| // $Id$ |
| //*************************************************************************** |
| // File: |
| // SparcInstrSelection.cpp |
| // |
| // Purpose: |
| // BURS instruction selection for SPARC V9 architecture. |
| // |
| // History: |
| // 7/02/01 - Vikram Adve - Created |
| //**************************************************************************/ |
| |
| #include "SparcInternals.h" |
| #include "SparcInstrSelectionSupport.h" |
| #include "SparcRegClassInfo.h" |
| #include "llvm/CodeGen/InstrSelectionSupport.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/InstrForest.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| #include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOther.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Function.h" |
| #include "llvm/ConstantVals.h" |
| #include "Support/MathExtras.h" |
| #include <math.h> |
| using std::vector; |
| |
| //************************* Forward Declarations ***************************/ |
| |
| |
| static void SetMemOperands_Internal (vector<MachineInstr*>& mvec, |
| vector<MachineInstr*>::iterator mvecI, |
| const InstructionNode* vmInstrNode, |
| Value* ptrVal, |
| std::vector<Value*>& idxVec, |
| const TargetMachine& target); |
| |
| |
| //************************ Internal Functions ******************************/ |
| |
| |
| static inline MachineOpCode |
| ChooseBprInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode; |
| |
| Instruction* setCCInstr = |
| ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BRZ; break; |
| case Instruction::SetNE: opCode = BRNZ; break; |
| case Instruction::SetLE: opCode = BRLEZ; break; |
| case Instruction::SetGE: opCode = BRGEZ; break; |
| case Instruction::SetLT: opCode = BRLZ; break; |
| case Instruction::SetGT: opCode = BRGZ; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| opCode = INVALID_OPCODE; |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| |
| if (isSigned) |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BE; break; |
| case Instruction::SetNE: opCode = BNE; break; |
| case Instruction::SetLE: opCode = BLE; break; |
| case Instruction::SetGE: opCode = BGE; break; |
| case Instruction::SetLT: opCode = BL; break; |
| case Instruction::SetGT: opCode = BG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| else |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BE; break; |
| case Instruction::SetNE: opCode = BNE; break; |
| case Instruction::SetLE: opCode = BLEU; break; |
| case Instruction::SetGE: opCode = BCC; break; |
| case Instruction::SetLT: opCode = BCS; break; |
| case Instruction::SetGT: opCode = BGU; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseBFpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = FBE; break; |
| case Instruction::SetNE: opCode = FBNE; break; |
| case Instruction::SetLE: opCode = FBLE; break; |
| case Instruction::SetGE: opCode = FBGE; break; |
| case Instruction::SetLT: opCode = FBL; break; |
| case Instruction::SetGT: opCode = FBG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Create a unique TmpInstruction for a boolean value, |
| // representing the CC register used by a branch on that value. |
| // For now, hack this using a little static cache of TmpInstructions. |
| // Eventually the entire BURG instruction selection should be put |
| // into a separate class that can hold such information. |
| // The static cache is not too bad because the memory for these |
| // TmpInstructions will be freed along with the rest of the Function anyway. |
| // |
| static TmpInstruction* |
| GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType) |
| { |
| typedef std::hash_map<const Value*, TmpInstruction*> BoolTmpCache; |
| static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* |
| static const Function *lastFunction = 0;// Use to flush cache between funcs |
| |
| assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); |
| |
| if (lastFunction != F) |
| { |
| lastFunction = F; |
| boolToTmpCache.clear(); |
| } |
| |
| // Look for tmpI and create a new one otherwise. The new value is |
| // directly written to map using the ref returned by operator[]. |
| TmpInstruction*& tmpI = boolToTmpCache[boolVal]; |
| if (tmpI == NULL) |
| tmpI = new TmpInstruction(ccType, boolVal); |
| |
| return tmpI; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBccInstruction(const InstructionNode* instrNode, |
| bool& isFPBranch) |
| { |
| InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); |
| const Type* setCCType = setCCInstr->getOperand(0)->getType(); |
| |
| isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); |
| |
| if (isFPBranch) |
| return ChooseBFpccInstruction(instrNode, setCCInstr); |
| else |
| return ChooseBpccInstruction(instrNode, setCCInstr); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseMovFpccInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = MOVFE; break; |
| case Instruction::SetNE: opCode = MOVFNE; break; |
| case Instruction::SetLE: opCode = MOVFLE; break; |
| case Instruction::SetGE: opCode = MOVFGE; break; |
| case Instruction::SetLT: opCode = MOVFL; break; |
| case Instruction::SetGT: opCode = MOVFG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Assumes that SUBcc v1, v2 -> v3 has been executed. |
| // In most cases, we want to clear v3 and then follow it by instruction |
| // MOVcc 1 -> v3. |
| // Set mustClearReg=false if v3 need not be cleared before conditional move. |
| // Set valueToMove=0 if we want to conditionally move 0 instead of 1 |
| // (i.e., we want to test inverse of a condition) |
| // (The latter two cases do not seem to arise because SetNE needs nothing.) |
| // |
| static MachineOpCode |
| ChooseMovpccAfterSub(const InstructionNode* instrNode, |
| bool& mustClearReg, |
| int& valueToMove) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| mustClearReg = true; |
| valueToMove = 1; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = MOVE; break; |
| case Instruction::SetLE: opCode = MOVLE; break; |
| case Instruction::SetGE: opCode = MOVGE; break; |
| case Instruction::SetLT: opCode = MOVL; break; |
| case Instruction::SetGT: opCode = MOVG; break; |
| case Instruction::SetNE: assert(0 && "No move required!"); break; |
| default: assert(0 && "Unrecognized VM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch(vopCode) |
| { |
| case ToFloatTy: |
| if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| opCode = FITOS; |
| else if (opType == Type::LongTy) |
| opCode = FXTOS; |
| else if (opType == Type::DoubleTy) |
| opCode = FDTOS; |
| else if (opType == Type::FloatTy) |
| ; |
| else |
| assert(0 && "Cannot convert this type to FLOAT on SPARC"); |
| break; |
| |
| case ToDoubleTy: |
| // This is usually used in conjunction with CreateCodeToCopyIntToFloat(). |
| // Both functions should treat the integer as a 32-bit value for types |
| // of 4 bytes or less, and as a 64-bit value otherwise. |
| if (opType == Type::SByteTy || opType == Type::UByteTy || |
| opType == Type::ShortTy || opType == Type::UShortTy || |
| opType == Type::IntTy || opType == Type::UIntTy) |
| opCode = FITOD; |
| else if (opType == Type::LongTy || opType == Type::ULongTy) |
| opCode = FXTOD; |
| else if (opType == Type::FloatTy) |
| opCode = FSTOD; |
| else if (opType == Type::DoubleTy) |
| ; |
| else |
| assert(0 && "Cannot convert this type to DOUBLE on SPARC"); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertToIntInstr(OpLabel vopCode, const Type* opType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE;; |
| |
| if (vopCode == ToSByteTy || vopCode == ToShortTy || vopCode == ToIntTy) |
| { |
| switch (opType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSTOI; break; |
| case Type::DoubleTyID: opCode = FDTOI; break; |
| default: |
| assert(0 && "Non-numeric non-bool type cannot be converted to Int"); |
| break; |
| } |
| } |
| else if (vopCode == ToLongTy) |
| { |
| switch (opType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSTOX; break; |
| case Type::DoubleTyID: opCode = FDTOX; break; |
| default: |
| assert(0 && "Non-numeric non-bool type cannot be converted to Long"); |
| break; |
| } |
| } |
| else |
| assert(0 && "Should not get here, Mo!"); |
| |
