| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling |
| // of MachineInstrs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched-instrs" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtarget.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include <map> |
| using namespace llvm; |
| |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb, |
| const TargetMachine &tm, |
| const MachineLoopInfo &mli, |
| const MachineDominatorTree &mdt) |
| : ScheduleDAG(0, bb, tm), MLI(mli), MDT(mdt) {} |
| |
| void ScheduleDAGInstrs::BuildSchedUnits() { |
| SUnits.clear(); |
| SUnits.reserve(BB->size()); |
| |
| // We build scheduling units by walking a block's instruction list from bottom |
| // to top. |
| |
| // Remember where defs and uses of each physical register are as we procede. |
| std::vector<SUnit *> Defs[TargetRegisterInfo::FirstVirtualRegister] = {}; |
| std::vector<SUnit *> Uses[TargetRegisterInfo::FirstVirtualRegister] = {}; |
| |
| // Remember where unknown loads are after the most recent unknown store |
| // as we procede. |
| std::vector<SUnit *> PendingLoads; |
| |
| // Remember where a generic side-effecting instruction is as we procede. If |
| // ChainMMO is null, this is assumed to have arbitrary side-effects. If |
| // ChainMMO is non-null, then Chain makes only a single memory reference. |
| SUnit *Chain = 0; |
| MachineMemOperand *ChainMMO = 0; |
| |
| // Memory references to specific known memory locations are tracked so that |
| // they can be given more precise dependencies. |
| std::map<const Value *, SUnit *> MemDefs; |
| std::map<const Value *, std::vector<SUnit *> > MemUses; |
| |
| // Terminators can perform control transfers, we we need to make sure that |
| // all the work of the block is done before the terminator. |
| SUnit *Terminator = 0; |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin(); |
| MII != MIE; --MII) { |
| MachineInstr *MI = prior(MII); |
| const TargetInstrDesc &TID = MI->getDesc(); |
| SUnit *SU = NewSUnit(MI); |
| |
| // Assign the Latency field of SU using target-provided information. |
| if (UnitLatencies) |
| SU->Latency = 1; |
| else |
| ComputeLatency(SU); |
| |
| // Add register-based dependencies (data, anti, and output). |
| for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); |
| std::vector<SUnit *> &UseList = Uses[Reg]; |
| std::vector<SUnit *> &DefList = Defs[Reg]; |
| // Optionally add output and anti dependencies. |
| // TODO: Using a latency of 1 here assumes there's no cost for |
| // reusing registers. |
| SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
| for (unsigned i = 0, e = DefList.size(); i != e; ++i) { |
| SUnit *DefSU = DefList[i]; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(Reg))) |
| DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg)); |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &DefList = Defs[*Alias]; |
| for (unsigned i = 0, e = DefList.size(); i != e; ++i) { |
| SUnit *DefSU = DefList[i]; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(Reg))) |
| DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias)); |
| } |
| } |
| |
| if (MO.isDef()) { |
| // Add any data dependencies. |
| unsigned DataLatency = SU->Latency; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU != SU) { |
| UseSU->addPred(SDep(SU, SDep::Data, DataLatency, Reg)); |
| } |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &UseList = Uses[*Alias]; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU != SU) |
| UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias)); |
| } |
| } |
| |
| UseList.clear(); |
| if (!MO.isDead()) |
| DefList.clear(); |
| DefList.push_back(SU); |
| } else { |
| UseList.push_back(SU); |
| } |
| } |
| |
| // Add chain dependencies. |
| // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable |
| // after stack slots are lowered to actual addresses. |
| // TODO: Use an AliasAnalysis and do real alias-analysis queries, and |
| // produce more precise dependence information. |
| if (TID.isCall() || TID.isReturn() || TID.isBranch() || |
| TID.hasUnmodeledSideEffects()) { |
| new_chain: |
| // This is the conservative case. Add dependencies on all memory |
| // references. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| Chain = SU; |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| PendingLoads.clear(); |
| for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(), |
| E = MemDefs.end(); I != E; ++I) { |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| I->second = SU; |
| } |
| for (std::map<const Value *, std::vector<SUnit *> >::iterator I = |
