| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DSGraph.h" |
| #include "llvm/Function.h" |
| #include "llvm/iOther.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/Debug.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include "Support/Timer.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumFolds ("dsnode", "Number of nodes completely folded"); |
| Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged"); |
| }; |
| |
| using namespace DS; |
| |
| DSNode *DSNodeHandle::HandleForwarding() const { |
| assert(!N->ForwardNH.isNull() && "Can only be invoked if forwarding!"); |
| |
| // Handle node forwarding here! |
| DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage |
| Offset += N->ForwardNH.getOffset(); |
| |
| if (--N->NumReferrers == 0) { |
| // Removing the last referrer to the node, sever the forwarding link |
| N->stopForwarding(); |
| } |
| |
| N = Next; |
| N->NumReferrers++; |
| if (N->Size <= Offset) { |
| assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); |
| Offset = 0; |
| } |
| return N; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(const Type *T, DSGraph *G) |
| : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { |
| // Add the type entry if it is specified... |
| if (T) mergeTypeInfo(T, 0); |
| G->getNodes().push_back(this); |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N, DSGraph *G) |
| : NumReferrers(0), Size(N.Size), ParentGraph(G), |
| Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) { |
| G->getNodes().push_back(this); |
| } |
| |
| /// getTargetData - Get the target data object used to construct this node. |
| /// |
| const TargetData &DSNode::getTargetData() const { |
| return ParentGraph->getTargetData(); |
| } |
| |
| void DSNode::assertOK() const { |
| assert((Ty != Type::VoidTy || |
| Ty == Type::VoidTy && (Size == 0 || |
| (NodeType & DSNode::Array))) && |
| "Node not OK!"); |
| |
| assert(ParentGraph && "Node has no parent?"); |
| const DSGraph::ScalarMapTy &SM = ParentGraph->getScalarMap(); |
| for (unsigned i = 0, e = Globals.size(); i != e; ++i) { |
| assert(SM.find(Globals[i]) != SM.end()); |
| assert(SM.find(Globals[i])->second.getNode() == this); |
| } |
| } |
| |
| /// forwardNode - Mark this node as being obsolete, and all references to it |
| /// should be forwarded to the specified node and offset. |
| /// |
| void DSNode::forwardNode(DSNode *To, unsigned Offset) { |
| assert(this != To && "Cannot forward a node to itself!"); |
| assert(ForwardNH.isNull() && "Already forwarding from this node!"); |
| if (To->Size <= 1) Offset = 0; |
| assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && |
| "Forwarded offset is wrong!"); |
| ForwardNH.setNode(To); |
| ForwardNH.setOffset(Offset); |
| NodeType = DEAD; |
| Size = 0; |
| Ty = Type::VoidTy; |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // Keep the list sorted. |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| //assert(GV->getType()->getElementType() == Ty); |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| /// foldNodeCompletely - If we determine that this node has some funny |
| /// behavior happening to it that we cannot represent, we fold it down to a |
| /// single, completely pessimistic, node. This node is represented as a |
| /// single byte with a single TypeEntry of "void". |
| /// |
| void DSNode::foldNodeCompletely() { |
| if (isNodeCompletelyFolded()) return; // If this node is already folded... |
| |
| ++NumFolds; |
| |
| // Create the node we are going to forward to... |
| DSNode *DestNode = new DSNode(0, ParentGraph); |
| DestNode->NodeType = NodeType|DSNode::Array; |
| DestNode->Ty = Type::VoidTy; |
| DestNode->Size = 1; |
| DestNode->Globals.swap(Globals); |
| |
| // Start forwarding to the destination node... |
| forwardNode(DestNode, 0); |
| |
| if (Links.size()) { |
| DestNode->Links.push_back(Links[0]); |
| DSNodeHandle NH(DestNode); |
| |
| // If we have links, merge all of our outgoing links together... |
| for (unsigned i = Links.size()-1; i != 0; --i) |
| NH.getNode()->Links[0].mergeWith(Links[i]); |
| Links.clear(); |
| } else { |
| DestNode->Links.resize(1); |
| } |
| } |
| |
| /// isNodeCompletelyFolded - Return true if this node has been completely |
| /// folded down to something that can never be expanded, effectively losing |
| /// all of the field sensitivity that may be present in the node. |
| /// |
| bool DSNode::isNodeCompletelyFolded() const { |
| return getSize() == 1 && Ty == Type::VoidTy && isArray(); |
| } |
| |
| namespace { |
| /// TypeElementWalker Class - Used for implementation of physical subtyping... |
| /// |
| class TypeElementWalker { |
| struct StackState { |
| const Type *Ty; |
| unsigned Offset; |
| unsigned Idx; |
| StackState(const Type *T, unsigned Off = 0) |
| : Ty(T), Offset(Off), Idx(0) {} |
| }; |
| |
| std::vector<StackState> Stack; |
| const TargetData &TD; |
| public: |
| TypeElementWalker(const Type *T, const TargetData &td) : TD(td) { |
| Stack.push_back(T); |
| StepToLeaf(); |
| } |
| |
| bool isDone() const { return Stack.empty(); } |
| const Type *getCurrentType() const { return Stack.back().Ty; } |
| unsigned getCurrentOffset() const { return Stack.back().Offset; } |
| |
| void StepToNextType() { |
| PopStackAndAdvance(); |
| StepToLeaf(); |
| } |
| |
| private: |
| /// PopStackAndAdvance - Pop the current element off of the stack and |
| /// advance the underlying element to the next contained member. |
| void PopStackAndAdvance() { |
| assert(!Stack.empty() && "Cannot pop an empty stack!"); |
| Stack.pop_back(); |
| while (!Stack.empty()) { |
| StackState &SS = Stack.back(); |
| if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { |
| ++SS.Idx; |
| if (SS.Idx != ST->getElementTypes().size()) { |
| const StructLayout *SL = TD.getStructLayout(ST); |
| SS.Offset += SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]; |
| return; |
| } |
| Stack.pop_back(); // At the end of the structure |
| } else { |
| const ArrayType *AT = cast<ArrayType>(SS.Ty); |
| ++SS.Idx; |
| if (SS.Idx != AT->getNumElements()) { |
| SS.Offset += TD.getTypeSize(AT->getElementType()); |
| return; |
| } |
| Stack.pop_back(); // At the end of the array |
| } |
| } |
| } |
| |
| /// StepToLeaf - Used by physical subtyping to move to the first leaf node |
| /// on the type stack. |
| void StepToLeaf() { |
| if (Stack.empty()) return; |
| while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { |
| StackState &SS = Stack.back(); |
| if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { |
| if (ST->getElementTypes().empty()) { |
| assert(SS.Idx == 0); |
| PopStackAndAdvance(); |
| } else { |
| // Step into the structure... |
| assert(SS.Idx < ST->getElementTypes().size()); |
| const StructLayout *SL = TD.getStructLayout(ST); |
| Stack.push_back(StackState(ST->getElementTypes()[SS.Idx], |
| SS.Offset+SL->MemberOffsets[SS.Idx])); |
| } |
| } else { |
| const ArrayType *AT = cast<ArrayType>(SS.Ty); |
| if (AT->getNumElements() == 0) { |
| assert(SS.Idx == 0); |
| PopStackAndAdvance(); |
| } else { |
| // Step into the array... |
| assert(SS.Idx < AT->getNumElements()); |
| Stack.push_back(StackState(AT->getElementType(), |
| SS.Offset+SS.Idx* |
| TD.getTypeSize(AT->getElementType()))); |
| } |
| } |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// ElementTypesAreCompatible - Check to see if the specified types are |
| /// "physically" compatible. If so, return true, else return false. We only |
| /// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1 |
| /// is true, then we also allow a larger T1. |
| /// |
| static bool ElementTypesAreCompatible(const Type *T1, const Type *T2, |
| bool AllowLargerT1, const TargetData &TD){ |
| TypeElementWalker T1W(T1, TD), T2W(T2, TD); |
| |
| while (!T1W.isDone() && !T2W.isDone()) { |
| if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) |
| return false; |
| |
| const Type *T1 = T1W.getCurrentType(); |
| const Type *T2 = T2W.getCurrentType(); |
