| //===------------- EscapeAnalysis.h - Pointer escape analysis -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides the implementation of the pointer escape analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "escape-analysis" |
| #include "llvm/Analysis/EscapeAnalysis.h" |
| #include "llvm/Module.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| using namespace llvm; |
| |
| char EscapeAnalysis::ID = 0; |
| static RegisterPass<EscapeAnalysis> X("escape-analysis", |
| "Pointer Escape Analysis", true, true); |
| |
| |
| /// runOnFunction - Precomputation for escape analysis. This collects all know |
| /// "escape points" in the def-use graph of the function. These are |
| /// instructions which allow their inputs to escape from the current function. |
| bool EscapeAnalysis::runOnFunction(Function& F) { |
| EscapePoints.clear(); |
| |
| TargetData& TD = getAnalysis<TargetData>(); |
| AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); |
| Module* M = F.getParent(); |
| |
| // Walk through all instructions in the function, identifying those that |
| // may allow their inputs to escape. |
| for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) { |
| Instruction* I = &*II; |
| |
| // The most obvious case is stores. Any store that may write to global |
| // memory or to a function argument potentially allows its input to escape. |
| if (StoreInst* S = dyn_cast<StoreInst>(I)) { |
| const Type* StoreType = S->getOperand(0)->getType(); |
| unsigned StoreSize = TD.getTypeStoreSize(StoreType); |
| Value* Pointer = S->getPointerOperand(); |
| |
| bool inserted = false; |
| for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); |
| AI != AE; ++AI) { |
| AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0UL); |
| if (R != AliasAnalysis::NoAlias) { |
| EscapePoints.insert(S); |
| inserted = true; |
| break; |
| } |
| } |
| |
| if (inserted) |
| continue; |
| |
| for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); |
| GI != GE; ++GI) { |
| AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0UL); |
| if (R != AliasAnalysis::NoAlias) { |
| EscapePoints.insert(S); |
| break; |
| } |
| } |
| |
| // Calls and invokes potentially allow their parameters to escape. |
| // FIXME: This can and should be refined. Intrinsics have known escape |
| // behavior, and alias analysis may be able to tell us more about callees. |
| } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
| EscapePoints.insert(I); |
| |
| // Returns allow the return value to escape. This is mostly important |
| // for malloc to alloca promotion. |
| } else if (isa<ReturnInst>(I)) { |
| EscapePoints.insert(I); |
| } |
| |
| // FIXME: Are there any other possible escape points? |
| } |
| |
| return false; |
| } |
| |
| /// escapes - Determines whether the passed allocation can escape from the |
| /// current function. It does this by using a simple worklist algorithm to |
| /// search for a path in the def-use graph from the allocation to an |
| /// escape point. |
| /// FIXME: Once we've discovered a path, it would be a good idea to memoize it, |
| /// and all of its subpaths, to amortize the cost of future queries. |
| bool EscapeAnalysis::escapes(AllocationInst* A) { |
| std::vector<Value*> worklist; |
| worklist.push_back(A); |
| |
| SmallPtrSet<Value*, 8> visited; |
| while (!worklist.empty()) { |
| Value* curr = worklist.back(); |
| worklist.pop_back(); |
| |
| visited.insert(curr); |
| |
| if (Instruction* CurrInst = dyn_cast<Instruction>(curr)) |
| if (EscapePoints.count(CurrInst)) |
| return true; |
| |
| for (Instruction::use_iterator UI = curr->use_begin(), UE = curr->use_end(); |
| UI != UE; ++UI) |
| if (Instruction* U = dyn_cast<Instruction>(UI)) |
| if (!visited.count(U)) |
| if (StoreInst* S = dyn_cast<StoreInst>(U)) { |
| // We know this must be an instruction, because constant gep's would |
| // have been found to alias a global, so stores to them would have |
| // been in EscapePoints. |
| worklist.push_back(cast<Instruction>(S->getPointerOperand())); |
| } else if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { |
| // Because branches on the pointer value can hide data dependencies, |
| // we need to track values that were generated by branching on the |
| // pointer (or some derived value). To do that, we push the block, |
| // whose uses will be the PHINodes that generate information based |
| // one it. |
| worklist.push_back(U->getParent()); |
| } else |
| worklist.push_back(U); |
| } |
| |
| return false; |
| } |