| return opCode; |
| } |
| |
| MachineInstr* |
| CreateConvertToIntInstr(OpLabel vopCode, Value* srcVal, Value* destVal) |
| { |
| MachineOpCode opCode = ChooseConvertToIntInstr(vopCode, srcVal->getType()); |
| assert(opCode != INVALID_OPCODE && "Expected to need conversion!"); |
| |
| MachineInstr* M = new MachineInstr(opCode); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, srcVal); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, destVal); |
| return M; |
| } |
| |
| static inline MachineOpCode |
| ChooseAddInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| if (resultType->isIntegral() || |
| isa<PointerType>(resultType) || |
| isa<FunctionType>(resultType) || |
| resultType == Type::LabelTy || |
| resultType == Type::BoolTy) |
| { |
| opCode = ADD; |
| } |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FADDS; break; |
| case Type::DoubleTyID: opCode = FADDD; break; |
| default: assert(0 && "Invalid type for ADD instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseAddInstruction(const InstructionNode* instrNode) |
| { |
| return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); |
| } |
| |
| |
| static inline MachineInstr* |
| CreateMovFloatInstruction(const InstructionNode* instrNode, |
| const Type* resultType) |
| { |
| MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) |
| ? FMOVS : FMOVD); |
| minstr->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| instrNode->leftChild()->getValue()); |
| minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, |
| instrNode->getValue()); |
| return minstr; |
| } |
| |
| static inline MachineInstr* |
| CreateAddConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Add with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FADD (1 vs 3 cycles). There is no integer MOV. |
| // |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType == Type::FloatTy || |
| resultType == Type::DoubleTy) |
| { |
| double dval = cast<ConstantFP>(constOp)->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, resultType); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseSubInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| if (resultType->isIntegral() || |
| resultType->isPointerType()) |
| { |
| opCode = SUB; |
| } |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSUBS; break; |
| case Type::DoubleTyID: opCode = FSUBD; break; |
| default: assert(0 && "Invalid type for SUB instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineInstr* |
| CreateSubConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Sub with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. |
| // |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType == Type::FloatTy || |
| resultType == Type::DoubleTy) |
| { |
| double dval = cast<ConstantFP>(constOp)->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, resultType); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseFcmpInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) { |
| case Type::FloatTyID: opCode = FCMPS; break; |
| case Type::DoubleTyID: opCode = FCMPD; break; |
| default: assert(0 && "Invalid type for FCMP instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Assumes that leftArg and rightArg are both cast instructions. |
| // |
| static inline bool |
| BothFloatToDouble(const InstructionNode* instrNode) |
| { |
| InstrTreeNode* leftArg = instrNode->leftChild(); |
| InstrTreeNode* rightArg = instrNode->rightChild(); |
| InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); |
| |
| // Check if both arguments are floats cast to double |
| return (leftArg->getValue()->getType() == Type::DoubleTy && |
| leftArgArg->getValue()->getType() == Type::FloatTy && |
| rightArgArg->getValue()->getType() == Type::FloatTy); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseMulInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| if (resultType->isIntegral()) |
| opCode = MULX; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FMULS; break; |
| case Type::DoubleTyID: opCode = FMULD; break; |
| default: assert(0 && "Invalid type for MUL instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| |
| static inline MachineInstr* |
| CreateIntNegInstruction(const TargetMachine& target, |
| Value* vreg) |
| { |
| MachineInstr* minstr = new MachineInstr(SUB); |
| minstr->SetMachineOperandReg(0, target.getRegInfo().getZeroRegNum()); |
| minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, vreg); |
| minstr->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, vreg); |
| return minstr; |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // This returns the approximate cost of the instructions generated, |
| // which is used to pick the cheapest when both operands are constant. |
| static inline unsigned int |
| CreateMulConstInstruction(const TargetMachine &target, |
| Value* lval, Value* rval, Value* destVal, |
| vector<MachineInstr*>& mvec) |
| { |
| /* An integer multiply is generally more costly than FP multiply */ |
| unsigned int cost = target.getInstrInfo().minLatency(MULX); |
| MachineInstr* minstr1 = NULL; |
| MachineInstr* minstr2 = NULL; |
| |
| Value* constOp = rval; |
| if (! isa<Constant>(constOp)) |
| return cost; |
| |
| // Cases worth optimizing are: |
| // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Multiply by 2^x for integer types: replace with Shift |
| // |
| const Type* resultType = destVal->getType(); |
| |
| if (resultType->isIntegral() || resultType->isPointerType()) |
| { |
| unsigned pow; |
| bool isValidConst; |
| int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| if (isValidConst) |
| { |
| bool needNeg = false; |
| if (C < 0) |
| { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 0 || C == 1) |
| { |
| cost = target.getInstrInfo().minLatency(ADD); |
| minstr1 = new MachineInstr(ADD); |
| if (C == 0) |
| minstr1->SetMachineOperandReg(0, |
| target.getRegInfo().getZeroRegNum()); |
| else |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, lval); |
| minstr1->SetMachineOperandReg(1, |
| target.getRegInfo().getZeroRegNum()); |
| } |
| else if (IsPowerOf2(C, pow)) |
| { |
| minstr1 = new MachineInstr((resultType == Type::LongTy) |
| ? SLLX : SLL); |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, lval); |
| minstr1->SetMachineOperandConst(1, |
| MachineOperand::MO_UnextendedImmed, pow); |
| } |
| |
| if (minstr1 && needNeg) |
| { // insert <reg = SUB 0, reg> after the instr to flip the sign |
| minstr2 = CreateIntNegInstruction(target, destVal); |
| cost += target.getInstrInfo().minLatency(minstr2->getOpCode()); |
| } |
| } |
| } |
| else |
| { |
| if (resultType == Type::FloatTy || |
| resultType == Type::DoubleTy) |
| { |
| double dval = cast<ConstantFP>(constOp)->getValue(); |
| if (fabs(dval) == 1) |
| { |
| bool needNeg = (dval < 0); |
| |
| MachineOpCode opCode = needNeg |
| ? (resultType == Type::FloatTy? FNEGS : FNEGD) |
| : (resultType == Type::FloatTy? FMOVS : FMOVD); |
| |
| minstr1 = new MachineInstr(opCode); |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, |
| lval); |
| } |
| } |
| } |
| |
| if (minstr1 != NULL) |
| minstr1->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| destVal); |
| |
| if (minstr1) |
| { |
| mvec.push_back(minstr1); |
| cost = target.getInstrInfo().minLatency(minstr1->getOpCode()); |
| } |
| if (minstr2) |
| { |
| assert(minstr1 && "Otherwise cost needs to be initialized to 0"); |
| cost += target.getInstrInfo().minLatency(minstr2->getOpCode()); |
| mvec.push_back(minstr2); |
| } |
| |
| return cost; |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // |
| static inline void |
| CreateCheapestMulConstInstruction(const TargetMachine &target, |
| Value* lval, Value* rval, Value* destVal, |
| vector<MachineInstr*>& mvec) |
| { |
| Value* constOp; |
| if (isa<Constant>(lval) && isa<Constant>(rval)) |
| { // both operands are constant: try both orders! |
| vector<MachineInstr*> mvec1, mvec2; |
| unsigned int lcost = CreateMulConstInstruction(target, lval, rval, |
| destVal, mvec1); |
| unsigned int rcost = CreateMulConstInstruction(target, rval, lval, |
| destVal, mvec2); |
| vector<MachineInstr*>& mincostMvec = (lcost <= rcost)? mvec1 : mvec2; |
