing an operand reference out of the |
| /// matching string (e.g. "movsx $src, $dst"), determine what the class of the |
| /// operand reference is by looking it up in the result pattern definition. |
| void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, |
| StringRef OperandName, |
| MatchableInfo::AsmOperand &Op) { |
| const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); |
| |
| // Set up the operand class. |
| for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) |
| if (CGA.ResultOperands[i].isRecord() && |
| CGA.ResultOperands[i].getName() == OperandName) { |
| // It's safe to go with the first one we find, because CodeGenInstAlias |
| // validates that all operands with the same name have the same record. |
| Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; |
| // Use the match class from the Alias definition, not the |
| // destination instruction, as we may have an immediate that's |
| // being munged by the match class. |
| Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), |
| Op.SubOpIdx); |
| Op.SrcOpName = OperandName; |
| return; |
| } |
| |
| PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + |
| OperandName.str() + "'"); |
| } |
| |
| void MatchableInfo::buildInstructionResultOperands() { |
| const CodeGenInstruction *ResultInst = getResultInst(); |
| |
| // Loop over all operands of the result instruction, determining how to |
| // populate them. |
| for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; |
| |
| // If this is a tied operand, just copy from the previously handled operand. |
| int TiedOp = OpInfo.getTiedRegister(); |
| if (TiedOp != -1) { |
| ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); |
| continue; |
| } |
| |
| // Find out what operand from the asmparser this MCInst operand comes from. |
| int SrcOperand = findAsmOperandNamed(OpInfo.Name); |
| if (OpInfo.Name.empty() || SrcOperand == -1) |
| PrintFatalError(TheDef->getLoc(), "Instruction '" + |
| TheDef->getName() + "' has operand '" + OpInfo.Name + |
| "' that doesn't appear in asm string!"); |
| |
| // Check if the one AsmOperand populates the entire operand. |
| unsigned NumOperands = OpInfo.MINumOperands; |
| if (AsmOperands[SrcOperand].SubOpIdx == -1) { |
| ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); |
| continue; |
| } |
| |
| // Add a separate ResOperand for each suboperand. |
| for (unsigned AI = 0; AI < NumOperands; ++AI) { |
| assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && |
| AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && |
| "unexpected AsmOperands for suboperands"); |
| ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); |
| } |
| } |
| } |
| |
| void MatchableInfo::buildAliasResultOperands() { |
| const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); |
| const CodeGenInstruction *ResultInst = getResultInst(); |
| |
| // Loop over all operands of the result instruction, determining how to |
| // populate them. |
| unsigned AliasOpNo = 0; |
| unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); |
| for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; |
| |
| // If this is a tied operand, just copy from the previously handled operand. |
| int TiedOp = OpInfo->getTiedRegister(); |
| if (TiedOp != -1) { |
| ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); |
| continue; |
| } |
| |
| // Handle all the suboperands for this operand. |
| const std::string &OpName = OpInfo->Name; |
| for ( ; AliasOpNo < LastOpNo && |
| CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { |
| int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; |
| |
| // Find out what operand from the asmparser that this MCInst operand |
| // comes from. |
| switch (CGA.ResultOperands[AliasOpNo].Kind) { |
| case CodeGenInstAlias::ResultOperand::K_Record: { |
| StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); |
| int SrcOperand = findAsmOperand(Name, SubIdx); |
| if (SrcOperand == -1) |
| PrintFatalError(TheDef->getLoc(), "Instruction '" + |
| TheDef->getName() + "' has operand '" + OpName + |
| "' that doesn't appear in asm string!"); |
| unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); |
| ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, |
| NumOperands)); |
| break; |
| } |
| case CodeGenInstAlias::ResultOperand::K_Imm: { |
| int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); |
| ResOperands.push_back(ResOperand::getImmOp(ImmVal)); |
| break; |
| } |
| case CodeGenInstAlias::ResultOperand::K_Reg: { |
| Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); |
| ResOperands.push_back(ResOperand::getRegOp(Reg)); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static unsigned getConverterOperandID(const std::string &Name, |
| SetVector<std::string> &Table, |
| bool &IsNew) { |
| IsNew = Table.insert(Name); |
| |
| unsigned ID = IsNew ? Table.size() - 1 : |
| std::find(Table.begin(), Table.end(), Name) - Table.begin(); |
| |
| assert(ID < Table.size()); |
| |
| return ID; |
| } |
| |
| |
| static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, |
| std::vector<MatchableInfo*> &Infos, |
| raw_ostream &OS) { |
| SetVector<std::string> OperandConversionKinds; |
| SetVector<std::string> InstructionConversionKinds; |
| std::vector<std::vector<uint8_t> > ConversionTable; |
| size_t MaxRowLength = 2; // minimum is custom converter plus terminator. |
| |
| // TargetOperandClass - This is the target's operand class, like X86Operand. |
| std::string TargetOperandClass = Target.getName() + "Operand"; |
| |
| // Write the convert function to a separate stream, so we can drop it after |
| // the enum. We'll build up the conversion handlers for the individual |
| // operand types opportunistically as we encounter them. |
| std::string ConvertFnBody; |
| raw_string_ostream CvtOS(ConvertFnBody); |
| // Start the unified conversion function. |
| CvtOS << "void " << Target.getName() << ClassName << "::\n" |
| << "convertToMCInst(unsigned Kind, MCInst &Inst, " |
| << "unsigned Opcode,\n" |
| << " const SmallVectorImpl<MCParsedAsmOperand*" |
| << "> &Operands) {\n" |
| << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" |
| << " const uint8_t *Converter = ConversionTable[Kind];\n" |
| << " Inst.setOpcode(Opcode);\n" |
| << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" |
| << " switch (*p) {\n" |
| << " default: llvm_unreachable(\"invalid conversion entry!\");\n" |
