blob: f4ca22f9da90c9e186e31880080edc0fec3b2334 [file] [log] [blame]
//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==//
//
// This file implements all of the stuff neccesary to output a .s file from
// LLVM. The code in this file assumes that the specified module has already
// been compiled into the internal data structures of the Module.
//
// This code largely consists of two LLVM Pass's: a FunctionPass and a Pass.
// The FunctionPass is pipelined together with all of the rest of the code
// generation stages, and the Pass runs at the end to emit code for global
// variables and such.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Annotation.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "Support/StringExtras.h"
#include "Support/HashExtras.h"
#include <iostream>
using std::string;
namespace {
class GlobalIdTable: public Annotation {
static AnnotationID AnnotId;
friend class AsmPrinter; // give access to AnnotId
typedef std::hash_map<const Value*, int> ValIdMap;
typedef ValIdMap::const_iterator ValIdMapConstIterator;
typedef ValIdMap:: iterator ValIdMapIterator;
public:
SlotCalculator Table; // map anonymous values to unique integer IDs
ValIdMap valToIdMap; // used for values not handled by SlotCalculator
GlobalIdTable(Module* M) : Annotation(AnnotId), Table(M, true) {}
};
AnnotationID GlobalIdTable::AnnotId =
AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT");
//===---------------------------------------------------------------------===//
// Code Shared By the two printer passes, as a mixin
//===---------------------------------------------------------------------===//
class AsmPrinter {
GlobalIdTable* idTable;
public:
std::ostream &toAsm;
const TargetMachine &Target;
enum Sections {
Unknown,
Text,
ReadOnlyData,
InitRWData,
UninitRWData,
} CurSection;
AsmPrinter(std::ostream &os, const TargetMachine &T)
: idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
// (start|end)(Module|Function) - Callback methods to be invoked by subclasses
void startModule(Module *M) {
// Create the global id table if it does not already exist
idTable = (GlobalIdTable*) M->getAnnotation(GlobalIdTable::AnnotId);
if (idTable == NULL) {
idTable = new GlobalIdTable(M);
M->addAnnotation(idTable);
}
}
void startFunction(Function *F) {
// Make sure the slot table has information about this function...
idTable->Table.incorporateFunction(F);
}
void endFunction(Function *F) {
idTable->Table.purgeFunction(); // Forget all about F
}
void endModule() {
}
// Check if a name is external or accessible from external code.
// Only functions can currently be external. "main" is the only name
// that is visible externally.
bool isExternal(const Value* V) {
const Function *F = dyn_cast<Function>(V);
return F && (F->isExternal() || F->getName() == "main");
}
// enterSection - Use this method to enter a different section of the output
// executable. This is used to only output neccesary section transitions.
//
void enterSection(enum Sections S) {
if (S == CurSection) return; // Only switch section if neccesary
CurSection = S;
toAsm << "\n\t.section ";
switch (S)
{
default: assert(0 && "Bad section name!");
case Text: toAsm << "\".text\""; break;
case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break;
case InitRWData: toAsm << "\".data\",#alloc,#write"; break;
case UninitRWData: toAsm << "\".bss\",#alloc,#write\nBbss.bss:"; break;
}
toAsm << "\n";
}
static std::string getValidSymbolName(const string &S) {
string Result;
// Symbol names in Sparc assembly language have these rules:
// (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }*
// (b) A name beginning in "." is treated as a local name.
// (c) Names beginning with "_" are reserved by ANSI C and shd not be used.
//
if (S[0] == '_' || isdigit(S[0]))
Result += "ll";
for (unsigned i = 0; i < S.size(); ++i)
{
char C = S[i];
if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C))
Result += C;
else
{
Result += '_';
Result += char('0' + ((unsigned char)C >> 4));
Result += char('0' + (C & 0xF));
}
}
return Result;
}
// getID - Return a valid identifier for the specified value. Base it on
// the name of the identifier if possible (qualified by the type), and
// use a numbered value based on prefix otherwise.