| vector<MachineInstr*>& maxcostMvec = (lcost <= rcost)? mvec2 : mvec1; |
| mvec.insert(mvec.end(), mincostMvec.begin(), mincostMvec.end()); |
| |
| for (unsigned int i=0; i < maxcostMvec.size(); ++i) |
| delete maxcostMvec[i]; |
| } |
| else if (isa<Constant>(rval)) // rval is constant, but not lval |
| CreateMulConstInstruction(target, lval, rval, destVal, mvec); |
| else if (isa<Constant>(lval)) // lval is constant, but not rval |
| CreateMulConstInstruction(target, lval, rval, destVal, mvec); |
| |
| // else neither is constant |
| return; |
| } |
| |
| // Return NULL if we cannot exploit constant to create a cheaper instruction |
| static inline void |
| CreateMulInstruction(const TargetMachine &target, |
| Value* lval, Value* rval, Value* destVal, |
| vector<MachineInstr*>& mvec, |
| MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE) |
| { |
| unsigned int L = mvec.size(); |
| CreateCheapestMulConstInstruction(target, lval, rval, destVal, mvec); |
| if (mvec.size() == L) |
| { // no instructions were added so create MUL reg, reg, reg. |
| // Use FSMULD if both operands are actually floats cast to doubles. |
| // Otherwise, use the default opcode for the appropriate type. |
| MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE) |
| ? forceMulOp |
| : ChooseMulInstructionByType(destVal->getType())); |
| MachineInstr* M = new MachineInstr(mulOp); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, lval); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, rval); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, destVal); |
| mvec.push_back(M); |
| } |
| } |
| |
| |
| // Generate a divide instruction for Div or Rem. |
| // For Rem, this assumes that the operand type will be signed if the result |
| // type is signed. This is correct because they must have the same sign. |
| // |
| static inline MachineOpCode |
| ChooseDivInstruction(TargetMachine &target, |
| const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral()) |
| opCode = resultType->isSigned()? SDIVX : UDIVX; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FDIVS; break; |
| case Type::DoubleTyID: opCode = FDIVD; break; |
| default: assert(0 && "Invalid type for DIV instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Return NULL if we cannot exploit constant to create a cheaper instruction |
| static inline void |
| CreateDivConstInstruction(TargetMachine &target, |
| const InstructionNode* instrNode, |
| vector<MachineInstr*>& mvec) |
| { |
| MachineInstr* minstr1 = NULL; |
| MachineInstr* minstr2 = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| if (! isa<Constant>(constOp)) |
| return; |
| |
| // Cases worth optimizing are: |
| // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} |
| // |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral()) |
| { |
| unsigned pow; |
| bool isValidConst; |
| int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); |
| if (isValidConst) |
| { |
| bool needNeg = false; |
| if (C < 0) |
| { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 1) |
| { |
| minstr1 = new MachineInstr(ADD); |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, |
| instrNode->leftChild()->getValue()); |
| minstr1->SetMachineOperandReg(1, |
| target.getRegInfo().getZeroRegNum()); |
| } |
| else if (IsPowerOf2(C, pow)) |
| { |
| MachineOpCode opCode= ((resultType->isSigned()) |
| ? (resultType==Type::LongTy)? SRAX : SRA |
| : (resultType==Type::LongTy)? SRLX : SRL); |
| minstr1 = new MachineInstr(opCode); |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, |
| instrNode->leftChild()->getValue()); |
| minstr1->SetMachineOperandConst(1, |
| MachineOperand::MO_UnextendedImmed, |
| pow); |
| } |
| |
| if (minstr1 && needNeg) |
| { // insert <reg = SUB 0, reg> after the instr to flip the sign |
| minstr2 = CreateIntNegInstruction(target, |
| instrNode->getValue()); |
| } |
| } |
| } |
| else |
| { |
| if (resultType == Type::FloatTy || |
| resultType == Type::DoubleTy) |
| { |
| double dval = cast<ConstantFP>(constOp)->getValue(); |
| if (fabs(dval) == 1) |
| { |
| bool needNeg = (dval < 0); |
| |
| MachineOpCode opCode = needNeg |
| ? (resultType == Type::FloatTy? FNEGS : FNEGD) |
| : (resultType == Type::FloatTy? FMOVS : FMOVD); |
| |
| minstr1 = new MachineInstr(opCode); |
| minstr1->SetMachineOperandVal(0, |
| MachineOperand::MO_VirtualRegister, |
| instrNode->leftChild()->getValue()); |
| } |
| } |
| } |
| |
| if (minstr1 != NULL) |
| minstr1->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| instrNode->getValue()); |
| |
| if (minstr1) |
| mvec.push_back(minstr1); |
| if (minstr2) |
| mvec.push_back(minstr2); |
| } |
| |
| |
| static void |
| CreateCodeForVariableSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned int tsize, |
| Value* numElementsVal, |
| vector<MachineInstr*>& getMvec) |
| { |
| MachineInstr* M; |
| |
| // Create a Value to hold the (constant) element size |
| Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); |
| |
| // Get the constant offset from SP for dynamically allocated storage |
| // and create a temporary Value to hold it. |
| assert(result && result->getParent() && "Result value is not part of a fn?"); |
| Function *F = result->getParent()->getParent(); |
| MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(F); |
| bool growUp; |
| ConstantSInt* dynamicAreaOffset = |
| ConstantSInt::get(Type::IntTy, |
| target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp)); |
| assert(! growUp && "Has SPARC v9 stack frame convention changed?"); |
| |
| // Create a temporary value to hold the result of MUL |
| TmpInstruction* tmpProd = new TmpInstruction(numElementsVal, tsizeVal); |
| MachineCodeForInstruction::get(result).addTemp(tmpProd); |
| |
| // Instruction 1: mul numElements, typeSize -> tmpProd |
| M = new MachineInstr(MULX); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, numElementsVal); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tsizeVal); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, tmpProd); |
| getMvec.push_back(M); |
| |
| // Instruction 2: sub %sp, tmpProd -> %sp |
| M = new MachineInstr(SUB); |
| M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer()); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpProd); |
| M->SetMachineOperandReg(2, target.getRegInfo().getStackPointer()); |
| getMvec.push_back(M); |
| |
| // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result |
| M = new MachineInstr(ADD); |
| M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer()); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, dynamicAreaOffset); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result); |
| getMvec.push_back(M); |
| } |
| |
| |
| static void |
| CreateCodeForFixedSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned int tsize, |
| unsigned int numElements, |
| vector<MachineInstr*>& getMvec) |
| { |
| assert(result && result->getParent() && |
| "Result value is not part of a function?"); |
| Function *F = result->getParent()->getParent(); |
| MachineCodeForMethod &mcInfo = MachineCodeForMethod::get(F); |
| |
| // Check if the offset would small enough to use as an immediate in |
| // load/stores (check LDX because all load/stores have the same-size immediate |
| // field). If not, put the variable in the dynamically sized area of the |
| // frame. |
| unsigned int paddedSizeIgnored; |
| int offsetFromFP = mcInfo.computeOffsetforLocalVar(target, result, |
| paddedSizeIgnored, |
| tsize * numElements); |
| if (! target.getInstrInfo().constantFitsInImmedField(LDX, offsetFromFP)) |
| { |
| CreateCodeForVariableSizeAlloca(target, result, tsize, |
| ConstantSInt::get(Type::IntTy,numElements), |
| getMvec); |
| return; |
| } |
| |
| // else offset fits in immediate field so go ahead and allocate it. |
| offsetFromFP = mcInfo.allocateLocalVar(target, result, tsize * numElements); |
| |
| // Create a temporary Value to hold the constant offset. |
| // This is needed because it may not fit in the immediate field. |
| ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); |
| |
| // Instruction 1: add %fp, offsetFromFP -> result |
| MachineInstr* M = new MachineInstr(ADD); |