| << " case CVT_Reg:\n" |
| << " static_cast<" << TargetOperandClass |
| << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n" |
| << " break;\n" |
| << " case CVT_Tied:\n" |
| << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n" |
| << " break;\n"; |
| |
| std::string OperandFnBody; |
| raw_string_ostream OpOS(OperandFnBody); |
| // Start the operand number lookup function. |
| OpOS << "void " << Target.getName() << ClassName << "::\n" |
| << "convertToMapAndConstraints(unsigned Kind,\n"; |
| OpOS.indent(27); |
| OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n" |
| << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" |
| << " unsigned NumMCOperands = 0;\n" |
| << " const uint8_t *Converter = ConversionTable[Kind];\n" |
| << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" |
| << " switch (*p) {\n" |
| << " default: llvm_unreachable(\"invalid conversion entry!\");\n" |
| << " case CVT_Reg:\n" |
| << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" |
| << " Operands[*(p + 1)]->setConstraint(\"m\");\n" |
| << " ++NumMCOperands;\n" |
| << " break;\n" |
| << " case CVT_Tied:\n" |
| << " ++NumMCOperands;\n" |
| << " break;\n"; |
| |
| // Pre-populate the operand conversion kinds with the standard always |
| // available entries. |
| OperandConversionKinds.insert("CVT_Done"); |
| OperandConversionKinds.insert("CVT_Reg"); |
| OperandConversionKinds.insert("CVT_Tied"); |
| enum { CVT_Done, CVT_Reg, CVT_Tied }; |
| |
| for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| MatchableInfo &II = **it; |
| |
| // Check if we have a custom match function. |
| std::string AsmMatchConverter = |
| II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); |
| if (!AsmMatchConverter.empty()) { |
| std::string Signature = "ConvertCustom_" + AsmMatchConverter; |
| II.ConversionFnKind = Signature; |
| |
| // Check if we have already generated this signature. |
| if (!InstructionConversionKinds.insert(Signature)) |
| continue; |
| |
| // Remember this converter for the kind enum. |
| unsigned KindID = OperandConversionKinds.size(); |
| OperandConversionKinds.insert("CVT_" + AsmMatchConverter); |
| |
| // Add the converter row for this instruction. |
| ConversionTable.push_back(std::vector<uint8_t>()); |
| ConversionTable.back().push_back(KindID); |
| ConversionTable.back().push_back(CVT_Done); |
| |
| // Add the handler to the conversion driver function. |
| CvtOS << " case CVT_" << AsmMatchConverter << ":\n" |
| << " " << AsmMatchConverter << "(Inst, Operands);\n" |
| << " break;\n"; |
| |
| // FIXME: Handle the operand number lookup for custom match functions. |
| continue; |
| } |
| |
| // Build the conversion function signature. |
| std::string Signature = "Convert"; |
| |
| std::vector<uint8_t> ConversionRow; |
| |
| // Compute the convert enum and the case body. |
| MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 ); |
| |
| for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) { |
| const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i]; |
| |
| // Generate code to populate each result operand. |
| switch (OpInfo.Kind) { |
| case MatchableInfo::ResOperand::RenderAsmOperand: { |
| // This comes from something we parsed. |
| MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum]; |
| |
| // Registers are always converted the same, don't duplicate the |
| // conversion function based on them. |
| Signature += "__"; |
| std::string Class; |
| Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; |
| Signature += Class; |
| Signature += utostr(OpInfo.MINumOperands); |
| Signature += "_" + itostr(OpInfo.AsmOperandNum); |
| |
| // Add the conversion kind, if necessary, and get the associated ID |
| // the index of its entry in the vector). |
| std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : |
| Op.Class->RenderMethod); |
| |
| bool IsNewConverter = false; |
| unsigned ID = getConverterOperandID(Name, OperandConversionKinds, |
| IsNewConverter); |
| |
| // Add the operand entry to the instruction kind conversion row. |
| ConversionRow.push_back(ID); |
| ConversionRow.push_back(OpInfo.AsmOperandNum + 1); |
| |
| if (!IsNewConverter) |
| break; |
| |
| // This is a new operand kind. Add a handler for it to the |
| // converter driver. |
| CvtOS << " case " << Name << ":\n" |
| << " static_cast<" << TargetOperandClass |
| << "*>(Operands[*(p + 1)])->" |
| << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands |
| << ");\n" |
| << " break;\n"; |
| |
| // Add a handler for the operand number lookup. |
| OpOS << " case " << Name << ":\n" |
| << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" |
| << " Operands[*(p + 1)]->setConstraint(\"m\");\n" |
| << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" |
| << " break;\n"; |
| break; |
| } |
| case MatchableInfo::ResOperand::TiedOperand: { |
| // If this operand is tied to a previous one, just copy the MCInst |
| // operand from the earlier one.We can only tie single MCOperand values. |
| //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); |
| unsigned TiedOp = OpInfo.TiedOperandNum; |
| assert(i > TiedOp && "Tied operand precedes its target!"); |
| Signature += "__Tie" + utostr(TiedOp); |
| ConversionRow.push_back(CVT_Tied); |
| ConversionRow.push_back(TiedOp); |
| // FIXME: Handle the operand number lookup for tied operands. |
| break; |
| } |
| case MatchableInfo::ResOperand::ImmOperand: { |
| int64_t Val = OpInfo.ImmVal; |
| std::string Ty = "imm_" + itostr(Val); |
| Signature += "__" + Ty; |
| |
| std::string Name = "CVT_" + Ty; |
| bool IsNewConverter = false; |
| unsigned ID = getConverterOperandID(Name, OperandConversionKinds, |
| IsNewConverter); |
| // Add the operand entry to the instruction kind conversion row. |
| ConversionRow.push_back(ID); |
| ConversionRow.push_back(0); |
| |
| if (!IsNewConverter) |
| break; |
| |
| CvtOS << " case " << Name << ":\n" |
| << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n" |
| << " break;\n"; |
| |
| OpOS << " case " << Name << ":\n" |
| << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" |
| << " Operands[*(p + 1)]->setConstraint(\"\");\n" |
| << " ++NumMCOperands;\n" |
| << " break;\n"; |
| break; |
| } |
| case MatchableInfo::ResOperand::RegOperand: { |
| std::string Reg, Name; |
| if (OpInfo.Register == 0) { |
| Name = "reg0"; |
| Reg = "0"; |
| } else { |