// FPrefix is always prepended to the output identifier.
//
string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) {
string Result = FPrefix ? FPrefix : ""; // "Forced prefix"
Result = Result + (V->hasName()? V->getName() : string(Prefix));
// Qualify all internal names with a unique id.
if (!isExternal(V)) {
int valId = idTable->Table.getValSlot(V);
if (valId == -1) {
GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V);
if (I == idTable->valToIdMap.end())
valId = idTable->valToIdMap[V] = idTable->valToIdMap.size();
else
valId = I->second;
}
Result = Result + "_" + itostr(valId);
}
return getValidSymbolName(Result);
}
// getID Wrappers - Ensure consistent usage...
string getID(const Function *F) {
return getID(F, "LLVMFunction_");
}
string getID(const BasicBlock *BB) {
return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str());
}
string getID(const GlobalVariable *GV) {
return getID(GV, "LLVMGlobal_", ".G_");
}
string getID(const Constant *CV) {
return getID(CV, "LLVMConst_", ".C_");
}
};
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t)
: AsmPrinter(os, t) {}
virtual bool doInitialization(Module *M) {
startModule(M);
return false;
}
virtual bool runOnFunction(Function *F) {
startFunction(F);
emitFunction(F);
endFunction(F);
return false;
}
virtual bool doFinalization(Module *M) {
endModule();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
void emitFunction(const Function *F);
private :
void emitBasicBlock(const BasicBlock *BB);
void emitMachineInst(const MachineInstr *MI);
unsigned int printOperands(const MachineInstr *MI, unsigned int opNum);
void printOneOperand(const MachineOperand &Op);
bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum);
bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum);
unsigned getOperandMask(unsigned Opcode) {
switch (Opcode) {
case SUBcc: return 1 << 3; // Remove CC argument
case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc
default: return 0; // By default, don't hack operands...
}
}
};
inline bool
SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI,
unsigned int opNum) {
switch (MI->getOpCode()) {
case JMPLCALL:
case JMPLRET: return (opNum == 0);
default: return false;
}
}
inline bool
SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI,
unsigned int opNum) {
if (Target.getInstrInfo().isLoad(MI->getOpCode()))
return (opNum == 0);
else if (Target.getInstrInfo().isStore(MI->getOpCode()))
return (opNum == 1);
else
return false;
}
#define PrintOp1PlusOp2(Op1, Op2) \
printOneOperand(Op1); \
toAsm << "+"; \
printOneOperand(Op2);
unsigned int
SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI,
unsigned int opNum)
{
const MachineOperand& Op = MI->getOperand(opNum);
if (OpIsBranchTargetLabel(MI, opNum))
{
PrintOp1PlusOp2(Op, MI->getOperand(opNum+1));
return 2;
}
else if (OpIsMemoryAddressBase(MI, opNum))
{
toAsm << "[";
PrintOp1PlusOp2(Op, MI->getOperand(opNum+1));
toAsm << "]";
return 2;
}
else
{
printOneOperand(Op);
return 1;
}
}
void
SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &op)
{
switch (op.getOperandType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_MachineRegister:
{
int RegNum = (int)op.getAllocatedRegNum();
// better to print code with NULL registers than to die
if (RegNum == Target.getRegInfo().getInvalidRegNum()) {
toAsm << "<NULL VALUE>";
} else {
toAsm << "%" << Target.getRegInfo().getUnifiedRegName(RegNum);
}
break;
}
case MachineOperand::MO_PCRelativeDisp:
{
const Value *Val = op.getVRegValue();
if (!Val)
toAsm << "\t<*NULL Value*>";
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(Val))
toAsm << getID(BB);
else if (const Function *M = dyn_cast<Function>(Val))
toAsm << getID(M);
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val))
toAsm << getID(GV);
else if (const Constant *CV = dyn_cast<Constant>(Val))
toAsm << getID(CV);
else
toAsm << "<unknown value=" << Val << ">";
break;
}
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
toAsm << (long)op.getImmedValue();
break;
default:
toAsm << op; // use dump field
break;
}
}
void
SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI)
{
unsigned Opcode = MI->getOpCode();
if (TargetInstrDescriptors[Opcode].iclass & M_DUMMY_PHI_FLAG)
return; // IGNORE PHI NODES
toAsm << "\t" << TargetInstrDescriptors[Opcode].opCodeString << "\t";
unsigned Mask = getOperandMask(Opcode);
bool NeedComma = false;
unsigned N = 1;
for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N)
if (! ((1 << OpNum) & Mask)) { // Ignore this operand?