| MemUses.begin(), E = MemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) |
| I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| I->second.clear(); |
| } |
| // See if it is known to just have a single memory reference. |
| MachineInstr *ChainMI = Chain->getInstr(); |
| const TargetInstrDesc &ChainTID = ChainMI->getDesc(); |
| if (!ChainTID.isCall() && !ChainTID.isReturn() && !ChainTID.isBranch() && |
| !ChainTID.hasUnmodeledSideEffects() && |
| ChainMI->hasOneMemOperand() && |
| !ChainMI->memoperands_begin()->isVolatile() && |
| ChainMI->memoperands_begin()->getValue()) |
| // We know that the Chain accesses one specific memory location. |
| ChainMMO = &*ChainMI->memoperands_begin(); |
| else |
| // Unknown memory accesses. Assume the worst. |
| ChainMMO = 0; |
| } else if (TID.mayStore()) { |
| if (MI->hasOneMemOperand() && |
| MI->memoperands_begin()->getValue() && |
| !MI->memoperands_begin()->isVolatile() && |
| isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) { |
| // A store to a specific PseudoSourceValue. Add precise dependencies. |
| const Value *V = MI->memoperands_begin()->getValue(); |
| // Handle the def in MemDefs, if there is one. |
| std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V); |
| if (I != MemDefs.end()) { |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| I->second = SU; |
| } else { |
| MemDefs[V] = SU; |
| } |
| // Handle the uses in MemUses, if there are any. |
| std::map<const Value *, std::vector<SUnit *> >::iterator J = |
| MemUses.find(V); |
| if (J != MemUses.end()) { |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| J->second.clear(); |
| } |
| // Add a general dependence too, if needed. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| } else |
| // Treat all other stores conservatively. |
| goto new_chain; |
| } else if (TID.mayLoad()) { |
| if (TII->isInvariantLoad(MI)) { |
| // Invariant load, no chain dependencies needed! |
| } else if (MI->hasOneMemOperand() && |
| MI->memoperands_begin()->getValue() && |
| !MI->memoperands_begin()->isVolatile() && |
| isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) { |
| // A load from a specific PseudoSourceValue. Add precise dependencies. |
| const Value *V = MI->memoperands_begin()->getValue(); |
| std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V); |
| if (I != MemDefs.end()) |
| I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| MemUses[V].push_back(SU); |
| |
| // Add a general dependence too, if needed. |
| if (Chain && (!ChainMMO || |
| (ChainMMO->isStore() || ChainMMO->isVolatile()))) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| } else if (MI->hasVolatileMemoryRef()) { |
| // Treat volatile loads conservatively. Note that this includes |
| // cases where memoperand information is unavailable. |
| goto new_chain; |
| } else { |
| // A normal load. Just depend on the general chain. |
| if (Chain) |
| Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| PendingLoads.push_back(SU); |
| } |
| } |
| |
| // Add chain edges from the terminator to ensure that all the work of the |
| // block is completed before any control transfers. |
| if (Terminator && SU->Succs.empty()) |
| Terminator->addPred(SDep(SU, SDep::Order, SU->Latency)); |
| if (TID.isTerminator() || MI->isLabel()) |
| Terminator = SU; |
| } |
| } |
| |
| void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| // Compute the latency for the node. We use the sum of the latencies for |
| // all nodes flagged together into this SUnit. |
| SU->Latency = |
| InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass()); |
| |
| // Simplistic target-independent heuristic: assume that loads take |
| // extra time. |
| if (InstrItins.isEmpty()) |
| if (SU->getInstr()->getDesc().mayLoad()) |
| SU->Latency += 2; |
| } |
| |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { |
| SU->getInstr()->dump(); |
| } |
| |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
| std::string s; |
| raw_string_ostream oss(s); |
| SU->getInstr()->print(oss); |
| return oss.str(); |
| } |
| |
| // EmitSchedule - Emit the machine code in scheduled order. |
| MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { |
| // For MachineInstr-based scheduling, we're rescheduling the instructions in |
| // the block, so start by removing them from the block. |
| while (!BB->empty()) |
| BB->remove(BB->begin()); |
| |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| SUnit *SU = Sequence[i]; |
| if (!SU) { |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| continue; |
| } |
| |
| BB->push_back(SU->getInstr()); |
| } |
| |
| return BB; |
| } |