| Reg = getQualifiedName(OpInfo.Register); |
| Name = "reg" + OpInfo.Register->getName(); |
| } |
| Signature += "__" + Name; |
| Name = "CVT_" + Name; |
| bool IsNewConverter = false; |
| unsigned ID = getConverterOperandID(Name, OperandConversionKinds, |
| IsNewConverter); |
| // Add the operand entry to the instruction kind conversion row. |
| ConversionRow.push_back(ID); |
| ConversionRow.push_back(0); |
| |
| if (!IsNewConverter) |
| break; |
| CvtOS << " case " << Name << ":\n" |
| << " Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n" |
| << " break;\n"; |
| |
| OpOS << " case " << Name << ":\n" |
| << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" |
| << " Operands[*(p + 1)]->setConstraint(\"m\");\n" |
| << " ++NumMCOperands;\n" |
| << " break;\n"; |
| } |
| } |
| } |
| |
| // If there were no operands, add to the signature to that effect |
| if (Signature == "Convert") |
| Signature += "_NoOperands"; |
| |
| II.ConversionFnKind = Signature; |
| |
| // Save the signature. If we already have it, don't add a new row |
| // to the table. |
| if (!InstructionConversionKinds.insert(Signature)) |
| continue; |
| |
| // Add the row to the table. |
| ConversionTable.push_back(ConversionRow); |
| } |
| |
| // Finish up the converter driver function. |
| CvtOS << " }\n }\n}\n\n"; |
| |
| // Finish up the operand number lookup function. |
| OpOS << " }\n }\n}\n\n"; |
| |
| OS << "namespace {\n"; |
| |
| // Output the operand conversion kind enum. |
| OS << "enum OperatorConversionKind {\n"; |
| for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i) |
| OS << " " << OperandConversionKinds[i] << ",\n"; |
| OS << " CVT_NUM_CONVERTERS\n"; |
| OS << "};\n\n"; |
| |
| // Output the instruction conversion kind enum. |
| OS << "enum InstructionConversionKind {\n"; |
| for (SetVector<std::string>::const_iterator |
| i = InstructionConversionKinds.begin(), |
| e = InstructionConversionKinds.end(); i != e; ++i) |
| OS << " " << *i << ",\n"; |
| OS << " CVT_NUM_SIGNATURES\n"; |
| OS << "};\n\n"; |
| |
| |
| OS << "} // end anonymous namespace\n\n"; |
| |
| // Output the conversion table. |
| OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" |
| << MaxRowLength << "] = {\n"; |
| |
| for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { |
| assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); |
| OS << " // " << InstructionConversionKinds[Row] << "\n"; |
| OS << " { "; |
| for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) |
| OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " |
| << (unsigned)(ConversionTable[Row][i + 1]) << ", "; |
| OS << "CVT_Done },\n"; |
| } |
| |
| OS << "};\n\n"; |
| |
| // Spit out the conversion driver function. |
| OS << CvtOS.str(); |
| |
| // Spit out the operand number lookup function. |
| OS << OpOS.str(); |
| } |
| |
| /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. |
| static void emitMatchClassEnumeration(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| OS << "namespace {\n\n"; |
| |
| OS << "/// MatchClassKind - The kinds of classes which participate in\n" |
| << "/// instruction matching.\n"; |
| OS << "enum MatchClassKind {\n"; |
| OS << " InvalidMatchClass = 0,\n"; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| OS << " " << CI.Name << ", // "; |
| if (CI.Kind == ClassInfo::Token) { |
| OS << "'" << CI.ValueName << "'\n"; |
| } else if (CI.isRegisterClass()) { |
| if (!CI.ValueName.empty()) |
| OS << "register class '" << CI.ValueName << "'\n"; |
| else |
| OS << "derived register class\n"; |
| } else { |
| OS << "user defined class '" << CI.ValueName << "'\n"; |
| } |
| } |
| OS << " NumMatchClassKinds\n"; |
| OS << "};\n\n"; |
| |
| OS << "}\n\n"; |
| } |
| |
| /// emitValidateOperandClass - Emit the function to validate an operand class. |
| static void emitValidateOperandClass(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, " |
| << "MatchClassKind Kind) {\n"; |
| OS << " " << Info.Target.getName() << "Operand &Operand = *(" |
| << Info.Target.getName() << "Operand*)GOp;\n"; |
| |
| // The InvalidMatchClass is not to match any operand. |
| OS << " if (Kind == InvalidMatchClass)\n"; |
| OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; |
| |
| // Check for Token operands first. |
| // FIXME: Use a more specific diagnostic type. |
| OS << " if (Operand.isToken())\n"; |
| OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" |
| << " MCTargetAsmParser::Match_Success :\n" |
| << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; |
| |
| // Check the user classes. We don't care what order since we're only |
| // actually matching against one of them. |
| for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), |
| ie = Info.Classes.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| |
| if (!CI.isUserClass()) |
| continue; |
| |
| OS << " // '" << CI.ClassName << "' class\n"; |
| OS << " if (Kind == " << CI.Name << ") {\n"; |
| OS << " if (Operand." << CI.PredicateMethod << "())\n"; |
| OS << " return MCTargetAsmParser::Match_Success;\n"; |
| if (!CI.DiagnosticType.empty()) |
| OS << " return " << Info.Target.getName() << "AsmParser::Match_" |
| << CI.DiagnosticType << ";\n"; |
| OS << " }\n\n"; |
| } |
| |
| // Check for register operands, including sub-classes. |
| OS << " if (Operand.isReg()) {\n"; |
| OS << " MatchClassKind OpKind;\n"; |
| OS << " switch (Operand.getReg()) {\n"; |
| OS << " default: OpKind = InvalidMatchClass; break;\n"; |
| for (AsmMatcherInfo::RegisterClassesTy::iterator |
| it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end(); |
| it != ie; ++it) |
| OS << " case " << Info.Target.getName() << "::" |
| << it->first->getName() << ": OpKind = " << it->second->Name |
| << "; break;\n"; |
| OS << " }\n"; |
| OS << " return isSubclass(OpKind, Kind) ? " |
| << "MCTargetAsmParser::Match_Success :\n " |
| << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; |
| |
| // Generic fallthrough match failure case for operands that don't have |
| // specialized diagnostic types. |
| OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// emitIsSubclass - Emit the subclass predicate function. |
| static void emitIsSubclass(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; |
| OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; |
| OS << " if (A == B)\n"; |
| OS << " return true;\n\n"; |
| |