| if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2)) |
| return false; |
| |
| T1W.StepToNextType(); |
| T2W.StepToNextType(); |
| } |
| |
| return AllowLargerT1 || T1W.isDone(); |
| } |
| |
| |
| /// mergeTypeInfo - This method merges the specified type into the current node |
| /// at the specified offset. This may update the current node's type record if |
| /// this gives more information to the node, it may do nothing to the node if |
| /// this information is already known, or it may merge the node completely (and |
| /// return true) if the information is incompatible with what is already known. |
| /// |
| /// This method returns true if the node is completely folded, otherwise false. |
| /// |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, |
| bool FoldIfIncompatible) { |
| const TargetData &TD = getTargetData(); |
| // Check to make sure the Size member is up-to-date. Size can be one of the |
| // following: |
| // Size = 0, Ty = Void: Nothing is known about this node. |
| // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero |
| // Size = 1, Ty = Void, Array = 1: The node is collapsed |
| // Otherwise, sizeof(Ty) = Size |
| // |
| assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (Size == 1 && Ty == Type::VoidTy && isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (TD.getTypeSize(Ty) == Size)) && |
| "Size member of DSNode doesn't match the type structure!"); |
| assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); |
| |
| if (Offset == 0 && NewTy == Ty) |
| return false; // This should be a common case, handle it efficiently |
| |
| // Return true immediately if the node is completely folded. |
| if (isNodeCompletelyFolded()) return true; |
| |
| // If this is an array type, eliminate the outside arrays because they won't |
| // be used anyway. This greatly reduces the size of large static arrays used |
| // as global variables, for example. |
| // |
| bool WillBeArray = false; |
| while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) { |
| // FIXME: we might want to keep small arrays, but must be careful about |
| // things like: [2 x [10000 x int*]] |
| NewTy = AT->getElementType(); |
| WillBeArray = true; |
| } |
| |
| // Figure out how big the new type we're merging in is... |
| unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0; |
| |
| // Otherwise check to see if we can fold this type into the current node. If |
| // we can't, we fold the node completely, if we can, we potentially update our |
| // internal state. |
| // |
| if (Ty == Type::VoidTy) { |
| // If this is the first type that this node has seen, just accept it without |
| // question.... |
| assert(Offset == 0 && !isArray() && |
| "Cannot have an offset into a void node!"); |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Calculate the number of outgoing links from this node. |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| return false; |
| } |
| |
| // Handle node expansion case here... |
| if (Offset+NewTySize > Size) { |
| // It is illegal to grow this node if we have treated it as an array of |
| // objects... |
| if (isArray()) { |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| |
| if (Offset) { // We could handle this case, but we don't for now... |
| std::cerr << "UNIMP: Trying to merge a growth type into " |
| << "offset != 0: Collapsing!\n"; |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| |
| // Okay, the situation is nice and simple, we are trying to merge a type in |
| // at offset 0 that is bigger than our current type. Implement this by |
| // switching to the new type and then merge in the smaller one, which should |
| // hit the other code path here. If the other code path decides it's not |
| // ok, it will collapse the node as appropriate. |
| // |
| const Type *OldTy = Ty; |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Must grow links to be the appropriate size... |
| Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); |
| |
| // Merge in the old type now... which is guaranteed to be smaller than the |
| // "current" type. |
| return mergeTypeInfo(OldTy, 0); |
| } |
| |
| assert(Offset <= Size && |
| "Cannot merge something into a part of our type that doesn't exist!"); |
| |
| // Find the section of Ty that NewTy overlaps with... first we find the |
| // type that starts at offset Offset. |
| // |
| unsigned O = 0; |
| const Type *SubType = Ty; |
| while (O < Offset) { |
| assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); |
| |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| |
| unsigned i = 0, e = SL.MemberOffsets.size(); |
| for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i) |
| /* empty */; |
| |
| // The offset we are looking for must be in the i'th element... |
| SubType = STy->getElementTypes()[i]; |
| O += SL.MemberOffsets[i]; |
| break; |
| } |
| case Type::ArrayTyID: { |
| SubType = cast<ArrayType>(SubType)->getElementType(); |
| unsigned ElSize = TD.getTypeSize(SubType); |
| unsigned Remainder = (Offset-O) % ElSize; |
| O = Offset-Remainder; |
| break; |
| } |
| default: |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| } |
| |
| assert(O == Offset && "Could not achieve the correct offset!"); |
| |
| // If we found our type exactly, early exit |
| if (SubType == NewTy) return false; |
| |
| unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0; |
| |
| // Ok, we are getting desperate now. Check for physical subtyping, where we |
| // just require each element in the node to be compatible. |
| if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && |
| SubTypeSize && SubTypeSize < 256 && |
| ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD)) |
| return false; |
| |
| // Okay, so we found the leader type at the offset requested. Search the list |
| // of types that starts at this offset. If SubType is currently an array or |
| // structure, the type desired may actually be the first element of the |
| // composite type... |
| // |
| unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored |
| while (SubType != NewTy) { |
| const Type *NextSubType = 0; |
| unsigned NextSubTypeSize = 0; |
| unsigned NextPadSize = 0; |
| switch (SubType->getPrimitiveID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| if (SL.MemberOffsets.size() > 1) |
| NextPadSize = SL.MemberOffsets[1]; |
| else |
| NextPadSize = SubTypeSize; |
| NextSubType = STy->getElementTypes()[0]; |
| NextSubTypeSize = TD.getTypeSize(NextSubType); |
| break; |
| } |
| case Type::ArrayTyID: |
| NextSubType = cast<ArrayType>(SubType)->getElementType(); |
| NextSubTypeSize = TD.getTypeSize(NextSubType); |
| NextPadSize = NextSubTypeSize; |
| break; |
| default: ; |
| // fall out |
| } |
| |
| if (NextSubType == 0) |
| break; // In the default case, break out of the loop |
| |
| if (NextPadSize < NewTySize) |
| break; // Don't allow shrinking to a smaller type than NewTySize |
| SubType = NextSubType; |
| SubTypeSize = NextSubTypeSize; |
| PadSize = NextPadSize; |
| } |
| |
| // If we found the type exactly, return it... |
| if (SubType == NewTy) |
| return false; |
| |
| // Check to see if we have a compatible, but different type... |
| if (NewTySize == SubTypeSize) { |
| // Check to see if this type is obviously convertible... int -> uint f.e. |
| if (NewTy->isLosslesslyConvertibleTo(SubType)) |
| return false; |
| |
| // Check to see if we have a pointer & integer mismatch going on here, |
| // loading a pointer as a long, for example. |
| // |
| if (SubType->isInteger() && isa<PointerType>(NewTy) || |
| NewTy->isInteger() && isa<PointerType>(SubType)) |
| return false; |
| } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { |
| // We are accessing the field, plus some structure padding. Ignore the |
| // structure padding. |
| return false; |
| } |
| |
| Module *M = 0; |
| if (getParentGraph()->getReturnNodes().size()) |
| M = getParentGraph()->getReturnNodes().begin()->first->getParent(); |
| DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: "; |
| WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:"; |
| WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n" |
| << "SubType: "; |
| WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n"); |
| |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| |
| |
| |
| // addEdgeTo - Add an edge from the current node to the specified node. This |
| // can cause merging of nodes in the graph. |
| // |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { |
| if (NH.getNode() == 0) return; // Nothing to do |
| |
| DSNodeHandle &ExistingEdge = getLink(Offset); |
| if (ExistingEdge.getNode()) { |
| // Merge the two nodes... |
| ExistingEdge.mergeWith(NH); |
| } else { // No merging to perform... |
| setLink(Offset, NH); // Just force a link in there... |
| } |
| } |
| |
| |
| // MergeSortedVectors - Efficiently merge a vector into another vector where |
| // duplicates are not allowed and both are sorted. This assumes that 'T's are |
| // efficiently copyable and have sane comparison semantics. |
| // |
| static void MergeSortedVectors(std::vector<GlobalValue*> &Dest, |
| const std::vector<GlobalValue*> &Src) { |
| // By far, the most common cases will be the simple ones. In these cases, |
| // avoid having to allocate a temporary vector... |
| // |
| if (Src.empty()) { // Nothing to merge in... |
| return; |
| } else if (Dest.empty()) { // Just copy the result in... |
| Dest = Src; |
| } else if (Src.size() == 1) { // Insert a single element... |
| const GlobalValue *V = Src[0]; |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), V); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| } else if (Dest.size() == 1) { |
| GlobalValue *Tmp = Dest[0]; // Save value in temporary... |
| Dest = Src; // Copy over list... |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), Tmp); |
| if (I == Dest.end() || *I != Tmp) // If not already contained... |
| Dest.insert(I, Tmp); |
| |
| } else { |
| // Make a copy to the side of Dest... |
| std::vector<GlobalValue*> Old(Dest); |
| |
| // Make space for all of the type entries now... |
| Dest.resize(Dest.size()+Src.size()); |
| |
| // Merge the two sorted ranges together... into Dest. |
| std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); |
| |
| // Now erase any duplicate entries that may have accumulated into the |
| // vectors (because they were in both of the input sets) |
| Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); |
| } |
| } |
| |
| |
| // MergeNodes() - Helper function for DSNode::mergeWith(). |
| // This function does the hard work of merging two nodes, CurNodeH |
| // and NH after filtering out trivial cases and making sure that |
| // CurNodeH.offset >= NH.offset. |
| // |
| // ***WARNING*** |
| // Since merging may cause either node to go away, we must always |
| // use the node-handles to refer to the nodes. These node handles are |
| // automatically updated during merging, so will always provide access |
| // to the correct node after a merge. |
| // |
| void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { |
| assert(CurNodeH.getOffset() >= NH.getOffset() && |
| "This should have been enforced in the caller."); |
| |
| // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with |
| // respect to NH.Offset) is now zero. NOffset is the distance from the base |
| // of our object that N starts from. |
| // |
| unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); |
| unsigned NSize = NH.getNode()->getSize(); |
| |
| // If the two nodes are of different size, and the smaller node has the array |
| // bit set, collapse! |
| if (NSize != CurNodeH.getNode()->getSize()) { |
| if (NSize < CurNodeH.getNode()->getSize()) { |
| if (NH.getNode()->isArray()) |
| NH.getNode()->foldNodeCompletely(); |
| } else if (CurNodeH.getNode()->isArray()) { |
| NH.getNode()->foldNodeCompletely(); |
| } |
| } |
| |
| // Merge the type entries of the two nodes together... |
| if (NH.getNode()->Ty != Type::VoidTy) |
| CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // If we are merging a node with a completely folded node, then both nodes are |
| // now completely folded. |
| // |
| if (CurNodeH.getNode()->isNodeCompletelyFolded()) { |
| if (!NH.getNode()->isNodeCompletelyFolded()) { |
| NH.getNode()->foldNodeCompletely(); |
| assert(NH.getNode() && NH.getOffset() == 0 && |
| "folding did not make offset 0?"); |
| NOffset = NH.getOffset(); |
| NSize = NH.getNode()->getSize(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| } else if (NH.getNode()->isNodeCompletelyFolded()) { |
| CurNodeH.getNode()->foldNodeCompletely(); |
| assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && |
| "folding did not make offset 0?"); |
| NOffset = NH.getOffset(); |
| NSize = NH.getNode()->getSize(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| |
| DSNode *N = NH.getNode(); |
| if (CurNodeH.getNode() == N || N == 0) return; |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // Merge the NodeType information... |
| CurNodeH.getNode()->NodeType |= N->NodeType; |
| |
| // Start forwarding to the new node! |
| N->forwardNode(CurNodeH.getNode(), NOffset); |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // Make all of the outgoing links of N now be outgoing links of CurNodeH. |
| // |
| for (unsigned i = 0; i < N->getNumLinks(); ++i) { |
| DSNodeHandle &Link = N->getLink(i << DS::PointerShift); |
| if (Link.getNode()) { |
| // Compute the offset into the current node at which to |
| // merge this link. In the common case, this is a linear |
| // relation to the offset in the original node (with |
| // wrapping), but if the current node gets collapsed due to |
| // recursive merging, we must make sure to merge in all remaining |
| // links at offset zero. |
| unsigned MergeOffset = 0; |
| DSNode *CN = CurNodeH.getNode(); |
| if (CN->Size != 1) |
| MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); |
| CN->addEdgeTo(MergeOffset, Link); |
| } |
| } |
| |
| // Now that there are no outgoing edges, all of the Links are dead. |
| N->Links.clear(); |
| |
| // Merge the globals list... |
| if (!N->Globals.empty()) { |
| MergeSortedVectors(CurNodeH.getNode()->Globals, N->Globals); |
| |
| // Delete the globals from the old node... |
| std::vector<GlobalValue*>().swap(N->Globals); |
| } |
| } |
| |
| |
| // mergeWith - Merge this node and the specified node, moving all links to and |
| // from the argument node into the current node, deleting the node argument. |
| // Offset indicates what offset the specified node is to be merged into the |
| // current node. |
| // |
| // The specified node may be a null pointer (in which case, nothing happens). |
| // |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { |
| DSNode *N = NH.getNode(); |
| if (N == 0 || (N == this && NH.getOffset() == Offset)) |
| return; // Noop |
| |
| assert(!N->isDeadNode() && !isDeadNode()); |
| assert(!hasNoReferrers() && "Should not try to fold a useless node!"); |
| |
| if (N == this) { |
| // We cannot merge two pieces of the same node together, collapse the node |
| // completely. |
| DEBUG(std::cerr << "Attempting to merge two chunks of" |
| << " the same node together!\n"); |
| foldNodeCompletely(); |
| return; |
| } |
| |
| // If both nodes are not at offset 0, make sure that we are merging the node |
| // at an later offset into the node with the zero offset. |
| // |
| if (Offset < NH.getOffset()) { |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { |
| // If the offsets are the same, merge the smaller node into the bigger node |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } |
| |
| // Ok, now we can merge the two nodes. Use a static helper that works with |
| // two node handles, since "this" may get merged away at intermediate steps. |
| DSNodeHandle CurNodeH(this, Offset); |
| DSNodeHandle NHCopy(NH); |
| DSNode::MergeNodes(CurNodeH, NHCopy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSCallSite Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h |
