| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the SplitAnalysis class as well as mutator functions for |
| // live range splitting. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "splitter" |
| #include "SplitKit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AllowSplit("spiller-splits-edges", |
| cl::desc("Allow critical edge splitting during spilling")); |
| |
| //===----------------------------------------------------------------------===// |
| // Split Analysis |
| //===----------------------------------------------------------------------===// |
| |
| SplitAnalysis::SplitAnalysis(const MachineFunction &mf, |
| const LiveIntervals &lis, |
| const MachineLoopInfo &mli) |
| : mf_(mf), |
| lis_(lis), |
| loops_(mli), |
| tii_(*mf.getTarget().getInstrInfo()), |
| curli_(0) {} |
| |
| void SplitAnalysis::clear() { |
| usingInstrs_.clear(); |
| usingBlocks_.clear(); |
| usingLoops_.clear(); |
| curli_ = 0; |
| } |
| |
| bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { |
| MachineBasicBlock *T, *F; |
| SmallVector<MachineOperand, 4> Cond; |
| return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); |
| } |
| |
| /// analyzeUses - Count instructions, basic blocks, and loops using curli. |
| void SplitAnalysis::analyzeUses() { |
| const MachineRegisterInfo &MRI = mf_.getRegInfo(); |
| for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); |
| MachineInstr *MI = I.skipInstruction();) { |
| if (MI->isDebugValue() || !usingInstrs_.insert(MI)) |
| continue; |
| MachineBasicBlock *MBB = MI->getParent(); |
| if (usingBlocks_[MBB]++) |
| continue; |
| for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; |
| Loop = Loop->getParentLoop()) |
| usingLoops_[Loop]++; |
| } |
| DEBUG(dbgs() << " counted " |
| << usingInstrs_.size() << " instrs, " |
| << usingBlocks_.size() << " blocks, " |
| << usingLoops_.size() << " loops.\n"); |
| } |
| |
| // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, |
| // predecessor blocks, and exit blocks. |
| void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { |
| Blocks.clear(); |
| |
| // Blocks in the loop. |
| Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); |
| |
| // Predecessor blocks. |
| const MachineBasicBlock *Header = Loop->getHeader(); |
| for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), |
| E = Header->pred_end(); I != E; ++I) |
| if (!Blocks.Loop.count(*I)) |
| Blocks.Preds.insert(*I); |
| |
| // Exit blocks. |
| for (MachineLoop::block_iterator I = Loop->block_begin(), |
| E = Loop->block_end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = *I; |
| for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| if (!Blocks.Loop.count(*SI)) |
| Blocks.Exits.insert(*SI); |
| } |
| } |
| |
| /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in |
| /// and around the Loop. |
| SplitAnalysis::LoopPeripheralUse SplitAnalysis:: |
| analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { |
| LoopPeripheralUse use = ContainedInLoop; |
| for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *MBB = I->first; |
| // Is this a peripheral block? |
| if (use < MultiPeripheral && |
| (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { |
| if (I->second > 1) use = MultiPeripheral; |
| else use = SinglePeripheral; |
| continue; |
| } |
| // Is it a loop block? |
| if (Blocks.Loop.count(MBB)) |
| continue; |
| // It must be an unrelated block. |
| return OutsideLoop; |
| } |
| return use; |
| } |
| |
| /// getCriticalExits - It may be necessary to partially break critical edges |
| /// leaving the loop if an exit block has phi uses of curli. Collect the exit |
| /// blocks that need special treatment into CriticalExits. |
| void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| CriticalExits.clear(); |
| |
| // A critical exit block contains a phi def of curli, and has a predecessor |
| // that is not in the loop nor a loop predecessor. |
| // For such an exit block, the edges carrying the new variable must be moved |
| // to a new pre-exit block. |
| for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); |
| VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); |
| // This exit may not have curli live in at all. No need to split. |