if (NeedComma) toAsm << ", "; // Handle comma outputing
NeedComma = true;
N = printOperands(MI, OpNum);
}
else
N = 1;
toAsm << "\n";
}
void
SparcFunctionAsmPrinter::emitBasicBlock(const BasicBlock *BB)
{
// Emit a label for the basic block
toAsm << getID(BB) << ":\n";
// Get the vector of machine instructions corresponding to this bb.
const MachineCodeForBasicBlock &MIs = BB->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator MII = MIs.begin(), MIE = MIs.end();
// Loop over all of the instructions in the basic block...
for (; MII != MIE; ++MII)
emitMachineInst(*MII);
toAsm << "\n"; // Seperate BB's with newlines
}
void
SparcFunctionAsmPrinter::emitFunction(const Function *M)
{
string methName = getID(M);
toAsm << "!****** Outputing Function: " << methName << " ******\n";
enterSection(AsmPrinter::Text);
toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
//toAsm << "\t.type\t" << methName << ",#function\n";
toAsm << "\t.type\t" << methName << ", 2\n";
toAsm << methName << ":\n";
// Output code for all of the basic blocks in the function...
for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
emitBasicBlock(*I);
// Output a .size directive so the debugger knows the extents of the function
toAsm << ".EndOf_" << methName << ":\n\t.size "
<< methName << ", .EndOf_"
<< methName << "-" << methName << "\n";
// Put some spaces between the functions
toAsm << "\n\n";
}
} // End anonymous namespace
Pass *UltraSparc::getFunctionAsmPrinterPass(PassManager &PM, std::ostream &Out){
return new SparcFunctionAsmPrinter(Out, *this);
}
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
namespace {
class SparcModuleAsmPrinter : public Pass, public AsmPrinter {
public:
SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t)
: AsmPrinter(os, t) {}
virtual bool run(Module *M) {
startModule(M);
emitGlobalsAndConstants(M);
endModule();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
private:
void emitGlobalsAndConstants(const Module *M);
void printGlobalVariable(const GlobalVariable *GV);
void printSingleConstant( const Constant* CV);
void printConstantValueOnly(const Constant* CV);
void printConstant( const Constant* CV, std::string valID = "");
static void FoldConstants(const Module *M,
std::hash_set<const Constant*> &moduleConstants);
};
// Can we treat the specified array as a string? Only if it is an array of
// ubytes or non-negative sbytes.
//
static bool isStringCompatible(ConstantArray *CPA) {
const Type *ETy = cast<ArrayType>(CPA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CPA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CPA->getOperand(i))->getValue() < 0)
return false;
return true;
}
// toOctal - Convert the low order bits of X into an octal letter
static inline char toOctal(int X) {
return (X&7)+'0';
}
// getAsCString - Return the specified array as a C compatible string, only if
// the predicate isStringCompatible is true.