| OS << " switch (A) {\n"; |
| OS << " default:\n"; |
| OS << " return false;\n"; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &A = **it; |
| |
| std::vector<StringRef> SuperClasses; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &B = **it; |
| |
| if (&A != &B && A.isSubsetOf(B)) |
| SuperClasses.push_back(B.Name); |
| } |
| |
| if (SuperClasses.empty()) |
| continue; |
| |
| OS << "\n case " << A.Name << ":\n"; |
| |
| if (SuperClasses.size() == 1) { |
| OS << " return B == " << SuperClasses.back() << ";\n"; |
| continue; |
| } |
| |
| OS << " switch (B) {\n"; |
| OS << " default: return false;\n"; |
| for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) |
| OS << " case " << SuperClasses[i] << ": return true;\n"; |
| OS << " }\n"; |
| } |
| OS << " }\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// emitMatchTokenString - Emit the function to match a token string to the |
| /// appropriate match class value. |
| static void emitMatchTokenString(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| // Construct the match list. |
| std::vector<StringMatcher::StringPair> Matches; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| |
| if (CI.Kind == ClassInfo::Token) |
| Matches.push_back(StringMatcher::StringPair(CI.ValueName, |
| "return " + CI.Name + ";")); |
| } |
| |
| OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; |
| |
| StringMatcher("Name", Matches, OS).Emit(); |
| |
| OS << " return InvalidMatchClass;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// emitMatchRegisterName - Emit the function to match a string to the target |
| /// specific register enum. |
| static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, |
| raw_ostream &OS) { |
| // Construct the match list. |
| std::vector<StringMatcher::StringPair> Matches; |
| const std::vector<CodeGenRegister*> &Regs = |
| Target.getRegBank().getRegisters(); |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) { |
| const CodeGenRegister *Reg = Regs[i]; |
| if (Reg->TheDef->getValueAsString("AsmName").empty()) |
| continue; |
| |
| Matches.push_back(StringMatcher::StringPair( |
| Reg->TheDef->getValueAsString("AsmName"), |
| "return " + utostr(Reg->EnumValue) + ";")); |
| } |
| |
| OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; |
| |
| StringMatcher("Name", Matches, OS).Emit(); |
| |
| OS << " return 0;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag |
| /// definitions. |
| static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| OS << "// Flags for subtarget features that participate in " |
| << "instruction matching.\n"; |
| OS << "enum SubtargetFeatureFlag {\n"; |
| for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator |
| it = Info.SubtargetFeatures.begin(), |
| ie = Info.SubtargetFeatures.end(); it != ie; ++it) { |
| SubtargetFeatureInfo &SFI = *it->second; |
| OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n"; |
| } |
| OS << " Feature_None = 0\n"; |
| OS << "};\n\n"; |
| } |
| |
| /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. |
| static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { |
| // Get the set of diagnostic types from all of the operand classes. |
| std::set<StringRef> Types; |
| for (std::map<Record*, ClassInfo*>::const_iterator |
| I = Info.AsmOperandClasses.begin(), |
| E = Info.AsmOperandClasses.end(); I != E; ++I) { |
| if (!I->second->DiagnosticType.empty()) |
| Types.insert(I->second->DiagnosticType); |
| } |
| |
| if (Types.empty()) return; |
| |
| // Now emit the enum entries. |
| for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end(); |
| I != E; ++I) |
| OS << " Match_" << *I << ",\n"; |
| OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; |
| } |
| |
| /// emitGetSubtargetFeatureName - Emit the helper function to get the |
| /// user-level name for a subtarget feature. |
| static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { |
| OS << "// User-level names for subtarget features that participate in\n" |
| << "// instruction matching.\n" |
| << "static const char *getSubtargetFeatureName(unsigned Val) {\n" |
| << " switch(Val) {\n"; |
| for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator |
| it = Info.SubtargetFeatures.begin(), |
| ie = Info.SubtargetFeatures.end(); it != ie; ++it) { |
| SubtargetFeatureInfo &SFI = *it->second; |
| // FIXME: Totally just a placeholder name to get the algorithm working. |
| OS << " case " << SFI.getEnumName() << ": return \"" |
| << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; |
| } |
| OS << " default: return \"(unknown)\";\n"; |
| OS << " }\n}\n\n"; |
| } |
| |
| /// emitComputeAvailableFeatures - Emit the function to compute the list of |
| /// available features given a subtarget. |
| static void emitComputeAvailableFeatures(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| std::string ClassName = |
| Info.AsmParser->getValueAsString("AsmParserClassName"); |
| |
| OS << "unsigned " << Info.Target.getName() << ClassName << "::\n" |
| << "ComputeAvailableFeatures(uint64_t FB) const {\n"; |
| OS << " unsigned Features = 0;\n"; |
| for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator |
| it = Info.SubtargetFeatures.begin(), |
| ie = Info.SubtargetFeatures.end(); it != ie; ++it) { |
| SubtargetFeatureInfo &SFI = *it->second; |
| |
| OS << " if ("; |
| std::string CondStorage = |
| SFI.TheDef->getValueAsString("AssemblerCondString"); |
| StringRef Conds = CondStorage; |
| std::pair<StringRef,StringRef> Comma = Conds.split(','); |
| bool First = true; |
| do { |
| if (!First) |
| OS << " && "; |
| |
| bool Neg = false; |
| StringRef Cond = Comma.first; |
| if (Cond[0] == '!') { |
| Neg = true; |
| Cond = Cond.substr(1); |
| } |
| |
| OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")"; |
| if (Neg) |
| OS << " == 0"; |
| else |
| OS << " != 0"; |
| OS << ")"; |
| |
| if (Comma.second.empty()) |
| break; |
| |
| First = false; |
| Comma = Comma.second.split(','); |
| } while (true); |
| |
| OS << ")\n"; |
| OS << " Features |= " << SFI.getEnumName() << ";\n"; |
| } |
| OS << " return Features;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GetAliasRequiredFeatures(Record *R, |
| const AsmMatcherInfo &Info) { |
| std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); |
| std::string Result; |
| unsigned NumFeatures = 0; |
| for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { |
| SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); |
| |
| if (F == 0) |
| PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + |
| "' is not marked as an AssemblerPredicate!"); |
| |
| if (NumFeatures) |
| Result += '|'; |
| |
| Result += F->getEnumName(); |
| ++NumFeatures; |
| } |
| |
| if (NumFeatures > 1) |
| Result = '(' + Result + ')'; |
| return Result; |
| } |
| |
| /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, |
| /// emit a function for them and return true, otherwise return false. |
| static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) { |
| // Ignore aliases when match-prefix is set. |
| if (!MatchPrefix.empty()) |
| return false; |
| |
| std::vector<Record*> Aliases = |
| Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); |
| if (Aliases.empty()) return false; |
| |
| OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " |
| "unsigned Features) {\n"; |
| |
| // Keep track of all the aliases from a mnemonic. Use an std::map so that the |
| // iteration order of the map is stable. |
| std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; |
| |
| for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { |
| Record *R = Aliases[i]; |
| AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); |
| } |
| |
| // Process each alias a "from" mnemonic at a time, building the code executed |
| // by the string remapper. |
| std::vector<StringMatcher::StringPair> Cases; |
| for (std::map<std::string, std::vector<Record*> >::iterator |
| I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); |
| I != E; ++I) { |
| const std::vector<Record*> &ToVec = I->second; |
| |
| // Loop through each alias and emit code that handles each case. If there |
| // are two instructions without predicates, emit an error. If there is one, |
| // emit it last. |
| std::string MatchCode; |
| int AliasWithNoPredicate = -1; |
| |
| for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { |
| Record *R = ToVec[i]; |
| std::string FeatureMask = GetAliasRequiredFeatures(R, Info); |
| |
| // If this unconditionally matches, remember it for later and diagnose |
| // duplicates. |
| if (FeatureMask.empty()) { |
| if (AliasWithNoPredicate != -1) { |
| // We can't have two aliases from the same mnemonic with no predicate. |
| PrintError(ToVec[AliasWithNoPredicate]->getLoc(), |
| "two MnemonicAliases with the same 'from' mnemonic!"); |
| PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); |
| } |
| |
| AliasWithNoPredicate = i; |
| continue; |
| } |
| if (R->getValueAsString("ToMnemonic") == I->first) |
| PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); |
| |
| if (!MatchCode.empty()) |
| MatchCode += "else "; |
| MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; |
| MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; |
| } |
| |
| if (AliasWithNoPredicate != -1) { |
| Record *R = ToVec[AliasWithNoPredicate]; |
| if (!MatchCode.empty()) |
| MatchCode += "else\n "; |
| MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; |
| } |
| |
| MatchCode += "return;"; |
| |
| Cases.push_back(std::make_pair(I->first, MatchCode)); |
| } |
| |
| StringMatcher("Mnemonic", Cases, OS).Emit(); |
| OS << "}\n\n"; |
| |
| return true; |
| } |
| |
| static const char *getMinimalTypeForRange(uint64_t Range) { |
| assert(Range < 0xFFFFFFFFULL && "Enum too large"); |
| if (Range > 0xFFFF) |
| return "uint32_t"; |
| if (Range > 0xFF) |
| return "uint16_t"; |
| return "uint8_t"; |
| } |
| |
| static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, |
| const AsmMatcherInfo &Info, StringRef ClassName, |
| StringToOffsetTable &StringTable, |
| unsigned MaxMnemonicIndex) { |
| unsigned MaxMask = 0; |
| for (std::vector<OperandMatchEntry>::const_iterator it = |
| Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); |
| it != ie; ++it) { |
| MaxMask |= it->OperandMask; |
| } |
| |
| // Emit the static custom operand parsing table; |
| OS << "namespace {\n"; |
| OS << " struct OperandMatchEntry {\n"; |
| OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size()) |
| << " RequiredFeatures;\n"; |
| OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) |
| << " Mnemonic;\n"; |
| OS << " " << getMinimalTypeForRange(Info.Classes.size()) |
| << " Class;\n"; |
| OS << " " << getMinimalTypeForRange(MaxMask) |
| << " OperandMask;\n\n"; |
| OS << " StringRef getMnemonic() const {\n"; |
| OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; |
| OS << " MnemonicTable[Mnemonic]);\n"; |
| OS << " }\n"; |
| OS << " };\n\n"; |
| |
| OS << " // Predicate for searching for an opcode.\n"; |
| OS << " struct LessOpcodeOperand {\n"; |
| OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; |
| OS << " return LHS.getMnemonic() < RHS;\n"; |
| OS << " }\n"; |
| OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; |
| OS << " return LHS < RHS.getMnemonic();\n"; |
| OS << " }\n"; |
| OS << " bool operator()(const OperandMatchEntry &LHS,"; |
| OS << " const OperandMatchEntry &RHS) {\n"; |
| OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; |
| OS << " }\n"; |
| OS << " };\n"; |
| |
| OS << "} // end anonymous namespace.\n\n"; |
| |
| OS << "static const OperandMatchEntry OperandMatchTable[" |
| << Info.OperandMatchInfo.size() << "] = {\n"; |
| |
| OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; |
| for (std::vector<OperandMatchEntry>::const_iterator it = |
| Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); |
| it != ie; ++it) { |
| const OperandMatchEntry &OMI = *it; |
| const MatchableInfo &II = *OMI.MI; |
| |
| OS << " { "; |
| |
| // Write the required features mask. |
| if (!II.RequiredFeatures.empty()) { |
| for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { |
| if (i) OS << "|"; |
| OS << II.RequiredFeatures[i]->getEnumName(); |
| } |
| } else |
| OS << "0"; |
| |
| // Store a pascal-style length byte in the mnemonic. |
| std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); |
| OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) |
| << " /* " << II.Mnemonic << " */, "; |
| |
| OS << OMI.CI->Name; |
| |
| OS << ", " << OMI.OperandMask; |
| OS << " /* "; |
| bool printComma = false; |
| for (int i = 0, e = 31; i !=e; ++i) |
| if (OMI.OperandMask & (1 << i)) { |
| if (printComma) |
| OS << ", "; |
| OS << i; |
| printComma = true; |
| } |
| OS << " */"; |
| |
| OS << " },\n"; |
| } |
| OS << "};\n\n"; |