| if (!SuccVNI) |
| continue; |
| // If this is not a PHI def, it is either using a value from before the |
| // loop, or a value defined inside the loop. Both are safe. |
| if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) |
| continue; |
| // This exit block does have a PHI. Does it also have a predecessor that is |
| // not a loop block or loop predecessor? |
| for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), |
| PE = Succ->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) |
| continue; |
| // This is a critical exit block, and we need to split the exit edge. |
| CriticalExits.insert(Succ); |
| break; |
| } |
| } |
| } |
| |
| /// canSplitCriticalExits - Return true if it is possible to insert new exit |
| /// blocks before the blocks in CriticalExits. |
| bool |
| SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| // If we don't allow critical edge splitting, require no critical exits. |
| if (!AllowSplit) |
| return CriticalExits.empty(); |
| |
| for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| // We want to insert a new pre-exit MBB before Succ, and change all the |
| // in-loop blocks to branch to the pre-exit instead of Succ. |
| // Check that all the in-loop predecessors can be changed. |
| for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), |
| PE = Succ->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| // The external predecessors won't be altered. |
| if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) |
| continue; |
| if (!canAnalyzeBranch(Pred)) |
| return false; |
| } |
| |
| // If Succ's layout predecessor falls through, that too must be analyzable. |
| // We need to insert the pre-exit block in the gap. |
| MachineFunction::const_iterator MFI = Succ; |
| if (MFI == mf_.begin()) |
| continue; |
| if (!canAnalyzeBranch(--MFI)) |
| return false; |
| } |
| // No problems found. |
| return true; |
| } |
| |
| void SplitAnalysis::analyze(const LiveInterval *li) { |
| clear(); |
| curli_ = li; |
| analyzeUses(); |
| } |
| |
| const MachineLoop *SplitAnalysis::getBestSplitLoop() { |
| assert(curli_ && "Call analyze() before getBestSplitLoop"); |
| if (usingLoops_.empty()) |
| return 0; |
| |
| LoopPtrSet Loops, SecondLoops; |
| LoopBlocks Blocks; |
| BlockPtrSet CriticalExits; |
| |
| // Find first-class and second class candidate loops. |
| // We prefer to split around loops where curli is used outside the periphery. |
| for (LoopCountMap::const_iterator I = usingLoops_.begin(), |
| E = usingLoops_.end(); I != E; ++I) { |
| const MachineLoop *Loop = I->first; |
| getLoopBlocks(Loop, Blocks); |
| |
| LoopPtrSet *LPS = 0; |
| switch(analyzeLoopPeripheralUse(Blocks)) { |
| case OutsideLoop: |
| LPS = &Loops; |
| break; |
| case MultiPeripheral: |
| LPS = &SecondLoops; |
| break; |
| case ContainedInLoop: |
| DEBUG(dbgs() << " contained in " << *Loop); |
| continue; |
| case SinglePeripheral: |
| DEBUG(dbgs() << " single peripheral use in " << *Loop); |
| continue; |
| } |
| // Will it be possible to split around this loop? |
| getCriticalExits(Blocks, CriticalExits); |
| DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " |
| << *Loop); |
| if (!canSplitCriticalExits(Blocks, CriticalExits)) |
| continue; |
| // This is a possible split. |
| assert(LPS); |
| LPS->insert(Loop); |
| } |
| |
| DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " |
| << SecondLoops.size() << " candidate loops.\n"); |
| |
| // If there are no first class loops available, look at second class loops. |
| if (Loops.empty()) |
| Loops = SecondLoops; |
| |
| if (Loops.empty()) |
| return 0; |
| |
| // Pick the earliest loop. |
| // FIXME: Are there other heuristics to consider? |
| const MachineLoop *Best = 0; |
| SlotIndex BestIdx; |
| for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; |
| ++I) { |
| SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); |
| if (!Best || Idx < BestIdx) |
| Best = *I, BestIdx = Idx; |
| } |
| DEBUG(dbgs() << " getBestSplitLoop found " << *Best); |
| return Best; |
| } |
| |
| /// getMultiUseBlocks - if curli has more than one use in a basic block, it |
| /// may be an advantage to split curli for the duration of the block. |
| bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { |
| // If curli is local to one block, there is no point to splitting it. |
| if (usingBlocks_.size() <= 1) |
| return false; |
| // Add blocks with multiple uses. |
| for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); |
| I != E; ++I) |
| switch (I->second) { |
| case 0: |
| case 1: |
| continue; |
| case 2: { |
| // It doesn't pay to split a 2-instr block if it redefines curli. |
| VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); |
| VNInfo *VN2 = |
| curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); |
| // live-in and live-out with a different value. |
| if (VN1 && VN2 && VN1 != VN2) |
| continue; |
| } // Fall through. |
| default: |
| Blocks.insert(I->first); |
| } |
| return !Blocks.empty(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LiveIntervalMap |
| //===----------------------------------------------------------------------===// |
| |
| // Work around the fact that the std::pair constructors are broken for pointer |
| // pairs in some implementations. makeVV(x, 0) works. |
| static inline std::pair<const VNInfo*, VNInfo*> |
| makeVV(const VNInfo *a, VNInfo *b) { |
| return std::make_pair(a, b); |
| } |
| |
| void LiveIntervalMap::reset(LiveInterval *li) { |
| li_ = li; |
| valueMap_.clear(); |
| } |
| |
| bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { |
| ValueMap::const_iterator i = valueMap_.find(ParentVNI); |
| return i != valueMap_.end() && i->second == 0; |
| } |
| |
| // defValue - Introduce a li_ def for ParentVNI that could be later than |
| // ParentVNI->def. |
| VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { |
| assert(li_ && "call reset first"); |
| assert(ParentVNI && "Mapping NULL value"); |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); |
| |
| // Create a new value. |
| VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); |
| |
| // Use insert for lookup, so we can add missing values with a second lookup. |
| std::pair<ValueMap::iterator,bool> InsP = |
| valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); |
| |
| // This is now a complex def. Mark with a NULL in valueMap. |
| if (!InsP.second) |
| InsP.first->second = 0; |
| |
| return VNI; |
| } |
| |
| |
| // mapValue - Find the mapped value for ParentVNI at Idx. |
| // Potentially create phi-def values. |
| VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, |
| bool *simple) { |
| assert(li_ && "call reset first"); |
| assert(ParentVNI && "Mapping NULL value"); |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); |
| |
| // Use insert for lookup, so we can add missing values with a second lookup. |
| std::pair<ValueMap::iterator,bool> InsP = |
| valueMap_.insert(makeVV(ParentVNI, 0)); |
| |
| // This was an unknown value. Create a simple mapping. |
| if (InsP.second) { |
| if (simple) *simple = true; |
| return InsP.first->second = li_->createValueCopy(ParentVNI, |
| lis_.getVNInfoAllocator()); |
| } |
| |
| // This was a simple mapped value. |
| if (InsP.first->second) { |
| if (simple) *simple = true; |
| return InsP.first->second; |
| } |
| |
| // This is a complex mapped value. There may be multiple defs, and we may need |
| // to create phi-defs. |
| if (simple) *simple = false; |
| MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); |
| assert(IdxMBB && "No MBB at Idx"); |
| |
| // Is there a def in the same MBB we can extend? |
| if (VNInfo *VNI = extendTo(IdxMBB, Idx)) |
| return VNI; |
| |
| // Now for the fun part. We know that ParentVNI potentially has multiple defs, |
| // and we may need to create even more phi-defs to preserve VNInfo SSA form. |
| // Perform a depth-first search for predecessor blocks where we know the |
| // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. |
| |
| // Track MBBs where we have created or learned the dominating value. |
| // This may change during the DFS as we create new phi-defs. |
| typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; |
| MBBValueMap DomValue; |
| typedef SplitAnalysis::BlockPtrSet BlockPtrSet; |
| BlockPtrSet Visited; |
| |
| // Iterate over IdxMBB predecessors in a depth-first order. |
| // Skip begin() since that is always IdxMBB. |
| for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> |
| IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), |
| IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { |
| MachineBasicBlock *MBB = *IDFI; |
| SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); |
| |
| // We are operating on the restricted CFG where ParentVNI is live. |
| if (parentli_.getVNInfoAt(End) != ParentVNI) { |
| IDFI.skipChildren(); |
| continue; |
| } |
| |
| // Do we have a dominating value in this block? |
| VNInfo *VNI = extendTo(MBB, End); |
| if (!VNI) { |
| ++IDFI; |
| continue; |
| } |
| |
| // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. |
| Visited.erase(MBB); |
| |
| // Track the path back to IdxMBB, creating phi-defs |
| // as needed along the way. |
| for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { |
| // Start from MBB's immediate successor. End at IdxMBB. |
| MachineBasicBlock *Succ = IDFI.getPath(PI-1); |
| std::pair<MBBValueMap::iterator, bool> InsP = |
| DomValue.insert(MBBValueMap::value_type(Succ, VNI)); |
| |
| // This is the first time we backtrack to Succ. |
| if (InsP.second) |
| continue; |
| |
| // We reached Succ again with the same VNI. Nothing is going to change. |
| VNInfo *OVNI = InsP.first->second; |
| if (OVNI == VNI) |
| break; |
| |
| // Succ already has a phi-def. No need to continue. |
| SlotIndex Start = lis_.getMBBStartIdx(Succ); |
| if (OVNI->def == Start) |
| break; |
| |
| // We have a collision between the old and new VNI at Succ. That means |
| // neither dominates and we need a new phi-def. |
| VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); |
| VNI->setIsPHIDef(true); |
| InsP.first->second = VNI; |
| |
| // Replace OVNI with VNI in the remaining path. |
| for (; PI > 1 ; --PI) { |
| MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); |
| if (I == DomValue.end() || I->second != OVNI) |
| break; |
| I->second = VNI; |
| } |
| } |
| |
| // No need to search the children, we found a dominating value. |
| IDFI.skipChildren(); |
| } |
| |
| // The search should at least find a dominating value for IdxMBB. |
| assert(!DomValue.empty() && "Couldn't find a reaching definition"); |
| |
| // Since we went through the trouble of a full DFS visiting all reaching defs, |
| // the values in DomValue are now accurate. No more phi-defs are needed for |
| // these blocks, so we can color the live ranges. |
| // This makes the next mapValue call much faster. |
| VNInfo *IdxVNI = 0; |
| for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; |
| ++I) { |
| MachineBasicBlock *MBB = I->first; |
| VNInfo *VNI = I->second; |
| SlotIndex Start = lis_.getMBBStartIdx(MBB); |
| if (MBB == IdxMBB) { |
| // Don't add full liveness to IdxMBB, stop at Idx. |
| if (Start != Idx) |
| li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); |
| // The caller had better add some liveness to IdxVNI, or it leaks. |
| IdxVNI = VNI; |
| } else |
| li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); |
| } |
| |
| assert(IdxVNI && "Didn't find value for Idx"); |
| return IdxVNI; |
| } |
| |
| // extendTo - Find the last li_ value defined in MBB at or before Idx. The |
| // parentli_ is assumed to be live at Idx. Extend the live range to Idx. |
| // Return the found VNInfo, or NULL. |
| VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { |
| assert(li_ && "call reset first"); |
| LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); |
| if (I == li_->begin()) |
| return 0; |
| --I; |
| if (I->end <= lis_.getMBBStartIdx(MBB)) |
| return 0; |
| if (I->end <= Idx) |
| I->end = Idx.getNextSlot(); |
| return I->valno; |
| } |
| |
| // addSimpleRange - Add a simple range from parentli_ to li_. |
| // ParentVNI must be live in the [Start;End) interval. |
| void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, |
| const VNInfo *ParentVNI) { |
| assert(li_ && "call reset first"); |
| bool simple; |
| VNInfo *VNI = mapValue(ParentVNI, Start, &simple); |
| // A simple mapping is easy. |
| if (simple) { |
| li_->addRange(LiveRange(Start, End, VNI)); |
| return; |
| } |
| |
| // ParentVNI is a complex value. We must map per MBB. |
| MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); |
| MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); |
| |