//
static string getAsCString(ConstantArray *CPA) {
assert(isStringCompatible(CPA) && "Array is not string compatible!");
string Result;
const Type *ETy = cast<ArrayType>(CPA->getType())->getElementType();
Result = "\"";
for (unsigned i = 0; i < CPA->getNumOperands(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
if (isprint(C)) {
Result += C;
} else {
switch(C) {
case '\a': Result += "\\a"; break;
case '\b': Result += "\\b"; break;
case '\f': Result += "\\f"; break;
case '\n': Result += "\\n"; break;
case '\r': Result += "\\r"; break;
case '\t': Result += "\\t"; break;
case '\v': Result += "\\v"; break;
default:
Result += '\\';
Result += toOctal(C >> 6);
Result += toOctal(C >> 3);
Result += toOctal(C >> 0);
break;
}
}
}
Result += "\"";
return Result;
}
inline bool
ArrayTypeIsString(ArrayType* arrayType)
{
return (arrayType->getElementType() == Type::UByteTy ||
arrayType->getElementType() == Type::SByteTy);
}
inline const string
TypeToDataDirective(const Type* type)
{
switch(type->getPrimitiveID())
{
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
return ".byte";
case Type::UShortTyID: case Type::ShortTyID:
return ".half";
case Type::UIntTyID: case Type::IntTyID:
return ".word";
case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID:
return ".xword";
case Type::FloatTyID:
return ".word";
case Type::DoubleTyID:
return ".xword";
case Type::ArrayTyID:
if (ArrayTypeIsString((ArrayType*) type))
return ".ascii";
else
return "<InvaliDataTypeForPrinting>";
default:
return "<InvaliDataTypeForPrinting>";
}
}
// Get the size of the constant for the given target.
// If this is an unsized array, return 0.
//
inline unsigned int
ConstantToSize(const Constant* CV, const TargetMachine& target)
{
if (ConstantArray* CPA = dyn_cast<ConstantArray>(CV))
{
ArrayType *aty = cast<ArrayType>(CPA->getType());
if (ArrayTypeIsString(aty))
return 1 + CPA->getNumOperands();
}
return target.findOptimalStorageSize(CV->getType());
}
// Align data larger than one L1 cache line on L1 cache line boundaries.
// Align all smaller data on the next higher 2^x boundary (4, 8, ...).
//
inline unsigned int
SizeToAlignment(unsigned int size, const TargetMachine& target)
{
unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1);
if (size > (unsigned) cacheLineSize / 2)
return cacheLineSize;
else
for (unsigned sz=1; /*no condition*/; sz *= 2)
if (sz >= size)
return sz;
}
// Get the size of the type and then use SizeToAlignment.
//
inline unsigned int
TypeToAlignment(const Type* type, const TargetMachine& target)
{
return SizeToAlignment(target.findOptimalStorageSize(type), target);
}
// Get the size of the constant and then use SizeToAlignment.
// Handles strings as a special case;
inline unsigned int
ConstantToAlignment(const Constant* CV, const TargetMachine& target)
{
if (ConstantArray* CPA = dyn_cast<ConstantArray>(CV))
if (ArrayTypeIsString(cast<ArrayType>(CPA->getType())))
return SizeToAlignment(1 + CPA->getNumOperands(), target);
return TypeToAlignment(CV->getType(), target);
}
// Print a single constant value.
void
SparcModuleAsmPrinter::printSingleConstant(const Constant* CV)
{
assert(CV->getType() != Type::VoidTy &&
CV->getType() != Type::TypeTy &&
CV->getType() != Type::LabelTy &&
"Unexpected type for Constant");
assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
&& "Aggregate types should be handled outside this function");
toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t";
if (CV->getType()->isPrimitiveType())
{
if (CV->getType()->isFloatingPoint()) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = cast<ConstantFP>(CV)->getValue();
if (CV->getType() == Type::FloatTy) {
float FVal = (float)Val;
char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules
toAsm << *(unsigned int*)ProxyPtr;
} else if (CV->getType() == Type::DoubleTy) {
char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules
toAsm << *(uint64_t*)ProxyPtr;
} else {
assert(0 && "Unknown floating point type!");
}
toAsm << "\t! " << CV->getType()->getDescription()
<< " value: " << Val << "\n";
} else {
WriteAsOperand(toAsm, CV, false, false) << "\n";
}
}
else if (ConstantPointer* CPP = dyn_cast<ConstantPointer>(CV))
{
assert(CPP->isNullValue() &&
"Cannot yet print non-null pointer constants to assembly");
toAsm << "0\n";
}
else if (isa<ConstantPointerRef>(CV))
{
assert(0 && "Cannot yet initialize pointer refs in assembly");
}
else
{
assert(0 && "Unknown elementary type for constant");
}
}
// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstant() to print each individual value.