| Function &DSCallSite::getCaller() const { |
| return *Site.getInstruction()->getParent()->getParent(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getFunctionNames - Return a space separated list of the name of the |
| /// functions in this graph (if any) |
| std::string DSGraph::getFunctionNames() const { |
| switch (getReturnNodes().size()) { |
| case 0: return "Globals graph"; |
| case 1: return getReturnNodes().begin()->first->getName(); |
| default: |
| std::string Return; |
| for (DSGraph::ReturnNodesTy::const_iterator I = getReturnNodes().begin(); |
| I != getReturnNodes().end(); ++I) |
| Return += I->first->getName() + " "; |
| Return.erase(Return.end()-1, Return.end()); // Remove last space character |
| return Return; |
| } |
| } |
| |
| |
| DSGraph::DSGraph(const DSGraph &G) : GlobalsGraph(0), TD(G.TD) { |
| PrintAuxCalls = false; |
| NodeMapTy NodeMap; |
| cloneInto(G, ScalarMap, ReturnNodes, NodeMap); |
| InlinedGlobals.clear(); // clear set of "up-to-date" globals |
| } |
| |
| DSGraph::DSGraph(const DSGraph &G, NodeMapTy &NodeMap) |
| : GlobalsGraph(0), TD(G.TD) { |
| PrintAuxCalls = false; |
| cloneInto(G, ScalarMap, ReturnNodes, NodeMap); |
| InlinedGlobals.clear(); // clear set of "up-to-date" globals |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| AuxFunctionCalls.clear(); |
| InlinedGlobals.clear(); |
| ScalarMap.clear(); |
| ReturnNodes.clear(); |
| |
| // Drop all intra-node references, so that assertions don't fail... |
| std::for_each(Nodes.begin(), Nodes.end(), |
| std::mem_fun(&DSNode::dropAllReferences)); |
| |
| // Delete all of the nodes themselves... |
| std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| /// remapLinks - Change all of the Links in the current node according to the |
| /// specified mapping. |
| /// |
| void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) { |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) { |
| DSNodeHandle &H = OldNodeMap[Links[i].getNode()]; |
| Links[i].setNode(H.getNode()); |
| Links[i].setOffset(Links[i].getOffset()+H.getOffset()); |
| } |
| } |
| |
| |
| /// cloneReachableNodes - Clone all reachable nodes from *Node into the |
| /// current graph. This is a recursive function. The map OldNodeMap is a |
| /// map from the original nodes to their clones. |
| /// |
| void DSGraph::cloneReachableNodes(const DSNode* Node, |
| unsigned BitsToClear, |
| NodeMapTy& OldNodeMap, |
| NodeMapTy& CompletedNodeMap) { |
| if (CompletedNodeMap.find(Node) != CompletedNodeMap.end()) |
| return; |
| |
| DSNodeHandle& NH = OldNodeMap[Node]; |
| if (NH.getNode() != NULL) |
| return; |
| |
| // else Node has not yet been cloned: clone it and clear the specified bits |
| NH = new DSNode(*Node, this); // enters in OldNodeMap |
| NH.getNode()->maskNodeTypes(~BitsToClear); |
| |
| // now recursively clone nodes pointed to by this node |
| for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) { |
| const DSNodeHandle &Link = Node->getLink(i << DS::PointerShift); |
| if (const DSNode* nextNode = Link.getNode()) |
| cloneReachableNodes(nextNode, BitsToClear, OldNodeMap, CompletedNodeMap); |
| } |
| } |
| |
| void DSGraph::cloneReachableSubgraph(const DSGraph& G, |
| const hash_set<const DSNode*>& RootNodes, |
| NodeMapTy& OldNodeMap, |
| NodeMapTy& CompletedNodeMap, |
| unsigned CloneFlags) { |
| if (RootNodes.empty()) |
| return; |
| |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| assert((*RootNodes.begin())->getParentGraph() == &G && |
| "Root nodes do not belong to this graph!"); |
| |
| // Remove alloca or mod/ref bits as specified... |
| unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) |
| | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) |
| | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); |
| BitsToClear |= DSNode::DEAD; // Clear dead flag... |
| |
| // Clone all nodes reachable from each root node, using a recursive helper |
| for (hash_set<const DSNode*>::const_iterator I = RootNodes.begin(), |
| E = RootNodes.end(); I != E; ++I) |
| cloneReachableNodes(*I, BitsToClear, OldNodeMap, CompletedNodeMap); |
| |
| // Merge the map entries in OldNodeMap and CompletedNodeMap to remap links |
| NodeMapTy MergedMap(OldNodeMap); |
| MergedMap.insert(CompletedNodeMap.begin(), CompletedNodeMap.end()); |
| |
| // Rewrite the links in the newly created nodes (the nodes in OldNodeMap) |
| // to point into the current graph. MergedMap gives the full mapping. |
| for (NodeMapTy::iterator I=OldNodeMap.begin(), E=OldNodeMap.end(); I!= E; ++I) |
| I->second.getNode()->remapLinks(MergedMap); |
| |
| // Now merge cloned global nodes with their copies in the current graph |
| // Just look through OldNodeMap to find such nodes! |
| for (NodeMapTy::iterator I=OldNodeMap.begin(), E=OldNodeMap.end(); I!= E; ++I) |
| if (I->first->isGlobalNode()) { |
| DSNodeHandle &GClone = I->second; |
| assert(GClone.getNode() != NULL && "NULL node in OldNodeMap?"); |
| const std::vector<GlobalValue*> &Globals = I->first->getGlobals(); |
| for (unsigned gi = 0, ge = Globals.size(); gi != ge; ++gi) { |
| DSNodeHandle &GH = ScalarMap[Globals[gi]]; |
| GH.mergeWith(GClone); |
| } |
| } |
| } |
| |
| |
| /// updateFromGlobalGraph - This function rematerializes global nodes and |
| /// nodes reachable from them from the globals graph into the current graph. |
| /// It invokes cloneReachableSubgraph, using the globals in the current graph |
| /// as the roots. It also uses the vector InlinedGlobals to avoid cloning and |
| /// merging globals that are already up-to-date in the current graph. In |
| /// practice, in the TD pass, this is likely to be a large fraction of the |
| /// live global nodes in each function (since most live nodes are likely to |
| /// have been brought up-to-date in at _some_ caller or callee). |
| /// |
| void DSGraph::updateFromGlobalGraph() { |
| |
| // Use a map to keep track of the mapping between nodes in the globals graph |
| // and this graph for up-to-date global nodes, which do not need to be cloned. |
| NodeMapTy CompletedMap; |
| |
| // Put the live, non-up-to-date global nodes into a set and the up-to-date |
| // ones in the map above, mapping node in GlobalsGraph to the up-to-date node. |
| hash_set<const DSNode*> GlobalNodeSet; |
| for (ScalarMapTy::const_iterator I = getScalarMap().begin(), |
| E = getScalarMap().end(); I != E; ++I) |
| if (GlobalValue* GV = dyn_cast<GlobalValue>(I->first)) { |
| DSNode* GNode = I->second.getNode(); |
| assert(GNode && "No node for live global in current Graph?"); |
| if (const DSNode* GGNode = GlobalsGraph->ScalarMap[GV].getNode()) |
| if (InlinedGlobals.count(GV) == 0) // GNode is not up-to-date |
| GlobalNodeSet.insert(GGNode); |
| else { // GNode is up-to-date |
| CompletedMap[GGNode] = I->second; |
| assert(GGNode->getNumLinks() == GNode->getNumLinks() && |
| "Links dont match in a node that is supposed to be up-to-date?" |
| "\nremapLinks() will not work if the links don't match!"); |
| } |
| } |
| |
| // Clone the subgraph reachable from the vector of nodes in GlobalNodes |
| // and merge the cloned global nodes with the corresponding ones, if any. |
| NodeMapTy OldNodeMap; |
| cloneReachableSubgraph(*GlobalsGraph, GlobalNodeSet, OldNodeMap,CompletedMap); |
| |
| // Merging global nodes leaves behind unused nodes: get rid of them now. |
| OldNodeMap.clear(); // remove references before dead node cleanup |
| CompletedMap.clear(); // remove references before dead node cleanup |
| removeTriviallyDeadNodes(); |
| } |
| |
| /// cloneInto - Clone the specified DSGraph into the current graph. The |
| /// translated ScalarMap for the old function is filled into the OldValMap |
| /// member, and the translated ReturnNodes map is returned into ReturnNodes. |
| /// |
| /// The CloneFlags member controls various aspects of the cloning process. |
| /// |
| void DSGraph::cloneInto(const DSGraph &G, ScalarMapTy &OldValMap, |
| ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap, |