| if (MBB == MBBE) { |
| li_->addRange(LiveRange(Start, End, VNI)); |
| return; |
| } |
| |
| // First block. |
| li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); |
| |
| // Run sequence of full blocks. |
| for (++MBB; MBB != MBBE; ++MBB) { |
| Start = lis_.getMBBStartIdx(MBB); |
| li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), |
| mapValue(ParentVNI, Start))); |
| } |
| |
| // Final block. |
| Start = lis_.getMBBStartIdx(MBB); |
| if (Start != End) |
| li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); |
| } |
| |
| /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. |
| /// All needed values whose def is not inside [Start;End) must be defined |
| /// beforehand so mapValue will work. |
| void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { |
| assert(li_ && "call reset first"); |
| LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); |
| LiveInterval::const_iterator I = std::lower_bound(B, E, Start); |
| |
| // Check if --I begins before Start and overlaps. |
| if (I != B) { |
| --I; |
| if (I->end > Start) |
| addSimpleRange(Start, std::min(End, I->end), I->valno); |
| ++I; |
| } |
| |
| // The remaining ranges begin after Start. |
| for (;I != E && I->start < End; ++I) |
| addSimpleRange(I->start, std::min(End, I->end), I->valno); |
| } |
| |
| VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, |
| const VNInfo *ParentVNI, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> |
| get(TargetOpcode::COPY); |
| MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); |
| SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| VNInfo *VNI = defValue(ParentVNI, DefIdx); |
| VNI->setCopy(MI); |
| li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); |
| return VNI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Split Editor |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, |
| SmallVectorImpl<LiveInterval*> &intervals) |
| : sa_(sa), lis_(lis), vrm_(vrm), |
| mri_(vrm.getMachineFunction().getRegInfo()), |
| tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), |
| curli_(sa_.getCurLI()), |
| dupli_(lis_, *curli_), |
| openli_(lis_, *curli_), |
| intervals_(intervals), |
| firstInterval(intervals_.size()) |
| { |
| assert(curli_ && "SplitEditor created from empty SplitAnalysis"); |
| |
| // Make sure curli_ is assigned a stack slot, so all our intervals get the |
| // same slot as curli_. |
| if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) |
| vrm_.assignVirt2StackSlot(curli_->reg); |
| |
| } |
| |
| LiveInterval *SplitEditor::createInterval() { |
| unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); |
| LiveInterval &Intv = lis_.getOrCreateInterval(Reg); |
| vrm_.grow(); |
| vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); |
| return &Intv; |
| } |
| |
| bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { |
| for (int i = firstInterval, e = intervals_.size(); i != e; ++i) |
| if (intervals_[i]->liveAt(Idx)) |
| return true; |
| return false; |
| } |
| |
| /// Create a new virtual register and live interval. |
| void SplitEditor::openIntv() { |
| assert(!openli_.getLI() && "Previous LI not closed before openIntv"); |
| |
| if (!dupli_.getLI()) |
| dupli_.reset(createInterval()); |
| |
| openli_.reset(createInterval()); |
| intervals_.push_back(openli_.getLI()); |
| } |
| |
| /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is |
| /// not live before Idx, a COPY is not inserted. |
| void SplitEditor::enterIntvBefore(SlotIndex Idx) { |
| assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); |
| VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); |
| return; |
| } |
| truncatedValues.insert(ParentVNI); |
| MachineInstr *MI = lis_.getInstructionFromIndex(Idx); |
| assert(MI && "enterIntvBefore called with invalid index"); |
| openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); |
| DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() |
| << '\n'); |
| } |
| |
| /// enterIntvAtEnd - Enter openli at the end of MBB. |
| void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { |
| assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); |
| SlotIndex End = lis_.getMBBEndIdx(&MBB); |
| VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); |