| M->SetMachineOperandReg(0, target.getRegInfo().getFramePointer()); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, offsetVal); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result); |
| |
| getMvec.push_back(M); |
| } |
| |
| |
| |
| //------------------------------------------------------------------------ |
| // Function SetOperandsForMemInstr |
| // |
| // Choose addressing mode for the given load or store instruction. |
| // Use [reg+reg] if it is an indexed reference, and the index offset is |
| // not a constant or if it cannot fit in the offset field. |
| // Use [reg+offset] in all other cases. |
| // |
| // This assumes that all array refs are "lowered" to one of these forms: |
| // %x = load (subarray*) ptr, constant ; single constant offset |
| // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| // Generally, this should happen via strength reduction + LICM. |
| // Also, strength reduction should take care of using the same register for |
| // the loop index variable and an array index, when that is profitable. |
| //------------------------------------------------------------------------ |
| |
| static void |
| SetOperandsForMemInstr(vector<MachineInstr*>& mvec, |
| vector<MachineInstr*>::iterator mvecI, |
| const InstructionNode* vmInstrNode, |
| const TargetMachine& target) |
| { |
| MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| |
| // Variables to hold the index vector, ptr value, and offset value. |
| // The major work here is to extract these for all 3 instruction types |
| // and then call the common function SetMemOperands_Internal(). |
| // |
| Value* ptrVal = memInst->getPointerOperand(); |
| |
| // Start with the index vector of this instruction, if any. |
| vector<Value*> idxVec; |
| idxVec.insert(idxVec.end(), memInst->idx_begin(), memInst->idx_end()); |
| |
| // If there is a GetElemPtr instruction to fold in to this instr, |
| // it must be in the left child for Load and GetElemPtr, and in the |
| // right child for Store instructions. |
| InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store |
| ? vmInstrNode->rightChild() |
| : vmInstrNode->leftChild()); |
| |
| // Fold chains of GetElemPtr instructions for structure references. |
| if (isa<StructType>(cast<PointerType>(ptrVal->getType())->getElementType()) |
| && (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| ptrChild->getOpLabel() == GetElemPtrIdx)) |
| { |
| Value* newPtr = FoldGetElemChain((InstructionNode*) ptrChild, idxVec); |
| if (newPtr) |
| ptrVal = newPtr; |
| } |
| |
| SetMemOperands_Internal(mvec, mvecI, vmInstrNode, ptrVal, idxVec, target); |
| } |
| |
| |
| // Generate the correct operands (and additional instructions if needed) |
| // for the given pointer and given index vector. |
| // |
| static void |
| SetMemOperands_Internal(vector<MachineInstr*>& mvec, |
| vector<MachineInstr*>::iterator mvecI, |
| const InstructionNode* vmInstrNode, |
| Value* ptrVal, |
| vector<Value*>& idxVec, |
| const TargetMachine& target) |
| { |
| MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| |
| // Initialize so we default to storing the offset in a register. |
| int64_t smallConstOffset = 0; |
| Value* valueForRegOffset = NULL; |
| MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; |
| |
| // Check if there is an index vector and if so, compute the |
| // right offset for structures and for arrays |
| // |
| if (idxVec.size() > 0) |
| { |
| unsigned offset = 0; |
| |
| const PointerType* ptrType = cast<PointerType>(ptrVal->getType()); |
| |
| // Handle special common case of leading [0] index. |
| bool firstIndexIsZero = |
| bool(isa<ConstantUInt>(idxVec.front()) && |
| cast<ConstantUInt>(idxVec.front())->getValue() == 0); |
| |
| // This is a real structure reference if the ptr target is a |
| // structure type, and the first offset is [0] (eliminate that offset). |
| if (firstIndexIsZero && ptrType->getElementType()->isStructType()) |
| { |
| // Compute the offset value using the index vector. Create a |
| // virtual reg. for it since it may not fit in the immed field. |
| assert(idxVec.size() >= 2); |
| idxVec.erase(idxVec.begin()); |
| unsigned offset = target.DataLayout.getIndexedOffset(ptrType,idxVec); |
| valueForRegOffset = ConstantSInt::get(Type::IntTy, offset); |
| } |
| else |
| { |
| // It is an array ref, and must have been lowered to a single offset. |
| assert((memInst->getNumOperands() |
| == (unsigned) 1 + memInst->getFirstIndexOperandNumber()) |
| && "Array refs must be lowered before Instruction Selection"); |
| |
| Value* arrayOffsetVal = * memInst->idx_begin(); |
| |
| // If index is 0, the offset value is just 0. Otherwise, |
| // generate a MUL instruction to compute address from index. |
| // The call to getTypeSize() will fail if size is not constant. |
| // CreateMulInstruction() folds constants intelligently enough. |
| // |
| if (firstIndexIsZero) |
| { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| else |
| { |
| vector<MachineInstr*> mulVec; |
| Instruction* addr = new TmpInstruction(Type::UIntTy, memInst); |
| MachineCodeForInstruction::get(memInst).addTemp(addr); |
| |
| unsigned int eltSize = |
| target.DataLayout.getTypeSize(ptrType->getElementType()); |
| assert(eltSize > 0 && "Invalid or non-const array element size"); |
| ConstantUInt* eltVal = ConstantUInt::get(Type::UIntTy, eltSize); |
| |
| CreateMulInstruction(target, |
| arrayOffsetVal, /* lval, not likely const */ |
| eltVal, /* rval, likely constant */ |
| addr, /* result*/ |
| mulVec, INVALID_MACHINE_OPCODE); |
| assert(mulVec.size() > 0 && "No multiply instruction created?"); |
| for (vector<MachineInstr*>::const_iterator I = mulVec.begin(); |
| I != mulVec.end(); ++I) |
| { |
| mvecI = mvec.insert(mvecI, *I); // ptr to inserted value |
| ++mvecI; // ptr to mem. instr. |
| } |
| |
| valueForRegOffset = addr; |
| } |
| } |
| } |
| else |
| { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| |
| // For STORE: |
| // Operand 0 is value, operand 1 is ptr, operand 2 is offset |
| // For LOAD or GET_ELEMENT_PTR, |
| // Operand 0 is ptr, operand 1 is offset, operand 2 is result. |
| // |
| unsigned offsetOpNum, ptrOpNum; |
| if (memInst->getOpcode() == Instruction::Store) |
| { |
| (*mvecI)->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| vmInstrNode->leftChild()->getValue()); |
| ptrOpNum = 1; |
| offsetOpNum = 2; |
| } |
| else |
| { |
| ptrOpNum = 0; |
| offsetOpNum = 1; |
| (*mvecI)->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| memInst); |
| } |
| |
| (*mvecI)->SetMachineOperandVal(ptrOpNum, MachineOperand::MO_VirtualRegister, |
| ptrVal); |
| |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) |
| { |
| assert(valueForRegOffset != NULL); |
| (*mvecI)->SetMachineOperandVal(offsetOpNum, offsetOpType, |
| valueForRegOffset); |
| } |
| else |
| (*mvecI)->SetMachineOperandConst(offsetOpNum, offsetOpType, |
| smallConstOffset); |
| } |
| |
| |
| // |
| // Substitute operand `operandNum' of the instruction in node `treeNode' |
| // in place of the use(s) of that instruction in node `parent'. |
| // Check both explicit and implicit operands! |
| // Also make sure to skip over a parent who: |
| // (1) is a list node in the Burg tree, or |
| // (2) itself had its results forwarded to its parent |
| // |
| static void |
| ForwardOperand(InstructionNode* treeNode, |
| InstrTreeNode* parent, |
| int operandNum) |
| { |
| assert(treeNode && parent && "Invalid invocation of ForwardOperand"); |
| |
| Instruction* unusedOp = treeNode->getInstruction(); |
| Value* fwdOp = unusedOp->getOperand(operandNum); |
| |
| // The parent itself may be a list node, so find the real parent instruction |
| while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) |
| { |
| parent = parent->parent(); |
| assert(parent && "ERROR: Non-instruction node has no parent in tree."); |
| } |
| InstructionNode* parentInstrNode = (InstructionNode*) parent; |
| |
| Instruction* userInstr = parentInstrNode->getInstruction(); |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); |
| |
| // The parent's mvec would be empty if it was itself forwarded. |
| // Recursively call ForwardOperand in that case... |
| // |
| if (mvec.size() == 0) |
| { |