| unsigned CloneFlags) { |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| |
| unsigned FN = Nodes.size(); // First new node... |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| |
| // Remove alloca or mod/ref bits as specified... |
| unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) |
| | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) |
| | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); |
| BitsToClear |= DSNode::DEAD; // Clear dead flag... |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i]; |
| DSNode *New = new DSNode(*Old, this); |
| New->maskNodeTypes(~BitsToClear); |
| OldNodeMap[Old] = New; |
| } |
| #ifndef NDEBUG |
| Timer::addPeakMemoryMeasurement(); |
| #endif |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->remapLinks(OldNodeMap); |
| |
| // Copy the scalar map... merging all of the global nodes... |
| for (ScalarMapTy::const_iterator I = G.ScalarMap.begin(), |
| E = G.ScalarMap.end(); I != E; ++I) { |
| DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; |
| DSNodeHandle &H = OldValMap[I->first]; |
| H.mergeWith(DSNodeHandle(MappedNode.getNode(), |
| I->second.getOffset()+MappedNode.getOffset())); |
| |
| // If this is a global, add the global to this fn or merge if already exists |
| if (GlobalValue* GV = dyn_cast<GlobalValue>(I->first)) { |
| ScalarMap[GV].mergeWith(H); |
| InlinedGlobals.insert(GV); |
| } |
| } |
| |
| if (!(CloneFlags & DontCloneCallNodes)) { |
| // Copy the function calls list... |
| unsigned FC = FunctionCalls.size(); // FirstCall |
| FunctionCalls.reserve(FC+G.FunctionCalls.size()); |
| for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i) |
| FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap)); |
| } |
| |
| if (!(CloneFlags & DontCloneAuxCallNodes)) { |
| // Copy the auxiliary function calls list... |
| unsigned FC = AuxFunctionCalls.size(); // FirstCall |
| AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size()); |
| for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i) |
| AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap)); |
| } |
| |
| // Map the return node pointers over... |
| for (ReturnNodesTy::const_iterator I = G.getReturnNodes().begin(), |
| E = G.getReturnNodes().end(); I != E; ++I) { |
| const DSNodeHandle &Ret = I->second; |
| DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; |
| OldReturnNodes.insert(std::make_pair(I->first, |
| DSNodeHandle(MappedRet.getNode(), |
| MappedRet.getOffset()+Ret.getOffset()))); |
| } |
| } |
| |
| /// clonePartiallyInto - Clone the reachable subset of the specified DSGraph |
| /// into the current graph, for the specified function. |
| /// |
| /// This differs from cloneInto in that it only clones nodes reachable from |
| /// globals, call nodes, the scalars specified in ValBindings, and the return |
| /// value of the specified function. This method merges the the cloned |
| /// version of the scalars and return value with the specified DSNodeHandles. |
| /// |
| /// On return, OldNodeMap contains a mapping from the original nodes to the |
| /// newly cloned nodes, for the subset of nodes that were actually cloned. |
| /// |
| /// The CloneFlags member controls various aspects of the cloning process. |
| /// |
| void DSGraph::clonePartiallyInto(const DSGraph &G, Function &F, |
| const DSNodeHandle &RetVal, |
| const ScalarMapTy &ValBindings, |
| NodeMapTy &OldNodeMap, |
| unsigned CloneFlags) { |
| |
| assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| |
| unsigned FN = Nodes.size(); // First new node... |
| |
| /// FIXME: This currently clones the whole graph over, instead of doing it |
| /// incrementally. This could be sped up quite a bit further! |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| |
| // Remove alloca or mod/ref bits as specified... |
| unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) |
| | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) |
| | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); |
| BitsToClear |= DSNode::DEAD; // Clear dead flag... |
| |
| GlobalSetTy ClonedGlobals; |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i]; |
| DSNode *New = new DSNode(*Old, this); |
| New->maskNodeTypes(~BitsToClear); |
| OldNodeMap[Old] = New; |
| |
| ClonedGlobals.insert(New->getGlobals().begin(), New->getGlobals().end()); |
| } |
| #ifndef NDEBUG |
| Timer::addPeakMemoryMeasurement(); |
| #endif |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->remapLinks(OldNodeMap); |
| |
| // Ensure that all global nodes end up in the scalar map, as appropriate. |
| for (GlobalSetTy::iterator CI = ClonedGlobals.begin(), |
| E = ClonedGlobals.end(); CI != E; ++CI) { |
| const DSNodeHandle &NGH = G.ScalarMap.find(*CI)->second; |
| |
| DSNodeHandle &MappedNode = OldNodeMap[NGH.getNode()]; |
| DSNodeHandle H(MappedNode.getNode(),NGH.getOffset()+MappedNode.getOffset()); |
| ScalarMap[*CI].mergeWith(H); |
| InlinedGlobals.insert(*CI); |
| } |
| |
| // Merge the requested portion of the scalar map with the values specified. |
| for (ScalarMapTy::const_iterator I = ValBindings.begin(), |
| E = ValBindings.end(); I != E; ++I) { |
| ScalarMapTy::const_iterator SMI = G.ScalarMap.find(I->first); |
| assert(SMI != G.ScalarMap.end() && "Cannot map non-existant scalar!"); |
| |
| DSNodeHandle &MappedNode = OldNodeMap[SMI->second.getNode()]; |
| DSNodeHandle H(MappedNode.getNode(), |
| SMI->second.getOffset()+MappedNode.getOffset()); |
| H.mergeWith(I->second); |
| } |
| |
| // Map the return node pointer over. |
| if (RetVal.getNode()) { |
| const DSNodeHandle &Ret = G.getReturnNodeFor(F); |
| DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; |
| DSNodeHandle H(MappedRet.getNode(), |
| MappedRet.getOffset()+Ret.getOffset()); |
| H.mergeWith(RetVal); |
| } |
| |
| // If requested, copy the calls or aux-calls lists. |
| if (!(CloneFlags & DontCloneCallNodes)) { |
| // Copy the function calls list... |
| unsigned FC = FunctionCalls.size(); // FirstCall |
| FunctionCalls.reserve(FC+G.FunctionCalls.size()); |
| for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i) |
| FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap)); |
| } |
| |
| if (!(CloneFlags & DontCloneAuxCallNodes)) { |
| // Copy the auxiliary function calls list... |
| unsigned FC = AuxFunctionCalls.size(); // FirstCall |
| AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size()); |
| for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i) |
| AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap)); |
| } |
| } |
| |
| |
| |
| |
| /// mergeInGraph - The method is used for merging graphs together. If the |
| /// argument graph is not *this, it makes a clone of the specified graph, then |
| /// merges the nodes specified in the call site with the formal arguments in the |
| /// graph. |
| /// |
| void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F, |
| const DSGraph &Graph, unsigned CloneFlags) { |
| // If this is not a recursive call, clone the graph into this graph... |
| if (&Graph != this) { |
| // Clone the callee's graph into the current graph, keeping |
| // track of where scalars in the old graph _used_ to point, |
| // and of the new nodes matching nodes of the old graph. |
| ScalarMapTy ValueBindings; |
| |
| // Set up argument bindings |
| Function::aiterator AI = F.abegin(); |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) { |
| // Advance the argument iterator to the first pointer argument... |
| while (AI != F.aend() && !isPointerType(AI->getType())) { |
| ++AI; |
| #ifndef NDEBUG |
| if (AI == F.aend()) |
| std::cerr << "Bad call to Function: " << F.getName() << "\n"; |
| #endif |
| } |
| if (AI == F.aend()) break; |
| |
| // Add the link from the argument scalar to the provided value. |
| ValueBindings[AI] = CS.getPtrArg(i); |
| } |
| |
| NodeMapTy OldNodeMap; |
| clonePartiallyInto(Graph, F, CS.getRetVal(), ValueBindings, OldNodeMap, |
| CloneFlags); |
| |
| } else { |