| |
| // Emit the operand class switch to call the correct custom parser for |
| // the found operand class. |
| OS << Target.getName() << ClassName << "::OperandMatchResultTy " |
| << Target.getName() << ClassName << "::\n" |
| << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>" |
| << " &Operands,\n unsigned MCK) {\n\n" |
| << " switch(MCK) {\n"; |
| |
| for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(), |
| ie = Info.Classes.end(); it != ie; ++it) { |
| ClassInfo *CI = *it; |
| if (CI->ParserMethod.empty()) |
| continue; |
| OS << " case " << CI->Name << ":\n" |
| << " return " << CI->ParserMethod << "(Operands);\n"; |
| } |
| |
| OS << " default:\n"; |
| OS << " return MatchOperand_NoMatch;\n"; |
| OS << " }\n"; |
| OS << " return MatchOperand_NoMatch;\n"; |
| OS << "}\n\n"; |
| |
| // Emit the static custom operand parser. This code is very similar with |
| // the other matcher. Also use MatchResultTy here just in case we go for |
| // a better error handling. |
| OS << Target.getName() << ClassName << "::OperandMatchResultTy " |
| << Target.getName() << ClassName << "::\n" |
| << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>" |
| << " &Operands,\n StringRef Mnemonic) {\n"; |
| |
| // Emit code to get the available features. |
| OS << " // Get the current feature set.\n"; |
| OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; |
| |
| OS << " // Get the next operand index.\n"; |
| OS << " unsigned NextOpNum = Operands.size()-1;\n"; |
| |
| // Emit code to search the table. |
| OS << " // Search the table.\n"; |
| OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>"; |
| OS << " MnemonicRange =\n"; |
| OS << " std::equal_range(OperandMatchTable, OperandMatchTable+" |
| << Info.OperandMatchInfo.size() << ", Mnemonic,\n" |
| << " LessOpcodeOperand());\n\n"; |
| |
| OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; |
| OS << " return MatchOperand_NoMatch;\n\n"; |
| |
| OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" |
| << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; |
| |
| OS << " // equal_range guarantees that instruction mnemonic matches.\n"; |
| OS << " assert(Mnemonic == it->getMnemonic());\n\n"; |
| |
| // Emit check that the required features are available. |
| OS << " // check if the available features match\n"; |
| OS << " if ((AvailableFeatures & it->RequiredFeatures) " |
| << "!= it->RequiredFeatures) {\n"; |
| OS << " continue;\n"; |
| OS << " }\n\n"; |
| |
| // Emit check to ensure the operand number matches. |
| OS << " // check if the operand in question has a custom parser.\n"; |
| OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; |
| OS << " continue;\n\n"; |
| |
| // Emit call to the custom parser method |
| OS << " // call custom parse method to handle the operand\n"; |
| OS << " OperandMatchResultTy Result = "; |
| OS << "tryCustomParseOperand(Operands, it->Class);\n"; |
| OS << " if (Result != MatchOperand_NoMatch)\n"; |
| OS << " return Result;\n"; |
| OS << " }\n\n"; |
| |
| OS << " // Okay, we had no match.\n"; |
| OS << " return MatchOperand_NoMatch;\n"; |
| OS << "}\n\n"; |
| } |
| |
| void AsmMatcherEmitter::run(raw_ostream &OS) { |
| CodeGenTarget Target(Records); |
| Record *AsmParser = Target.getAsmParser(); |
| std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); |
| |
| // Compute the information on the instructions to match. |
| AsmMatcherInfo Info(AsmParser, Target, Records); |
| Info.buildInfo(); |
| |
| // Sort the instruction table using the partial order on classes. We use |
| // stable_sort to ensure that ambiguous instructions are still |
| // deterministically ordered. |
| std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), |
| less_ptr<MatchableInfo>()); |
| |
| DEBUG_WITH_TYPE("instruction_info", { |
| for (std::vector<MatchableInfo*>::iterator |
| it = Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) |
| (*it)->dump(); |
| }); |
| |
| // Check for ambiguous matchables. |
| DEBUG_WITH_TYPE("ambiguous_instrs", { |
| unsigned NumAmbiguous = 0; |
| for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) { |
| for (unsigned j = i + 1; j != e; ++j) { |
| MatchableInfo &A = *Info.Matchables[i]; |
| MatchableInfo &B = *Info.Matchables[j]; |
| |
| if (A.couldMatchAmbiguouslyWith(B)) { |
| errs() << "warning: ambiguous matchables:\n"; |
| A.dump(); |
| errs() << "\nis incomparable with:\n"; |
| B.dump(); |
| errs() << "\n\n"; |
| ++NumAmbiguous; |
| } |
| } |
| } |
| if (NumAmbiguous) |
| errs() << "warning: " << NumAmbiguous |
| << " ambiguous matchables!\n"; |
| }); |
| |
| // Compute the information on the custom operand parsing. |
| Info.buildOperandMatchInfo(); |
| |
| // Write the output. |
| |
| // Information for the class declaration. |
| OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; |
| OS << "#undef GET_ASSEMBLER_HEADER\n"; |
| OS << " // This should be included into the middle of the declaration of\n"; |
| OS << " // your subclasses implementation of MCTargetAsmParser.\n"; |
| OS << " unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n"; |
| OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " |
| << "unsigned Opcode,\n" |
| << " const SmallVectorImpl<MCParsedAsmOperand*> " |
| << "&Operands);\n"; |
| OS << " void convertToMapAndConstraints(unsigned Kind,\n "; |
| OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n"; |
| OS << " bool mnemonicIsValid(StringRef Mnemonic);\n"; |
| OS << " unsigned MatchInstructionImpl(\n"; |
| OS.indent(27); |
| OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n" |
| << " MCInst &Inst,\n" |
| << " unsigned &ErrorInfo," |
| << " bool matchingInlineAsm,\n" |
| << " unsigned VariantID = 0);\n"; |
| |
| if (Info.OperandMatchInfo.size()) { |
| OS << "\n enum OperandMatchResultTy {\n"; |
| OS << " MatchOperand_Success, // operand matched successfully\n"; |
| OS << " MatchOperand_NoMatch, // operand did not match\n"; |
| OS << " MatchOperand_ParseFail // operand matched but had errors\n"; |
| OS << " };\n"; |
| OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; |
| OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; |
| OS << " StringRef Mnemonic);\n"; |
| |
| OS << " OperandMatchResultTy tryCustomParseOperand(\n"; |
| OS << " SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; |
| OS << " unsigned MCK);\n\n"; |
| } |
| |
| OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; |
| |
| // Emit the operand match diagnostic enum names. |
| OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; |
| OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; |
| emitOperandDiagnosticTypes(Info, OS); |
| OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; |
| |
| |
| OS << "\n#ifdef GET_REGISTER_MATCHER\n"; |
| OS << "#undef GET_REGISTER_MATCHER\n\n"; |
| |
| // Emit the subtarget feature enumeration. |
| emitSubtargetFeatureFlagEnumeration(Info, OS); |
| |
| // Emit the function to match a register name to number. |
| // This should be omitted for Mips target |
| if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) |
| emitMatchRegisterName(Target, AsmParser, OS); |
| |
| OS << "#endif // GET_REGISTER_MATCHER\n\n"; |
| |
| OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; |
| OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; |
| |
| // Generate the helper function to get the names for subtarget features. |
| emitGetSubtargetFeatureName(Info, OS); |
| |
| OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; |
| |
| OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; |
| OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; |
| |
| // Generate the function that remaps for mnemonic aliases. |
| bool HasMnemonicAliases = emitMnemonicAliases(OS, Info); |
| |
| // Generate the convertToMCInst function to convert operands into an MCInst. |
| // Also, generate the convertToMapAndConstraints function for MS-style inline |
| // assembly. The latter doesn't actually generate a MCInst. |
| emitConvertFuncs(Target, ClassName, Info.Matchables, OS); |
| |
| // Emit the enumeration for classes which participate in matching. |
| emitMatchClassEnumeration(Target, Info.Classes, OS); |
| |
| // Emit the routine to match token strings to their match class. |
| emitMatchTokenString(Target, Info.Classes, OS); |
| |
| // Emit the subclass predicate routine. |
| emitIsSubclass(Target, Info.Classes, OS); |
| |
| // Emit the routine to validate an operand against a match class. |
| emitValidateOperandClass(Info, OS); |
| |
| // Emit the available features compute function. |
| emitComputeAvailableFeatures(Info, OS); |
| |
| |
| StringToOffsetTable StringTable; |
| |
| size_t MaxNumOperands = 0; |
| unsigned MaxMnemonicIndex = 0; |
| for (std::vector<MatchableInfo*>::const_iterator it = |
| Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) { |
| MatchableInfo &II = **it; |
| MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size()); |
| |
| // Store a pascal-style length byte in the mnemonic. |
| std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); |
| MaxMnemonicIndex = std::max(MaxMnemonicIndex, |
| StringTable.GetOrAddStringOffset(LenMnemonic, false)); |
| } |
| |
| OS << "static const char *const MnemonicTable =\n"; |
| StringTable.EmitString(OS); |
| OS << ";\n\n"; |
| |
| // Emit the static match table; unused classes get initalized to 0 which is |
| // guaranteed to be InvalidMatchClass. |
| // |
| // FIXME: We can reduce the size of this table very easily. First, we change |
| // it so that store the kinds in separate bit-fields for each index, which |
| // only needs to be the max width used for classes at that index (we also need |
| // to reject based on this during classification). If we then make sure to |
| // order the match kinds appropriately (putting mnemonics last), then we |
| // should only end up using a few bits for each class, especially the ones |
| // following the mnemonic. |
| OS << "namespace {\n"; |
| OS << " struct MatchEntry {\n"; |
| OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) |
| << " Mnemonic;\n"; |
| OS << " uint16_t Opcode;\n"; |
| OS << " " << getMinimalTypeForRange(Info.Matchables.size()) |
| << " ConvertFn;\n"; |
| OS << " " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size()) |
| << " RequiredFeatures;\n"; |
| OS << " " << getMinimalTypeForRange(Info.Classes.size()) |
| << " Classes[" << MaxNumOperands << "];\n"; |
| OS << " uint8_t AsmVariantID;\n\n"; |
| OS << " StringRef getMnemonic() const {\n"; |
| OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; |
| OS << " MnemonicTable[Mnemonic]);\n"; |
| OS << " }\n"; |
| OS << " };\n\n"; |
| |
| OS << " // Predicate for searching for an opcode.\n"; |
| OS << " struct LessOpcode {\n"; |
| OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; |
| OS << " return LHS.getMnemonic() < RHS;\n"; |
| OS << " }\n"; |
| OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; |
| OS << " return LHS < RHS.getMnemonic();\n"; |
| OS << " }\n"; |
| OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; |
| OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; |
| OS << " }\n"; |
| OS << " };\n"; |
| |
| OS << "} // end anonymous namespace.\n\n"; |
| |
| OS << "static const MatchEntry MatchTable[" |
| << Info.Matchables.size() << "] = {\n"; |
| |
| for (std::vector<MatchableInfo*>::const_iterator it = |
| Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) { |
| MatchableInfo &II = **it; |
| |
| // Store a pascal-style length byte in the mnemonic. |
| std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); |
| OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) |
| << " /* " << II.Mnemonic << " */, " |
| << Target.getName() << "::" |
| << II.getResultInst()->TheDef->getName() << ", " |
| << II.ConversionFnKind << ", "; |
| |
| // Write the required features mask. |
| if (!II.RequiredFeatures.empty()) { |
| for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { |
| if (i) OS << "|"; |
| OS << II.RequiredFeatures[i]->getEnumName(); |
| } |
| } else |
| OS << "0"; |
| |
| OS << ", { "; |
| for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { |
| MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; |
| |
| if (i) OS << ", "; |
| OS << Op.Class->Name; |
| } |
| OS << " }, " << II.AsmVariantID; |
| OS << "},\n"; |
| } |
| |
| OS << "};\n\n"; |
| |
| // A method to determine if a mnemonic is in the list. |
| OS << "bool " << Target.getName() << ClassName << "::\n" |
| << "mnemonicIsValid(StringRef Mnemonic) {\n"; |
| OS << " // Search the table.\n"; |
| OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; |
| OS << " std::equal_range(MatchTable, MatchTable+" |
| << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n"; |
| OS << " return MnemonicRange.first != MnemonicRange.second;\n"; |