| return; |
| } |
| truncatedValues.insert(ParentVNI); |
| VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, |
| MBB, MBB.getFirstTerminator()); |
| // Make sure openli is live out of MBB. |
| openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); |
| DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); |
| } |
| |
| /// useIntv - indicate that all instructions in MBB should use openli. |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) { |
| useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); |
| } |
| |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { |
| assert(openli_.getLI() && "openIntv not called before useIntv"); |
| openli_.addRange(Start, End); |
| DEBUG(dbgs() << " use [" << Start << ';' << End << "): " |
| << *openli_.getLI() << '\n'); |
| } |
| |
| /// leaveIntvAfter - Leave openli after the instruction at Idx. |
| void SplitEditor::leaveIntvAfter(SlotIndex Idx) { |
| assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); |
| |
| // The interval must be live beyond the instruction at Idx. |
| VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); |
| return; |
| } |
| |
| MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); |
| MachineBasicBlock *MBB = MII->getParent(); |
| VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, |
| llvm::next(MII)); |
| |
| // Finally we must make sure that openli is properly extended from Idx to the |
| // new copy. |
| openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); |
| DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() |
| << '\n'); |
| } |
| |
| /// leaveIntvAtTop - Leave the interval at the top of MBB. |
| /// Currently, only one value can leave the interval. |
| void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { |
| assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); |
| |
| SlotIndex Start = lis_.getMBBStartIdx(&MBB); |
| VNInfo *ParentVNI = curli_->getVNInfoAt(Start); |
| |
| // Is curli even live-in to MBB? |
| if (!ParentVNI) { |
| DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); |
| return; |
| } |
| |
| // We are going to insert a back copy, so we must have a dupli_. |
| VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, |
| MBB, MBB.begin()); |
| |
| // Finally we must make sure that openli is properly extended from Start to |
| // the new copy. |
| openli_.addSimpleRange(Start, VNI->def, ParentVNI); |
| DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() |
| << '\n'); |
| } |
| |
| /// closeIntv - Indicate that we are done editing the currently open |
| /// LiveInterval, and ranges can be trimmed. |
| void SplitEditor::closeIntv() { |
| assert(openli_.getLI() && "openIntv not called before closeIntv"); |
| |
| DEBUG(dbgs() << " closeIntv cleaning up\n"); |
| DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); |
| openli_.reset(0); |
| } |
| |
| void |
| SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { |
| SlotIndex sidx = Start; |
| |
| // Break [Start;End) into segments that don't overlap any intervals. |
| for (;;) { |
| SlotIndex next = sidx, eidx = End; |
| // Find overlapping intervals. |
| for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx; |
| ++i) { |
| LiveInterval::const_iterator I = intervals_[i]->find(sidx); |
| LiveInterval::const_iterator E = intervals_[i]->end(); |
| if (I == E) |
| continue; |
| // Interval I is overlapping [sidx;eidx). Trim sidx. |
| if (I->start <= sidx) { |
| sidx = I->end; |
| if (++I == E) |
| continue; |
| } |
| // Trim eidx too if needed. |
| if (I->start >= eidx) |
| continue; |
| eidx = I->start; |
| if (I->end > next) |
| next = I->end; |
| } |
| // Now, [sidx;eidx) doesn't overlap anything in intervals_. |
| if (sidx < eidx) |
| dupli_.addSimpleRange(sidx, eidx, VNI); |
| // If the interval end was truncated, we can try again from next. |
| if (next <= sidx) |
| break; |
| sidx = next; |
| } |
| } |
| |
| /// rewrite - after all the new live ranges have been created, rewrite |
| /// instructions using curli to use the new intervals. |
| void SplitEditor::rewrite() { |
| assert(!openli_.getLI() && "Previous LI not closed before rewrite"); |
| assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); |
| |