| DSNodeHandle RetVal = getReturnNodeFor(F); |
| ScalarMapTy &ScalarMap = getScalarMap(); |
| |
| // Merge the return value with the return value of the context... |
| RetVal.mergeWith(CS.getRetVal()); |
| |
| // Resolve all of the function arguments... |
| Function::aiterator AI = F.abegin(); |
| |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) { |
| // Advance the argument iterator to the first pointer argument... |
| while (AI != F.aend() && !isPointerType(AI->getType())) { |
| ++AI; |
| #ifndef NDEBUG |
| if (AI == F.aend()) |
| std::cerr << "Bad call to Function: " << F.getName() << "\n"; |
| #endif |
| } |
| if (AI == F.aend()) break; |
| |
| // Add the link from the argument scalar to the provided value |
| assert(ScalarMap.count(AI) && "Argument not in scalar map?"); |
| DSNodeHandle &NH = ScalarMap[AI]; |
| assert(NH.getNode() && "Pointer argument without scalarmap entry?"); |
| NH.mergeWith(CS.getPtrArg(i)); |
| } |
| } |
| } |
| |
| /// getCallSiteForArguments - Get the arguments and return value bindings for |
| /// the specified function in the current graph. |
| /// |
| DSCallSite DSGraph::getCallSiteForArguments(Function &F) const { |
| std::vector<DSNodeHandle> Args; |
| |
| for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) |
| if (isPointerType(I->getType())) |
| Args.push_back(getScalarMap().find(I)->second); |
| |
| return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args); |
| } |
| |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach incomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || N->isIncomplete()) return; |
| |
| // Actually mark the node |
| N->setIncompleteMarker(); |
| |
| // Recursively process children... |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (DSNode *DSN = N->getLink(i).getNode()) |
| markIncompleteNode(DSN); |
| } |
| |
| static void markIncomplete(DSCallSite &Call) { |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Call.getRetVal().getNode()); |
| |
| // All objects pointed to by function arguments are incomplete! |
| for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) |
| markIncompleteNode(Call.getPtrArg(i).getNode()); |
| } |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes(unsigned Flags) { |
| // Mark any incoming arguments as incomplete... |
| if (Flags & DSGraph::MarkFormalArgs) |
| for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end(); |
| FI != E; ++FI) { |
| Function &F = *FI->first; |
| if (F.getName() != "main") |
| for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) |
| if (isPointerType(I->getType()) && |
| ScalarMap.find(I) != ScalarMap.end()) |
| markIncompleteNode(ScalarMap[I].getNode()); |
| } |
| |
| // Mark stuff passed into functions calls as being incomplete... |
| if (!shouldPrintAuxCalls()) |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) |
| markIncomplete(FunctionCalls[i]); |
| else |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| markIncomplete(AuxFunctionCalls[i]); |
| |
| |
| // Mark all global nodes as incomplete... |
| if ((Flags & DSGraph::IgnoreGlobals) == 0) |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->isGlobalNode() && Nodes[i]->getNumLinks()) |
| markIncompleteNode(Nodes[i]); |
| } |
| |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) { |
| if (DSNode *N = Edge.getNode()) // Is there an edge? |
| if (N->getNumReferrers() == 1) // Does it point to a lonely node? |
| // No interesting info? |
| if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 && |
| N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) |
| Edge.setNode(0); // Kill the edge! |
| } |
| |
| static inline bool nodeContainsExternalFunction(const DSNode *N) { |
| const std::vector<GlobalValue*> &Globals = N->getGlobals(); |
| for (unsigned i = 0, e = Globals.size(); i != e; ++i) |
| if (Globals[i]->isExternal()) |
| return true; |
| return false; |
| } |
| |
| static void removeIdenticalCalls(std::vector<DSCallSite> &Calls) { |
| |
| // Remove trivially identical function calls |
| unsigned NumFns = Calls.size(); |
| std::sort(Calls.begin(), Calls.end()); // Sort by callee as primary key! |
| |
| // Scan the call list cleaning it up as necessary... |
| DSNode *LastCalleeNode = 0; |
| Function *LastCalleeFunc = 0; |
| unsigned NumDuplicateCalls = 0; |
| bool LastCalleeContainsExternalFunction = false; |
| for (unsigned i = 0; i != Calls.size(); ++i) { |
| DSCallSite &CS = Calls[i]; |
| |
| // If the Callee is a useless edge, this must be an unreachable call site, |
| // eliminate it. |
| if (CS.isIndirectCall() && CS.getCalleeNode()->getNumReferrers() == 1 && |
| CS.getCalleeNode()->getNodeFlags() == 0) { // No useful info? |
| std::cerr << "WARNING: Useless call site found??\n"; |
| CS.swap(Calls.back()); |
| Calls.pop_back(); |
| --i; |
| } else { |
| // If the return value or any arguments point to a void node with no |
| // information at all in it, and the call node is the only node to point |
| // to it, remove the edge to the node (killing the node). |
| // |
| killIfUselessEdge(CS.getRetVal()); |
| for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) |
| killIfUselessEdge(CS.getPtrArg(a)); |
| |
| // If this call site calls the same function as the last call site, and if |
| // the function pointer contains an external function, this node will |
| // never be resolved. Merge the arguments of the call node because no |
| // information will be lost. |
| // |
| if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || |
| (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { |
| ++NumDuplicateCalls; |
| if (NumDuplicateCalls == 1) { |
| if (LastCalleeNode) |
| LastCalleeContainsExternalFunction = |
| nodeContainsExternalFunction(LastCalleeNode); |
| else |
| LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); |
| } |
| |
| #if 1 |
| if (LastCalleeContainsExternalFunction || |
| // This should be more than enough context sensitivity! |
| // FIXME: Evaluate how many times this is tripped! |
| NumDuplicateCalls > 20) { |
| DSCallSite &OCS = Calls[i-1]; |
| OCS.mergeWith(CS); |
| |
| // The node will now be eliminated as a duplicate! |
| if (CS.getNumPtrArgs() < OCS.getNumPtrArgs()) |
| CS = OCS; |
| else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs()) |
| OCS = CS; |
| } |
| #endif |
| } else { |
| if (CS.isDirectCall()) { |
| LastCalleeFunc = CS.getCalleeFunc(); |
| LastCalleeNode = 0; |
| } else { |
| LastCalleeNode = CS.getCalleeNode(); |
| LastCalleeFunc = 0; |
| } |
| NumDuplicateCalls = 0; |
| } |
| } |
| } |
| |
| Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); |
| |
| // Track the number of call nodes merged away... |
| NumCallNodesMerged += NumFns-Calls.size(); |
| |
| DEBUG(if (NumFns != Calls.size()) |
| std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes.\n";); |
| } |
| |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes() { |
| removeIdenticalCalls(FunctionCalls); |
| removeIdenticalCalls(AuxFunctionCalls); |
| |
| // Loop over all of the nodes in the graph, calling getNode on each field. |
| // This will cause all nodes to update their forwarding edges, causing |
| // forwarded nodes to be delete-able. |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| DSNode *N = Nodes[i]; |
| for (unsigned l = 0, e = N->getNumLinks(); l != e; ++l) |
| N->getLink(l*N->getPointerSize()).getNode(); |
| } |
| |
| // Likewise, forward any edges from the scalar nodes. While we are at it, |
| // clean house a bit. |
| for (ScalarMapTy::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){ |
| // Check to see if this is a worthless node generated for non-pointer |
| // values, such as integers. Consider an addition of long types: A+B. |
| // Assuming we can track all uses of the value in this context, and it is |
| // NOT used as a pointer, we can delete the node. We will be able to detect |
| // this situation if the node pointed to ONLY has Unknown bit set in the |
| // node. In this case, the node is not incomplete, does not point to any |