| assert(parent->parent() != NULL && |
| "Parent could not have been forwarded, yet has no instructions?"); |
| ForwardOperand(treeNode, parent->parent(), operandNum); |
| } |
| else |
| { |
| bool fwdSuccessful = false; |
| for (unsigned i=0, N=mvec.size(); i < N; i++) |
| { |
| MachineInstr* minstr = mvec[i]; |
| for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) |
| { |
| const MachineOperand& mop = minstr->getOperand(i); |
| if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && |
| mop.getVRegValue() == unusedOp) |
| { |
| minstr->SetMachineOperandVal(i, |
| MachineOperand::MO_VirtualRegister, fwdOp); |
| fwdSuccessful = true; |
| } |
| } |
| |
| for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i) |
| if (minstr->getImplicitRef(i) == unusedOp) |
| { |
| minstr->setImplicitRef(i, fwdOp, |
| minstr->implicitRefIsDefined(i)); |
| fwdSuccessful = true; |
| } |
| } |
| assert(fwdSuccessful && "Value to be forwarded is never used!"); |
| } |
| } |
| |
| |
| void UltraSparcInstrInfo:: |
| CreateCopyInstructionsByType(const TargetMachine& target, |
| Function *F, |
| Value* src, |
| Instruction* dest, |
| vector<MachineInstr*>& minstrVec) const |
| { |
| bool loadConstantToReg = false; |
| |
| const Type* resultType = dest->getType(); |
| |
| MachineOpCode opCode = ChooseAddInstructionByType(resultType); |
| if (opCode == INVALID_OPCODE) |
| { |
| assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); |
| return; |
| } |
| |
| // if `src' is a constant that doesn't fit in the immed field or if it is |
| // a global variable (i.e., a constant address), generate a load |
| // instruction instead of an add |
| // |
| if (isa<Constant>(src)) |
| { |
| unsigned int machineRegNum; |
| int64_t immedValue; |
| MachineOperand::MachineOperandType opType = |
| ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, |
| machineRegNum, immedValue); |
| |
| if (opType == MachineOperand::MO_VirtualRegister) |
| loadConstantToReg = true; |
| } |
| else if (isa<GlobalValue>(src)) |
| loadConstantToReg = true; |
| |
| if (loadConstantToReg) |
| { // `src' is constant and cannot fit in immed field for the ADD |
| // Insert instructions to "load" the constant into a register |
| vector<TmpInstruction*> tempVec; |
| target.getInstrInfo().CreateCodeToLoadConst(F, src, dest, |
| minstrVec, tempVec); |
| for (unsigned i=0; i < tempVec.size(); i++) |
| MachineCodeForInstruction::get(dest).addTemp(tempVec[i]); |
| } |
| else |
| { // Create an add-with-0 instruction of the appropriate type. |
| // Make `src' the second operand, in case it is a constant |
| // Use (unsigned long) 0 for a NULL pointer value. |
| // |
| const Type* zeroValueType = |
| isa<PointerType>(resultType) ? Type::ULongTy : resultType; |
| MachineInstr* minstr = new MachineInstr(opCode); |
| minstr->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| Constant::getNullValue(zeroValueType)); |
| minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, src); |
| minstr->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,dest); |
| minstrVec.push_back(minstr); |
| } |
| } |
| |
| |
| |
| //******************* Externally Visible Functions *************************/ |
| |
| |
| |
| //------------------------------------------------------------------------ |
| // External Function: ThisIsAChainRule |
| // |
| // Purpose: |
| // Check if a given BURG rule is a chain rule. |
| //------------------------------------------------------------------------ |
| |
| extern bool |
| ThisIsAChainRule(int eruleno) |
| { |
| switch(eruleno) |
| { |
| case 111: // stmt: reg |
| case 113: // stmt: bool |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 133: |
| case 155: |
| case 221: |
| case 222: |
| case 241: |
| case 242: |
| case 243: |
| case 244: |
| case 321: |
| return true; break; |
| |
| default: |
| return false; break; |
| } |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // External Function: GetInstructionsByRule |
| // |
| // Purpose: |
| // Choose machine instructions for the SPARC according to the |
| // patterns chosen by the BURG-generated parser. |
| //------------------------------------------------------------------------ |
| |
| void |
| GetInstructionsByRule(InstructionNode* subtreeRoot, |
| int ruleForNode, |
| short* nts, |
| TargetMachine &target, |
| vector<MachineInstr*>& mvec) |
| { |
| bool checkCast = false; // initialize here to use fall-through |
| int nextRule; |
| int forwardOperandNum = -1; |
| unsigned int allocaSize = 0; |
| MachineInstr* M, *M2; |
| unsigned int L; |
| |
| mvec.clear(); |
| |
| // If the code for this instruction was folded into the parent (user), |
| // then do nothing! |
| if (subtreeRoot->isFoldedIntoParent()) |
| return; |
| |
| // |
| // Let's check for chain rules outside the switch so that we don't have |
| // to duplicate the list of chain rule production numbers here again |
| // |
| if (ThisIsAChainRule(ruleForNode)) |
| { |
| // Chain rules have a single nonterminal on the RHS. |
| // Get the rule that matches the RHS non-terminal and use that instead. |
| // |
| assert(nts[0] && ! nts[1] |
| && "A chain rule should have only one RHS non-terminal!"); |
| nextRule = burm_rule(subtreeRoot->state, nts[0]); |
| nts = burm_nts[nextRule]; |
| GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); |
| } |
| else |
| { |
| switch(ruleForNode) { |
| case 1: // stmt: Ret |
| case 2: // stmt: RetValue(reg) |
| { // NOTE: Prepass of register allocation is responsible |
| // for moving return value to appropriate register. |
| // Mark the return-address register as a hidden virtual reg. |
| // Mark the return value register as an implicit ref of |
| // the machine instruction. |
| // Finally put a NOP in the delay slot. |
| ReturnInst *returnInstr = |
| cast<ReturnInst>(subtreeRoot->getInstruction()); |
| assert(returnInstr->getOpcode() == Instruction::Ret); |
| |
| Instruction* returnReg = new TmpInstruction(returnInstr); |
| MachineCodeForInstruction::get(returnInstr).addTemp(returnReg); |
| |
| M = new MachineInstr(JMPLRET); |
| M->SetMachineOperandReg(0, MachineOperand::MO_VirtualRegister, |
| returnReg); |
| M->SetMachineOperandConst(1,MachineOperand::MO_SignExtendedImmed, |
| (int64_t)8); |
| M->SetMachineOperandReg(2, target.getRegInfo().getZeroRegNum()); |
| |
| if (returnInstr->getReturnValue() != NULL) |
| M->addImplicitRef(returnInstr->getReturnValue()); |
| |
| mvec.push_back(M); |
| mvec.push_back(new MachineInstr(NOP)); |
| |
| break; |
| } |
| |
| case 3: // stmt: Store(reg,reg) |
| case 4: // stmt: Store(reg,ptrreg) |
| mvec.push_back(new MachineInstr( |
| ChooseStoreInstruction( |
| subtreeRoot->leftChild()->getValue()->getType()))); |
| SetOperandsForMemInstr(mvec, mvec.end()-1, subtreeRoot, target); |
| break; |
| |
| case 5: // stmt: BrUncond |
| M = new MachineInstr(BA); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| (Value*)NULL); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| break; |
| |
| case 206: // stmt: BrCond(setCCconst) |
| { // setCCconst => boolean was computed with `%b = setCC type reg1 const' |
| // If the constant is ZERO, we can use the branch-on-integer-register |
| // instructions and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 5, so just fall through. |
| // |
| InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isIntegral() |
| || constVal->getType()->isPointerType()) |
| && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is a zero after all... |
| // Use the left child of setCC as the first argument! |
| // Mark the setCC node so that no code is generated for it. |
| InstructionNode* setCCNode = (InstructionNode*) |
| subtreeRoot->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| setCCNode->markFoldedIntoParent(); |
| |
| BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction()); |
| |
| M = new MachineInstr(ChooseBprInstruction(subtreeRoot)); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| setCCNode->leftChild()->getValue()); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| |
| // false branch |
| M = new MachineInstr(BA); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| (Value*) NULL); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| brInst->getSuccessor(1)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| |