| OS << "}\n\n"; |
| |
| // Finally, build the match function. |
| OS << "unsigned " |
| << Target.getName() << ClassName << "::\n" |
| << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>" |
| << " &Operands,\n"; |
| OS << " MCInst &Inst,\n" |
| << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n"; |
| |
| OS << " // Eliminate obvious mismatches.\n"; |
| OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; |
| OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; |
| OS << " return Match_InvalidOperand;\n"; |
| OS << " }\n\n"; |
| |
| // Emit code to get the available features. |
| OS << " // Get the current feature set.\n"; |
| OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; |
| |
| OS << " // Get the instruction mnemonic, which is the first token.\n"; |
| OS << " StringRef Mnemonic = ((" << Target.getName() |
| << "Operand*)Operands[0])->getToken();\n\n"; |
| |
| if (HasMnemonicAliases) { |
| OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; |
| OS << " // FIXME : Add an entry in AsmParserVariant to check this.\n"; |
| OS << " if (!VariantID)\n"; |
| OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n"; |
| } |
| |
| // Emit code to compute the class list for this operand vector. |
| OS << " // Some state to try to produce better error messages.\n"; |
| OS << " bool HadMatchOtherThanFeatures = false;\n"; |
| OS << " bool HadMatchOtherThanPredicate = false;\n"; |
| OS << " unsigned RetCode = Match_InvalidOperand;\n"; |
| OS << " unsigned MissingFeatures = ~0U;\n"; |
| OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; |
| OS << " // wrong for all instances of the instruction.\n"; |
| OS << " ErrorInfo = ~0U;\n"; |
| |
| // Emit code to search the table. |
| OS << " // Search the table.\n"; |
| OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; |
| OS << " std::equal_range(MatchTable, MatchTable+" |
| << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n"; |
| |
| OS << " // Return a more specific error code if no mnemonics match.\n"; |
| OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; |
| OS << " return Match_MnemonicFail;\n\n"; |
| |
| OS << " for (const MatchEntry *it = MnemonicRange.first, " |
| << "*ie = MnemonicRange.second;\n"; |
| OS << " it != ie; ++it) {\n"; |
| |
| OS << " // equal_range guarantees that instruction mnemonic matches.\n"; |
| OS << " assert(Mnemonic == it->getMnemonic());\n"; |
| |
| // Emit check that the subclasses match. |
| OS << " if (VariantID != it->AsmVariantID) continue;\n"; |
| OS << " bool OperandsValid = true;\n"; |
| OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; |
| OS << " if (i + 1 >= Operands.size()) {\n"; |
| OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n"; |
| OS << " if (!OperandsValid) ErrorInfo = i + 1;\n"; |
| OS << " break;\n"; |
| OS << " }\n"; |
| OS << " unsigned Diag = validateOperandClass(Operands[i+1],\n"; |
| OS.indent(43); |
| OS << "(MatchClassKind)it->Classes[i]);\n"; |
| OS << " if (Diag == Match_Success)\n"; |
| OS << " continue;\n"; |
| OS << " // If this operand is broken for all of the instances of this\n"; |
| OS << " // mnemonic, keep track of it so we can report loc info.\n"; |
| OS << " // If we already had a match that only failed due to a\n"; |
| OS << " // target predicate, that diagnostic is preferred.\n"; |
| OS << " if (!HadMatchOtherThanPredicate &&\n"; |
| OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n"; |
| OS << " ErrorInfo = i+1;\n"; |
| OS << " // InvalidOperand is the default. Prefer specificity.\n"; |
| OS << " if (Diag != Match_InvalidOperand)\n"; |
| OS << " RetCode = Diag;\n"; |
| OS << " }\n"; |
| OS << " // Otherwise, just reject this instance of the mnemonic.\n"; |
| OS << " OperandsValid = false;\n"; |
| OS << " break;\n"; |
| OS << " }\n\n"; |
| |
| OS << " if (!OperandsValid) continue;\n"; |
| |
| // Emit check that the required features are available. |
| OS << " if ((AvailableFeatures & it->RequiredFeatures) " |
| << "!= it->RequiredFeatures) {\n"; |
| OS << " HadMatchOtherThanFeatures = true;\n"; |
| OS << " unsigned NewMissingFeatures = it->RequiredFeatures & " |
| "~AvailableFeatures;\n"; |
| OS << " if (CountPopulation_32(NewMissingFeatures) <=\n" |
| " CountPopulation_32(MissingFeatures))\n"; |
| OS << " MissingFeatures = NewMissingFeatures;\n"; |
| OS << " continue;\n"; |
| OS << " }\n"; |
| OS << "\n"; |
| OS << " if (matchingInlineAsm) {\n"; |
| OS << " Inst.setOpcode(it->Opcode);\n"; |
| OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; |
| OS << " return Match_Success;\n"; |
| OS << " }\n\n"; |
| OS << " // We have selected a definite instruction, convert the parsed\n" |
| << " // operands into the appropriate MCInst.\n"; |
| OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; |
| OS << "\n"; |
| |
| // Verify the instruction with the target-specific match predicate function. |
| OS << " // We have a potential match. Check the target predicate to\n" |
| << " // handle any context sensitive constraints.\n" |
| << " unsigned MatchResult;\n" |
| << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" |
| << " Match_Success) {\n" |
| << " Inst.clear();\n" |
| << " RetCode = MatchResult;\n" |
| << " HadMatchOtherThanPredicate = true;\n" |
| << " continue;\n" |
| << " }\n\n"; |
| |
| // Call the post-processing function, if used. |
| std::string InsnCleanupFn = |
| AsmParser->getValueAsString("AsmParserInstCleanup"); |
| if (!InsnCleanupFn.empty()) |
| OS << " " << InsnCleanupFn << "(Inst);\n"; |
| |
| OS << " return Match_Success;\n"; |
| OS << " }\n\n"; |
| |
| OS << " // Okay, we had no match. Try to return a useful error code.\n"; |
| OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; |
| OS << " return RetCode;\n\n"; |
| OS << " // Missing feature matches return which features were missing\n"; |
| OS << " ErrorInfo = MissingFeatures;\n"; |
| OS << " return Match_MissingFeature;\n"; |
| OS << "}\n\n"; |
| |
| if (Info.OperandMatchInfo.size()) |
| emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, |
| MaxMnemonicIndex); |
| |
| OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; |
| } |
| |
| namespace llvm { |
| |
| void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { |
| emitSourceFileHeader("Assembly Matcher Source Fragment", OS); |
| AsmMatcherEmitter(RK).run(OS); |
| } |
| |
| } // End llvm namespace |