| // other nodes (no mod/ref bits set), and is therefore uninteresting for |
| // data structure analysis. If we run across one of these, prune the scalar |
| // pointing to it. |
| // |
| DSNode *N = I->second.getNode(); |
| if (N->getNodeFlags() == DSNode::UnknownNode && !isa<Argument>(I->first)) |
| ScalarMap.erase(I++); |
| else |
| ++I; |
| } |
| |
| bool isGlobalsGraph = !GlobalsGraph; |
| |
| for (unsigned i = 0; i != Nodes.size(); ++i) { |
| DSNode *Node = Nodes[i]; |
| |
| // Do not remove *any* global nodes in the globals graph. |
| // This is a special case because such nodes may not have I, M, R flags set. |
| if (Node->isGlobalNode() && isGlobalsGraph) |
| continue; |
| |
| if (Node->isComplete() && !Node->isModified() && !Node->isRead()) { |
| // This is a useless node if it has no mod/ref info (checked above), |
| // outgoing edges (which it cannot, as it is not modified in this |
| // context), and it has no incoming edges. If it is a global node it may |
| // have all of these properties and still have incoming edges, due to the |
| // scalar map, so we check those now. |
| // |
| if (Node->getNumReferrers() == Node->getGlobals().size()) { |
| const std::vector<GlobalValue*> &Globals = Node->getGlobals(); |
| |
| // Loop through and make sure all of the globals are referring directly |
| // to the node... |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) { |
| DSNode *N = ScalarMap.find(Globals[j])->second.getNode(); |
| assert(N == Node && "ScalarMap doesn't match globals list!"); |
| } |
| |
| // Make sure NumReferrers still agrees, if so, the node is truly dead. |
| if (Node->getNumReferrers() == Globals.size()) { |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) |
| ScalarMap.erase(Globals[j]); |
| Node->makeNodeDead(); |
| } |
| } |
| |
| #ifdef SANER_CODE_FOR_CHECKING_IF_ALL_REFERRERS_ARE_FROM_SCALARMAP |
| // |
| // *** It seems to me that we should be able to simply check if |
| // *** there are fewer or equal #referrers as #globals and make |
| // *** sure that all those referrers are in the scalar map? |
| // |
| if (Node->getNumReferrers() <= Node->getGlobals().size()) { |
| const std::vector<GlobalValue*> &Globals = Node->getGlobals(); |
| |
| #ifndef NDEBUG |
| // Loop through and make sure all of the globals are referring directly |
| // to the node... |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) { |
| DSNode *N = ScalarMap.find(Globals[j])->second.getNode(); |
| assert(N == Node && "ScalarMap doesn't match globals list!"); |
| } |
| #endif |
| |
| // Make sure NumReferrers still agrees. The node is truly dead. |
| assert(Node->getNumReferrers() == Globals.size()); |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) |
| ScalarMap.erase(Globals[j]); |
| Node->makeNodeDead(); |
| } |
| #endif |
| } |
| |
| if (Node->getNodeFlags() == 0 && Node->hasNoReferrers()) { |
| // This node is dead! |
| delete Node; // Free memory... |
| Nodes[i--] = Nodes.back(); |
| Nodes.pop_back(); // Remove from node list... |
| } |
| } |
| } |
| |
| |
| /// markReachableNodes - This method recursively traverses the specified |
| /// DSNodes, marking any nodes which are reachable. All reachable nodes it adds |
| /// to the set, which allows it to only traverse visited nodes once. |
| /// |
| void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) { |
| if (this == 0) return; |
| assert(getForwardNode() == 0 && "Cannot mark a forwarded node!"); |
| if (ReachableNodes.insert(this).second) // Is newly reachable? |
| for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize) |
| getLink(i).getNode()->markReachableNodes(ReachableNodes); |
| } |
| |
| void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) { |
| getRetVal().getNode()->markReachableNodes(Nodes); |
| if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); |
| |
| for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) |
| getPtrArg(i).getNode()->markReachableNodes(Nodes); |
| } |
| |
| // CanReachAliveNodes - Simple graph walker that recursively traverses the graph |
| // looking for a node that is marked alive. If an alive node is found, return |
| // true, otherwise return false. If an alive node is reachable, this node is |
| // marked as alive... |
| // |
| static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive, |
| hash_set<DSNode*> &Visited, |
| bool IgnoreGlobals) { |
| if (N == 0) return false; |
| assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!"); |
| |
| // If this is a global node, it will end up in the globals graph anyway, so we |
| // don't need to worry about it. |
| if (IgnoreGlobals && N->isGlobalNode()) return false; |
| |
| // If we know that this node is alive, return so! |
| if (Alive.count(N)) return true; |
| |
| // Otherwise, we don't think the node is alive yet, check for infinite |
| // recursion. |
| if (Visited.count(N)) return false; // Found a cycle |
| Visited.insert(N); // No recursion, insert into Visited... |
| |
| for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) |
| if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited, |
| IgnoreGlobals)) { |
| N->markReachableNodes(Alive); |
| return true; |
| } |
| return false; |
| } |
| |
| // CallSiteUsesAliveArgs - Return true if the specified call site can reach any |
| // alive nodes. |
| // |
| static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive, |
| hash_set<DSNode*> &Visited, |
| bool IgnoreGlobals) { |
| if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited, |
| IgnoreGlobals)) |
| return true; |
| if (CS.isIndirectCall() && |
| CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals)) |
| return true; |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) |
| if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited, |
| IgnoreGlobals)) |
| return true; |
| return false; |
| } |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes(unsigned Flags) { |
| DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK()); |
| |
| // Reduce the amount of work we have to do... remove dummy nodes left over by |
| // merging... |
| removeTriviallyDeadNodes(); |
| |
| // FIXME: Merge non-trivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| hash_set<DSNode*> Alive; |
| std::vector<std::pair<Value*, DSNode*> > GlobalNodes; |
| |
| // Mark all nodes reachable by (non-global) scalar nodes as alive... |
| for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; |
| ++I) |
| if (isa<GlobalValue>(I->first)) { // Keep track of global nodes |
| assert(I->second.getNode() && "Null global node?"); |
| assert(I->second.getNode()->isGlobalNode() && "Should be a global node!"); |
| GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); |
| } else { |
| I->second.getNode()->markReachableNodes(Alive); |
| } |
| |
| // The return value is alive as well... |
| for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end(); |
| I != E; ++I) |
| I->second.getNode()->markReachableNodes(Alive); |
| |
| // Mark any nodes reachable by primary calls as alive... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) |
| FunctionCalls[i].markReachableNodes(Alive); |
| |
| // Copy and merge all information about globals to the GlobalsGraph |
| // if this is not a final pass (where unreachable globals are removed) |
| NodeMapTy GlobalNodeMap; |
| hash_set<const DSNode*> GlobalNodeSet; |
| |
| for (std::vector<std::pair<Value*, DSNode*> >::const_iterator |
| I = GlobalNodes.begin(), E = GlobalNodes.end(); I != E; ++I) |
| GlobalNodeSet.insert(I->second); // put global nodes into a set |
| |
| // Now find globals and aux call nodes that are already live or reach a live |
| // value (which makes them live in turn), and continue till no more are found. |
| // |
| bool Iterate; |
| hash_set<DSNode*> Visited; |
| std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size()); |
| do { |
| Visited.clear(); |
| // If any global node points to a non-global that is "alive", the global is |