| break; |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 6: // stmt: BrCond(bool) |
| { // bool => boolean was computed with some boolean operator |
| // (SetCC, Not, ...). We need to check whether the type was a FP, |
| // signed int or unsigned int, and check the branching condition in |
| // order to choose the branch to use. |
| // If it is an integer CC, we also need to find the unique |
| // TmpInstruction representing that CC. |
| // |
| BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction()); |
| bool isFPBranch; |
| M = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); |
| |
| Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), |
| brInst->getParent()->getParent(), |
| isFPBranch? Type::FloatTy : Type::IntTy); |
| |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, ccValue); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| |
| // false branch |
| M = new MachineInstr(BA); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| (Value*) NULL); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| brInst->getSuccessor(1)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| break; |
| } |
| |
| case 208: // stmt: BrCond(boolconst) |
| { |
| // boolconst => boolean is a constant; use BA to first or second label |
| Constant* constVal = |
| cast<Constant>(subtreeRoot->leftChild()->getValue()); |
| unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1; |
| |
| M = new MachineInstr(BA); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| (Value*) NULL); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| break; |
| } |
| |
| case 8: // stmt: BrCond(boolreg) |
| { // boolreg => boolean is stored in an existing register. |
| // Just use the branch-on-integer-register instruction! |
| // |
| M = new MachineInstr(BRNZ); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| subtreeRoot->leftChild()->getValue()); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| |
| // false branch |
| M = new MachineInstr(BA); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| (Value*) NULL); |
| M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp, |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(1)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| break; |
| } |
| |
| case 9: // stmt: Switch(reg) |
| assert(0 && "*** SWITCH instruction is not implemented yet."); |
| break; |
| |
| case 10: // reg: VRegList(reg, reg) |
| assert(0 && "VRegList should never be the topmost non-chain rule"); |
| break; |
| |
| case 21: // bool: Not(bool): Both these are implemented as: |
| case 421: // reg: BNot(reg) : reg = reg XOR-NOT 0 |
| M = new MachineInstr(XNOR); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| subtreeRoot->leftChild()->getValue()); |
| M->SetMachineOperandReg(1, target.getRegInfo().getZeroRegNum()); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| subtreeRoot->getValue()); |
| mvec.push_back(M); |
| break; |
| |
| case 322: // reg: ToBoolTy(bool): |
| case 22: // reg: ToBoolTy(reg): |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || opType->isPointerType() |
| || opType == Type::BoolTy); |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| } |
| |
| case 23: // reg: ToUByteTy(reg) |
| case 25: // reg: ToUShortTy(reg) |
| case 27: // reg: ToUIntTy(reg) |
| case 29: // reg: ToULongTy(reg) |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || |
| opType->isPointerType() || |
| opType == Type::BoolTy && "Cast is illegal for other types"); |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| } |
| |
| case 24: // reg: ToSByteTy(reg) |
| case 26: // reg: ToShortTy(reg) |
| case 28: // reg: ToIntTy(reg) |
| case 30: // reg: ToLongTy(reg) |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| if (opType->isIntegral() |
| || opType->isPointerType() |
| || opType == Type::BoolTy) |
| { |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| else |
| { |
| // If the source operand is an FP type, the int result must be |
| // copied from float to int register via memory! |
| Instruction *dest = subtreeRoot->getInstruction(); |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| Value* destForCast; |
| vector<MachineInstr*> minstrVec; |
| |
| if (opType == Type::FloatTy || opType == Type::DoubleTy) |
| { |
| // Create a temporary to represent the INT register |
| // into which the FP value will be copied via memory. |
| // The type of this temporary will determine the FP |
| // register used: single-prec for a 32-bit int or smaller, |
| // double-prec for a 64-bit int. |
| // |
| const Type* destTypeToUse = |
| (dest->getType() == Type::LongTy)? Type::DoubleTy |
| : Type::FloatTy; |
| destForCast = new TmpInstruction(destTypeToUse, leftVal); |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(dest); |
| destMCFI.addTemp(destForCast); |
| |
| vector<TmpInstruction*> tempVec; |
| target.getInstrInfo().CreateCodeToCopyFloatToInt( |
| dest->getParent()->getParent(), |
| (TmpInstruction*) destForCast, dest, |
| minstrVec, tempVec, target); |
| |
| for (unsigned i=0; i < tempVec.size(); ++i) |
| destMCFI.addTemp(tempVec[i]); |
| } |
| else |
| destForCast = leftVal; |
| |
| M = CreateConvertToIntInstr(subtreeRoot->getOpLabel(), |
| leftVal, destForCast); |
| mvec.push_back(M); |
| |
| // Append the copy code, if any, after the conversion instr. |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| break; |
| } |
| |
| case 31: // reg: ToFloatTy(reg): |
| case 32: // reg: ToDoubleTy(reg): |
| case 232: // reg: ToDoubleTy(Constant): |
| |
| // If this instruction has a parent (a user) in the tree |
| // and the user is translated as an FsMULd instruction, |
| // then the cast is unnecessary. So check that first. |
| // In the future, we'll want to do the same for the FdMULq instruction, |
| // so do the check here instead of only for ToFloatTy(reg). |
| // |
| if (subtreeRoot->parent() != NULL && |
| MachineCodeForInstruction::get(((InstructionNode*)subtreeRoot->parent())->getInstruction())[0]->getOpCode() == FSMULD) |
| { |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| else |
| { |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| MachineOpCode opCode=ChooseConvertToFloatInstr( |
| subtreeRoot->getOpLabel(), opType); |
| if (opCode == INVALID_OPCODE) // no conversion needed |
| { |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| else |
| { |
| // If the source operand is a non-FP type it must be |
| // first copied from int to float register via memory! |
| Instruction *dest = subtreeRoot->getInstruction(); |
| Value* srcForCast; |
| int n = 0; |
| if (opType != Type::FloatTy && opType != Type::DoubleTy) |
| { |
| // Create a temporary to represent the FP register |
| // into which the integer will be copied via memory. |
| // The type of this temporary will determine the FP |
| // register used: single-prec for a 32-bit int or smaller, |
| // double-prec for a 64-bit int. |
| // |
| const Type* srcTypeToUse = |
| (leftVal->getType() == Type::LongTy)? Type::DoubleTy |
| : Type::FloatTy; |
| |
| srcForCast = new TmpInstruction(srcTypeToUse, dest); |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(dest); |
| destMCFI.addTemp(srcForCast); |
| |
| vector<MachineInstr*> minstrVec; |
| vector<TmpInstruction*> tempVec; |
| target.getInstrInfo().CreateCodeToCopyIntToFloat( |
| dest->getParent()->getParent(), |
| leftVal, (TmpInstruction*) srcForCast, |
| minstrVec, tempVec, target); |
| |
| mvec.insert(mvec.end(), minstrVec.begin(),minstrVec.end()); |
| |
| for (unsigned i=0; i < tempVec.size(); ++i) |
| destMCFI.addTemp(tempVec[i]); |
| } |
| else |
| srcForCast = leftVal; |
| |
| M = new MachineInstr(opCode); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| srcForCast); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, |
| dest); |
| mvec.push_back(M); |
| } |
| } |
| break; |
| |
| case 19: // reg: ToArrayTy(reg): |
| case 20: // reg: ToPointerTy(reg): |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| |
| case 233: // reg: Add(reg, Constant) |
| M = CreateAddConstInstruction(subtreeRoot); |
| if (M != NULL) |
| { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 33: // reg: Add(reg, reg) |
| mvec.push_back(new MachineInstr(ChooseAddInstruction(subtreeRoot))); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 234: // reg: Sub(reg, Constant) |
| M = CreateSubConstInstruction(subtreeRoot); |
| if (M != NULL) |
| { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 34: // reg: Sub(reg, reg) |
| mvec.push_back(new MachineInstr(ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType()))); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 135: // reg: Mul(todouble, todouble) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 35: // reg: Mul(reg, reg) |
| { |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? FSMULD |
| : INVALID_MACHINE_OPCODE); |
| CreateMulInstruction(target, |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| subtreeRoot->getInstruction(), |
| mvec, forceOp); |
| break; |
| } |
| case 335: // reg: Mul(todouble, todoubleConst) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 235: // reg: Mul(reg, Constant) |
| { |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? FSMULD |
| : INVALID_MACHINE_OPCODE); |
| CreateMulInstruction(target, |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| subtreeRoot->getInstruction(), |
| mvec, forceOp); |
| break; |
| } |
| case 236: // reg: Div(reg, Constant) |
| L = mvec.size(); |
| CreateDivConstInstruction(target, subtreeRoot, mvec); |
| if (mvec.size() > L) |
| break; |
| // ELSE FALL THROUGH |
| |
| case 36: // reg: Div(reg, reg) |
| mvec.push_back(new MachineInstr(ChooseDivInstruction(target, subtreeRoot))); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 37: // reg: Rem(reg, reg) |
| case 237: // reg: Rem(reg, Constant) |
| { |
| Instruction* remInstr = subtreeRoot->getInstruction(); |
| |
| TmpInstruction* quot = new TmpInstruction( |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue()); |
| TmpInstruction* prod = new TmpInstruction( |
| quot, |
| subtreeRoot->rightChild()->getValue()); |
| MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod); |
| |
| M = new MachineInstr(ChooseDivInstruction(target, subtreeRoot)); |
| Set3OperandsFromInstr(M, subtreeRoot, target); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,quot); |
| mvec.push_back(M); |
| |
| M = new MachineInstr(ChooseMulInstructionByType( |
| subtreeRoot->getInstruction()->getType())); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,quot); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, |
| subtreeRoot->rightChild()->getValue()); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,prod); |
| mvec.push_back(M); |
| |
| M = new MachineInstr(ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType())); |
| Set3OperandsFromInstr(M, subtreeRoot, target); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,prod); |
| mvec.push_back(M); |
| |
| break; |
| } |
| |
| case 38: // bool: And(bool, bool) |
| case 238: // bool: And(bool, boolconst) |
| case 338: // reg : BAnd(reg, reg) |
| case 538: // reg : BAnd(reg, Constant) |
| mvec.push_back(new MachineInstr(AND)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 138: // bool: And(bool, not) |
| case 438: // bool: BAnd(bool, not) |
| mvec.push_back(new MachineInstr(ANDN)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 39: // bool: Or(bool, bool) |
| case 239: // bool: Or(bool, boolconst) |
| case 339: // reg : BOr(reg, reg) |
| case 539: // reg : BOr(reg, Constant) |
| mvec.push_back(new MachineInstr(ORN)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 139: // bool: Or(bool, not) |
| case 439: // bool: BOr(bool, not) |
| mvec.push_back(new MachineInstr(ORN)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 40: // bool: Xor(bool, bool) |
| case 240: // bool: Xor(bool, boolconst) |
| case 340: // reg : BXor(reg, reg) |
| case 540: // reg : BXor(reg, Constant) |
| mvec.push_back(new MachineInstr(XOR)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 140: // bool: Xor(bool, not) |
| case 440: // bool: BXor(bool, not) |
| mvec.push_back(new MachineInstr(XNOR)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| |
| case 41: // boolconst: SetCC(reg, Constant) |
| // |
| // If the SetCC was folded into the user (parent), it will be |
| // caught above. All other cases are the same as case 42, |
| // so just fall through. |
| // |
| case 42: // bool: SetCC(reg, reg): |
| { |
| // This generates a SUBCC instruction, putting the difference in |
| // a result register, and setting a condition code. |
| // |
| // If the boolean result of the SetCC is used by anything other |
| // than a single branch instruction, the boolean must be |
| // computed and stored in the result register. Otherwise, discard |
| // the difference (by using %g0) and keep only the condition code. |
| // |
| // To compute the boolean result in a register we use a conditional |
| // move, unless the result of the SUBCC instruction can be used as |
| // the bool! This assumes that zero is FALSE and any non-zero |
| // integer is TRUE. |
| // |
| InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| bool keepBoolVal = (parentNode == NULL || |
| parentNode->getInstruction()->getOpcode() |
| != Instruction::Br); |
| bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE; |
| bool keepSubVal = keepBoolVal && subValIsBoolVal; |
| bool computeBoolVal = keepBoolVal && ! subValIsBoolVal; |
| |
| bool mustClearReg; |
| int valueToMove; |
| MachineOpCode movOpCode = 0; |
| |
| // Mark the 4th operand as being a CC register, and as a def |
| // A TmpInstruction is created to represent the CC "result". |
| // Unlike other instances of TmpInstruction, this one is used |
| // by machine code of multiple LLVM instructions, viz., |
| // the SetCC and the branch. Make sure to get the same one! |
| // Note that we do this even for FP CC registers even though they |
| // are explicit operands, because the type of the operand |
| // needs to be a floating point condition code, not an integer |
| // condition code. Think of this as casting the bool result to |
| // a FP condition code register. |
| // |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| bool isFPCompare = (leftVal->getType() == Type::FloatTy || |
| leftVal->getType() == Type::DoubleTy); |
| |
| TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, |
| setCCInstr->getParent()->getParent(), |
| isFPCompare? Type::FloatTy : Type::IntTy); |
| MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC); |
| |
| if (! isFPCompare) |
| { |
| // Integer condition: dest. should be %g0 or an integer register. |
| // If result must be saved but condition is not SetEQ then we need |
| // a separate instruction to compute the bool result, so discard |
| // result of SUBcc instruction anyway. |
| // |
| M = new MachineInstr(SUBcc); |
| Set3OperandsFromInstr(M, subtreeRoot, target, ! keepSubVal); |
| M->SetMachineOperandVal(3, MachineOperand::MO_CCRegister, |
| tmpForCC, /*def*/true); |
| mvec.push_back(M); |
| |
| if (computeBoolVal) |
| { // recompute bool using the integer condition codes |
| movOpCode = |
| ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove); |
| } |
| } |
| else |
| { |
| // FP condition: dest of FCMP should be some FCCn register |
| M = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| tmpForCC); |
| M->SetMachineOperandVal(1,MachineOperand::MO_VirtualRegister, |
| subtreeRoot->leftChild()->getValue()); |
| M->SetMachineOperandVal(2,MachineOperand::MO_VirtualRegister, |
| subtreeRoot->rightChild()->getValue()); |
| mvec.push_back(M); |
| |
| if (computeBoolVal) |
| {// recompute bool using the FP condition codes |
| mustClearReg = true; |
| valueToMove = 1; |
| movOpCode = ChooseMovFpccInstruction(subtreeRoot); |
| } |
| } |
| |
| if (computeBoolVal) |
| { |
| if (mustClearReg) |
| {// Unconditionally set register to 0 |
| M = new MachineInstr(SETHI); |
| M->SetMachineOperandConst(0,MachineOperand::MO_UnextendedImmed, |
| (int64_t)0); |
| M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, |
| setCCInstr); |
| mvec.push_back(M); |
| } |
| |
| // Now conditionally move `valueToMove' (0 or 1) into the register |
| M = new MachineInstr(movOpCode); |