void
SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV)
{
ConstantArray *CPA = dyn_cast<ConstantArray>(CV);
if (CPA && isStringCompatible(CPA))
{ // print the string alone and return
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << "\n";
}
else if (CPA)
{ // Not a string. Print the values in successive locations
const std::vector<Use> &constValues = CPA->getValues();
for (unsigned i=1; i < constValues.size(); i++)
this->printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
else if (ConstantStruct *CPS = dyn_cast<ConstantStruct>(CV))
{ // Print the fields in successive locations
const std::vector<Use>& constValues = CPS->getValues();
for (unsigned i=1; i < constValues.size(); i++)
this->printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
else
this->printSingleConstant(CV);
}
// Print a constant (which may be an aggregate) prefixed by all the
// appropriate directives. Uses printConstantValueOnly() to print the
// value or values.
void
SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
{
if (valID.length() == 0)
valID = getID(CV);
toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n";
// Print .size and .type only if it is not a string.
ConstantArray *CPA = dyn_cast<ConstantArray>(CV);
if (CPA && isStringCompatible(CPA))
{ // print it as a string and return
toAsm << valID << ":\n";
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CPA) << "\n";
return;
}
toAsm << "\t.type" << "\t" << valID << ",#object\n";
unsigned int constSize = ConstantToSize(CV, Target);
if (constSize)
toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n";
toAsm << valID << ":\n";
printConstantValueOnly(CV);
}
void SparcModuleAsmPrinter::FoldConstants(const Module *M,
std::hash_set<const Constant*> &MC) {
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!(*I)->isExternal()) {
const std::hash_set<const Constant*> &pool =
MachineCodeForMethod::get(*I).getConstantPoolValues();
MC.insert(pool.begin(), pool.end());
}
}
void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
{
toAsm << "\t.global\t" << getID(GV) << "\n";
if (GV->hasInitializer())
printConstant(GV->getInitializer(), getID(GV));
else {
toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(),
Target) << "\n";
toAsm << "\t.type\t" << getID(GV) << ",#object\n";
toAsm << "\t.reserve\t" << getID(GV) << ","
<< Target.findOptimalStorageSize(GV->getType()->getElementType())
<< "\n";
}
}
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
// First, get the constants there were marked by the code generator for
// inclusion in the assembly code data area and fold them all into a
// single constant pool since there may be lots of duplicates. Also,
// lets force these constants into the slot table so that we can get
// unique names for unnamed constants also.
//
std::hash_set<const Constant*> moduleConstants;
FoldConstants(M, moduleConstants);
// Now, emit the three data sections separately; the cost of I/O should
// make up for the cost of extra passes over the globals list!
// Section 1 : Read-only data section (implies initialized)
enterSection(AsmPrinter::ReadOnlyData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && (*GI)->isConstant())
printGlobalVariable(*GI);
for (std::hash_set<const Constant*>::const_iterator
I = moduleConstants.begin(),
E = moduleConstants.end(); I != E; ++I)
printConstant(*I);
// Section 2 : Initialized read-write data section
enterSection(AsmPrinter::InitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && ! (*GI)->isConstant())
printGlobalVariable(*GI);
// Section 3 : Uninitialized read-write data section
enterSection(AsmPrinter::UninitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if (! (*GI)->hasInitializer())
printGlobalVariable(*GI);
toAsm << "\n";
}
} // End anonymous namespace
Pass *UltraSparc::getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out) {
return new SparcModuleAsmPrinter(Out, *this);
}