| // First we need to fill in the live ranges in dupli. |
| // If values were redefined, we need a full recoloring with SSA update. |
| // If values were truncated, we only need to truncate the ranges. |
| // If values were partially rematted, we should shrink to uses. |
| // If values were fully rematted, they should be omitted. |
| // FIXME: If a single value is redefined, just move the def and truncate. |
| |
| // Values that are fully contained in the split intervals. |
| SmallPtrSet<const VNInfo*, 8> deadValues; |
| |
| // Map all curli values that should have live defs in dupli. |
| for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), |
| E = curli_->vni_end(); I != E; ++I) { |
| const VNInfo *VNI = *I; |
| // Original def is contained in the split intervals. |
| if (intervalsLiveAt(VNI->def)) { |
| // Did this value escape? |
| if (dupli_.isMapped(VNI)) |
| truncatedValues.insert(VNI); |
| else |
| deadValues.insert(VNI); |
| continue; |
| } |
| // Add minimal live range at the definition. |
| VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); |
| dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); |
| } |
| |
| // Add all ranges to dupli. |
| for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); |
| I != E; ++I) { |
| const LiveRange &LR = *I; |
| if (truncatedValues.count(LR.valno)) { |
| // recolor after removing intervals_. |
| addTruncSimpleRange(LR.start, LR.end, LR.valno); |
| } else if (!deadValues.count(LR.valno)) { |
| // recolor without truncation. |
| dupli_.addSimpleRange(LR.start, LR.end, LR.valno); |
| } |
| } |
| |
| |
| const LiveInterval *curli = sa_.getCurLI(); |
| for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), |
| RE = mri_.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| if (MI->isDebugValue()) { |
| DEBUG(dbgs() << "Zapping " << *MI); |
| // FIXME: We can do much better with debug values. |
| MO.setReg(0); |
| continue; |
| } |
| SlotIndex Idx = lis_.getInstructionIndex(MI); |
| Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); |
| LiveInterval *LI = dupli_.getLI(); |
| for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { |
| LiveInterval *testli = intervals_[i]; |
| if (testli->liveAt(Idx)) { |
| LI = testli; |
| break; |
| } |
| } |
| MO.setReg(LI->reg); |
| DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); |
| } |
| |
| // dupli_ goes in last, after rewriting. |
| if (dupli_.getLI()->empty()) { |
| DEBUG(dbgs() << " dupli became empty?\n"); |
| lis_.removeInterval(dupli_.getLI()->reg); |
| dupli_.reset(0); |
| } else { |
| dupli_.getLI()->RenumberValues(lis_); |
| intervals_.push_back(dupli_.getLI()); |
| } |
| |
| // Calculate spill weight and allocation hints for new intervals. |
| VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); |
| for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { |
| LiveInterval &li = *intervals_[i]; |
| vrai.CalculateRegClass(li.reg); |
| vrai.CalculateWeightAndHint(li); |
| DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() |
| << ":" << li << '\n'); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Splitting |
| //===----------------------------------------------------------------------===// |
| |
| void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { |
| SplitAnalysis::LoopBlocks Blocks; |
| sa_.getLoopBlocks(Loop, Blocks); |
| |
| // Break critical edges as needed. |
| SplitAnalysis::BlockPtrSet CriticalExits; |
| sa_.getCriticalExits(Blocks, CriticalExits); |
| assert(CriticalExits.empty() && "Cannot break critical exits yet"); |
| |
| // Create new live interval for the loop. |
| openIntv(); |
| |
| // Insert copies in the predecessors. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), |
| E = Blocks.Preds.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| enterIntvAtEnd(MBB); |
| } |
| |
| // Switch all loop blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), |
| E = Blocks.Loop.end(); I != E; ++I) |
| useIntv(**I); |
| |
| // Insert back copies in the exit blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), |
| E = Blocks.Exits.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| leaveIntvAtTop(MBB); |
| } |
| |
| // Done. |
| closeIntv(); |