| M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, |
| tmpForCC); |
| M->SetMachineOperandConst(1, MachineOperand::MO_UnextendedImmed, |
| valueToMove); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| setCCInstr); |
| mvec.push_back(M); |
| } |
| break; |
| } |
| |
| case 43: // boolreg: VReg |
| case 44: // boolreg: Constant |
| break; |
| |
| case 51: // reg: Load(reg) |
| case 52: // reg: Load(ptrreg) |
| case 53: // reg: LoadIdx(reg,reg) |
| case 54: // reg: LoadIdx(ptrreg,reg) |
| mvec.push_back(new MachineInstr(ChooseLoadInstruction( |
| subtreeRoot->getValue()->getType()))); |
| SetOperandsForMemInstr(mvec, mvec.end()-1, subtreeRoot, target); |
| break; |
| |
| case 55: // reg: GetElemPtr(reg) |
| case 56: // reg: GetElemPtrIdx(reg,reg) |
| // If the GetElemPtr was folded into the user (parent), it will be |
| // caught above. For other cases, we have to compute the address. |
| mvec.push_back(new MachineInstr(ADD)); |
| SetOperandsForMemInstr(mvec, mvec.end()-1, subtreeRoot, target); |
| break; |
| |
| case 57: // reg: Alloca: Implement as 1 instruction: |
| { // add %fp, offsetFromFP -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| unsigned int tsize = |
| target.findOptimalStorageSize(instr->getAllocatedType()); |
| assert(tsize != 0); |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); |
| break; |
| } |
| |
| case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| // mul num, typeSz -> tmp |
| // sub %sp, tmp -> %sp |
| { // add %sp, frameSizeBelowDynamicArea -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| const Type* eltType = instr->getAllocatedType(); |
| |
| // If #elements is constant, use simpler code for fixed-size allocas |
| int tsize = (int) target.findOptimalStorageSize(eltType); |
| Value* numElementsVal = NULL; |
| bool isArray = instr->isArrayAllocation(); |
| |
| if (!isArray || |
| isa<Constant>(numElementsVal = instr->getArraySize())) |
| { // total size is constant: generate code for fixed-size alloca |
| unsigned int numElements = isArray? |
| cast<ConstantUInt>(numElementsVal)->getValue() : 1; |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, |
| numElements, mvec); |
| } |
| else // total size is not constant. |
| CreateCodeForVariableSizeAlloca(target, instr, tsize, |
| numElementsVal, mvec); |
| break; |
| } |
| |
| case 61: // reg: Call |
| { // Generate a direct (CALL) or indirect (JMPL). depending |
| // Mark the return-address register and the indirection |
| // register (if any) as hidden virtual registers. |
| // Also, mark the operands of the Call and return value (if |
| // any) as implicit operands of the CALL machine instruction. |
| // |
| // If this is a varargs function, floating point arguments |
| // have to passed in integer registers so insert |
| // copy-float-to-int instructions for each float operand. |
| // |
| CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); |
| Value *callee = callInstr->getCalledValue(); |
| |
| // Create hidden virtual register for return address, with type void*. |
| Instruction* retAddrReg = |
| new TmpInstruction(PointerType::get(Type::VoidTy), callInstr); |
| MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg); |
| |
| // Generate the machine instruction and its operands. |
| // Use CALL for direct function calls; this optimistically assumes |
| // the PC-relative address fits in the CALL address field (22 bits). |
| // Use JMPL for indirect calls. |
| // |
| if (isa<Function>(callee)) |
| { // direct function call |
| M = new MachineInstr(CALL); |
| M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp, |
| callee); |
| } |
| else |
| { // indirect function call |
| M = new MachineInstr(JMPLCALL); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| callee); |
| M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, |
| (int64_t) 0); |
| M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, |
| retAddrReg); |
| } |
| |
| mvec.push_back(M); |
| |
| // WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses. |
| // The result value must go in slot N. This is assumed |
| // in register allocation. |
| // |
| // Add the call operands and return value as implicit refs |
| // const Type* funcType = isa<Function>(callee)? callee->getType() |
| // : cast<PointerType>(callee->getType())->getElementType(); |
| const Type* funcType = callee->getType(); |
| bool isVarArgs = cast<FunctionType>(cast<PointerType>(funcType) |
| ->getElementType())->isVarArg(); |
| |
| for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i) |
| if (callInstr->getOperand(i) != callee) |
| { |
| Value* argVal = callInstr->getOperand(i); |
| |
| // Check for FP arguments to varargs functions |
| if (isVarArgs && argVal->getType()->isFloatingPoint()) |
| { // Add a copy-float-to-int instruction |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(callInstr); |
| Instruction* intArgReg = |
| new TmpInstruction(Type::IntTy, argVal); |
| destMCFI.addTemp(intArgReg); |
| |
| vector<MachineInstr*> minstrVec; |
| vector<TmpInstruction*> tempVec; |
| target.getInstrInfo().CreateCodeToCopyFloatToInt( |
| callInstr->getParent()->getParent(), |
| argVal, (TmpInstruction*) intArgReg, |
| minstrVec, tempVec, target); |
| |
| mvec.insert(mvec.begin(), minstrVec.begin(),minstrVec.end()); |
| |
| for (unsigned i=0; i < tempVec.size(); ++i) |
| destMCFI.addTemp(tempVec[i]); |
| |
| argVal = intArgReg; |
| } |
| |
| mvec.back()->addImplicitRef(argVal); |
| } |
| |
| if (callInstr->getType() != Type::VoidTy) |
| mvec.back()->addImplicitRef(callInstr, /*isDef*/ true); |
| |
| // For the CALL instruction, the ret. addr. reg. is also implicit |
| if (isa<Function>(callee)) |
| mvec.back()->addImplicitRef(retAddrReg, /*isDef*/ true); |
| |
| // delay slot |
| mvec.push_back(new MachineInstr(NOP)); |
| break; |
| } |
| |
| case 62: // reg: Shl(reg, reg) |
| { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() |
| || opType == Type::BoolTy |
| || opType->isPointerType()&& "Shl unsupported for other types"); |
| mvec.push_back(new MachineInstr((opType == Type::LongTy)? SLLX : SLL)); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| } |
| |
| case 63: // reg: Shr(reg, reg) |
| { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() |
| || opType == Type::BoolTy |
| || opType->isPointerType() &&"Shr unsupported for other types"); |
| mvec.push_back(new MachineInstr((opType->isSigned() |
| ? ((opType == Type::LongTy)? SRAX : SRA) |
| : ((opType == Type::LongTy)? SRLX : SRL)))); |
| Set3OperandsFromInstr(mvec.back(), subtreeRoot, target); |
| break; |
| } |
| |
| case 64: // reg: Phi(reg,reg) |
| break; // don't forward the value |
| |
| #undef NEED_PHI_MACHINE_INSTRS |
| #ifdef NEED_PHI_MACHINE_INSTRS |
| { // This instruction has variable #operands, so resultPos is 0. |
| Instruction* phi = subtreeRoot->getInstruction(); |
| M = new MachineInstr(PHI, 1 + phi->getNumOperands()); |
| M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, |
| subtreeRoot->getValue()); |
| for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) |
| M->SetMachineOperandVal(i+1, MachineOperand::MO_VirtualRegister, |
| phi->getOperand(i)); |
| mvec.push_back(M); |
| break; |
| } |
| #endif // NEED_PHI_MACHINE_INSTRS |
| |
| |
| case 71: // reg: VReg |
| case 72: // reg: Constant |
| break; // don't forward the value |
| |
| default: |
| assert(0 && "Unrecognized BURG rule"); |
| break; |
| } |
| } |
| |
| if (forwardOperandNum >= 0) |
| { // We did not generate a machine instruction but need to use operand. |
| // If user is in the same tree, replace Value in its machine operand. |
| // If not, insert a copy instruction which should get coalesced away |
| // by register allocation. |
| if (subtreeRoot->parent() != NULL) |
| ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); |
| else |
| { |
| vector<MachineInstr*> minstrVec; |
| target.getInstrInfo().CreateCopyInstructionsByType(target, |
| subtreeRoot->getInstruction()->getParent()->getParent(), |
| subtreeRoot->getInstruction()->getOperand(forwardOperandNum), |
| subtreeRoot->getInstruction(), minstrVec); |
| assert(minstrVec.size() > 0); |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| } |
| } |
| |
| |