| // "alive" as well... Remove it from the GlobalNodes list so we only have |
| // unreachable globals in the list. |
| // |
| Iterate = false; |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) |
| for (unsigned i = 0; i != GlobalNodes.size(); ++i) |
| if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, |
| Flags & DSGraph::RemoveUnreachableGlobals)) { |
| std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to... |
| GlobalNodes.pop_back(); // erase efficiently |
| Iterate = true; |
| } |
| |
| // Mark only unresolvable call nodes for moving to the GlobalsGraph since |
| // call nodes that get resolved will be difficult to remove from that graph. |
| // The final unresolved call nodes must be handled specially at the end of |
| // the BU pass (i.e., in main or other roots of the call graph). |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| if (!AuxFCallsAlive[i] && |
| (AuxFunctionCalls[i].isIndirectCall() |
| || CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited, |
| Flags & DSGraph::RemoveUnreachableGlobals))) { |
| AuxFunctionCalls[i].markReachableNodes(Alive); |
| AuxFCallsAlive[i] = true; |
| Iterate = true; |
| } |
| } while (Iterate); |
| |
| // Move dead aux function calls to the end of the list |
| unsigned CurIdx = 0; |
| for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) |
| if (AuxFCallsAlive[i]) |
| AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]); |
| |
| // Copy and merge all global nodes and dead aux call nodes into the |
| // GlobalsGraph, and all nodes reachable from those nodes |
| // |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { |
| |
| // First, add the dead aux call nodes to the set of root nodes for cloning |
| // -- return value at this call site, if any |
| // -- actual arguments passed at this call site |
| // -- callee node at this call site, if this is an indirect call |
| for (unsigned i = CurIdx, e = AuxFunctionCalls.size(); i != e; ++i) { |
| if (const DSNode* RetNode = AuxFunctionCalls[i].getRetVal().getNode()) |
| GlobalNodeSet.insert(RetNode); |
| for (unsigned j=0, N=AuxFunctionCalls[i].getNumPtrArgs(); j < N; ++j) |
| if (const DSNode* ArgTarget=AuxFunctionCalls[i].getPtrArg(j).getNode()) |
| GlobalNodeSet.insert(ArgTarget); |
| if (AuxFunctionCalls[i].isIndirectCall()) |
| GlobalNodeSet.insert(AuxFunctionCalls[i].getCalleeNode()); |
| } |
| |
| // There are no "pre-completed" nodes so use any empty map for those. |
| // Strip all alloca bits since the current function is only for the BU pass. |
| // Strip all incomplete bits since they are short-lived properties and they |
| // will be correctly computed when rematerializing nodes into the functions. |
| // |
| NodeMapTy CompletedMap; |
| GlobalsGraph->cloneReachableSubgraph(*this, GlobalNodeSet, |
| GlobalNodeMap, CompletedMap, |
| (DSGraph::StripAllocaBit | |
| DSGraph::StripIncompleteBit)); |
| } |
| |
| // Remove all dead aux function calls... |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { |
| assert(GlobalsGraph && "No globals graph available??"); |
| |
| // Copy the unreachable call nodes to the globals graph, updating |
| // their target pointers using the GlobalNodeMap |
| for (unsigned i = CurIdx, e = AuxFunctionCalls.size(); i != e; ++i) |
| GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(AuxFunctionCalls[i], |
| GlobalNodeMap)); |
| } |
| // Crop all the useless ones out... |
| AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx, |
| AuxFunctionCalls.end()); |
| |
| // We are finally done with the GlobalNodeMap so we can clear it and |
| // then get rid of unused nodes in the GlobalsGraph produced by merging. |
| GlobalNodeMap.clear(); |
| GlobalsGraph->removeTriviallyDeadNodes(); |
| |
| // At this point, any nodes which are visited, but not alive, are nodes |
| // which can be removed. Loop over all nodes, eliminating completely |
| // unreachable nodes. |
| // |
| std::vector<DSNode*> DeadNodes; |
| DeadNodes.reserve(Nodes.size()); |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!Alive.count(Nodes[i])) { |
| DSNode *N = Nodes[i]; |
| Nodes[i--] = Nodes.back(); // move node to end of vector |
| Nodes.pop_back(); // Erase node from alive list. |
| DeadNodes.push_back(N); |
| N->dropAllReferences(); |
| } else { |
| assert(Nodes[i]->getForwardNode() == 0 && "Alive forwarded node?"); |
| } |
| |
| // Remove all unreachable globals from the ScalarMap. |
| // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes. |
| // In either case, the dead nodes will not be in the set Alive. |
| for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) { |
| assert(((Flags & DSGraph::RemoveUnreachableGlobals) || |
| !Alive.count(GlobalNodes[i].second)) && "huh? non-dead global"); |
| if (!Alive.count(GlobalNodes[i].second)) |
| ScalarMap.erase(GlobalNodes[i].first); |
| } |
| |
| // Delete all dead nodes now since their referrer counts are zero. |
| for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i) |
| delete DeadNodes[i]; |
| |
| DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); |
| } |
| |
| void DSGraph::AssertGraphOK() const { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->assertOK(); |
| |
| for (ScalarMapTy::const_iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) { |
| assert(I->second.getNode() && "Null node in scalarmap!"); |
| AssertNodeInGraph(I->second.getNode()); |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) { |
| assert(I->second.getNode()->isGlobalNode() && |
| "Global points to node, but node isn't global?"); |
| AssertNodeContainsGlobal(I->second.getNode(), GV); |
| } |
| } |
| AssertCallNodesInGraph(); |
| AssertAuxCallNodesInGraph(); |
| } |
| |
| /// mergeInGlobalsGraph - This method is useful for clients to incorporate the |
| /// globals graph into the DS, BU or TD graph for a function. This code retains |
| /// all globals, i.e., does not delete unreachable globals after they are |
| /// inlined. |
| /// |
| void DSGraph::mergeInGlobalsGraph() { |
| NodeMapTy GlobalNodeMap; |
| ScalarMapTy OldValMap; |
| ReturnNodesTy OldRetNodes; |
| cloneInto(*GlobalsGraph, OldValMap, OldRetNodes, GlobalNodeMap, |
| DSGraph::KeepAllocaBit | DSGraph::DontCloneCallNodes | |
| DSGraph::DontCloneAuxCallNodes); |
| |
| // Now merge existing global nodes in the GlobalsGraph with their copies |
| for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); |
| I != E; ++I) |
| if (isa<GlobalValue>(I->first)) { // Found a global node |
| DSNodeHandle &GH = I->second; |
| DSNodeHandle &GGNodeH = GlobalsGraph->getScalarMap()[I->first]; |
| GH.mergeWith(GlobalNodeMap[GGNodeH.getNode()]); |
| } |
| |
| // Merging leaves behind unused nodes: get rid of them now. |
| GlobalNodeMap.clear(); |
| OldValMap.clear(); |
| OldRetNodes.clear(); |
| removeTriviallyDeadNodes(); |
| } |
| |
| |
| /// computeNodeMapping - Given roots in two different DSGraphs, traverse the |
| /// nodes reachable from the two graphs, computing the mapping of nodes from |
| /// the first to the second graph. |
| /// |
| void DSGraph::computeNodeMapping(const DSNodeHandle &NH1, |
| const DSNodeHandle &NH2, NodeMapTy &NodeMap, |
| bool StrictChecking) { |
| DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode(); |
| if (N1 == 0 || N2 == 0) return; |
| |
| DSNodeHandle &Entry = NodeMap[N1]; |
| if (Entry.getNode()) { |
| // Termination of recursion! |
| assert(!StrictChecking || |
| (Entry.getNode() == N2 && |
| Entry.getOffset() == (NH2.getOffset()-NH1.getOffset())) && |
| "Inconsistent mapping detected!"); |
| return; |
| } |
| |
| Entry.setNode(N2); |
| Entry.setOffset(NH2.getOffset()-NH1.getOffset()); |
| |
| // Loop over all of the fields that N1 and N2 have in common, recursively |
| // mapping the edges together now. |
| int N2Idx = NH2.getOffset()-NH1.getOffset(); |
| unsigned N2Size = N2->getSize(); |
| for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) |
| if (unsigned(N2Idx)+i < N2Size) |
| computeNodeMapping(N1->getLink(i), N2->getLink(N2Idx+i), NodeMap); |
| } |