| rewrite(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Single Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// splitSingleBlocks - Split curli into a separate live interval inside each |
| /// basic block in Blocks. |
| void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { |
| DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); |
| // Determine the first and last instruction using curli in each block. |
| typedef std::pair<SlotIndex,SlotIndex> IndexPair; |
| typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; |
| IndexPairMap MBBRange; |
| for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), |
| E = sa_.usingInstrs_.end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = (*I)->getParent(); |
| if (!Blocks.count(MBB)) |
| continue; |
| SlotIndex Idx = lis_.getInstructionIndex(*I); |
| DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); |
| IndexPair &IP = MBBRange[MBB]; |
| if (!IP.first.isValid() || Idx < IP.first) |
| IP.first = Idx; |
| if (!IP.second.isValid() || Idx > IP.second) |
| IP.second = Idx; |
| } |
| |
| // Create a new interval for each block. |
| for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), |
| E = Blocks.end(); I != E; ++I) { |
| IndexPair &IP = MBBRange[*I]; |
| DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" |
| << IP.first << ';' << IP.second << ")\n"); |
| assert(IP.first.isValid() && IP.second.isValid()); |
| |
| openIntv(); |
| enterIntvBefore(IP.first); |
| useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); |
| leaveIntvAfter(IP.second); |
| closeIntv(); |
| } |
| rewrite(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Sub Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// getBlockForInsideSplit - If curli is contained inside a single basic block, |
| /// and it wou pay to subdivide the interval inside that block, return it. |
| /// Otherwise return NULL. The returned block can be passed to |
| /// SplitEditor::splitInsideBlock. |
| const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { |
| // The interval must be exclusive to one block. |
| if (usingBlocks_.size() != 1) |
| return 0; |
| // Don't to this for less than 4 instructions. We want to be sure that |
| // splitting actually reduces the instruction count per interval. |
| if (usingInstrs_.size() < 4) |
| return 0; |
| return usingBlocks_.begin()->first; |
| } |
| |
| /// splitInsideBlock - Split curli into multiple intervals inside MBB. |
| void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { |
| SmallVector<SlotIndex, 32> Uses; |
| Uses.reserve(sa_.usingInstrs_.size()); |
| for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), |
| E = sa_.usingInstrs_.end(); I != E; ++I) |
| if ((*I)->getParent() == MBB) |
| Uses.push_back(lis_.getInstructionIndex(*I)); |
| DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " |
| << Uses.size() << " instructions.\n"); |
| assert(Uses.size() >= 3 && "Need at least 3 instructions"); |
| array_pod_sort(Uses.begin(), Uses.end()); |
| |
| // Simple algorithm: Find the largest gap between uses as determined by slot |
| // indices. Create new intervals for instructions before the gap and after the |
| // gap. |
| unsigned bestPos = 0; |
| int bestGap = 0; |
| DEBUG(dbgs() << " dist (" << Uses[0]); |
| for (unsigned i = 1, e = Uses.size(); i != e; ++i) { |
| int g = Uses[i-1].distance(Uses[i]); |
| DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); |
| if (g > bestGap) |
| bestPos = i, bestGap = g; |
| } |
| DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); |
| |
| // bestPos points to the first use after the best gap. |
| assert(bestPos > 0 && "Invalid gap"); |
| |
| // FIXME: Don't create intervals for low densities. |
| |
| // First interval before the gap. Don't create single-instr intervals. |
| if (bestPos > 1) { |
| openIntv(); |
| enterIntvBefore(Uses.front()); |
| useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); |
| leaveIntvAfter(Uses[bestPos-1]); |
| closeIntv(); |
| } |
| |
| // Second interval after the gap. |
| if (bestPos < Uses.size()-1) { |
| openIntv(); |
| enterIntvBefore(Uses[bestPos]); |
| useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); |
| leaveIntvAfter(Uses.back()); |
| closeIntv(); |
| } |
| |
| rewrite(); |
| } |