| //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef X86ISELLOWERING_H |
| #define X86ISELLOWERING_H |
| |
| #include "X86Subtarget.h" |
| #include "X86RegisterInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| |
| namespace llvm { |
| namespace X86ISD { |
| // X86 Specific DAG Nodes |
| enum NodeType { |
| // Start the numbering where the builtin ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// BSF - Bit scan forward. |
| /// BSR - Bit scan reverse. |
| BSF, |
| BSR, |
| |
| /// SHLD, SHRD - Double shift instructions. These correspond to |
| /// X86::SHLDxx and X86::SHRDxx instructions. |
| SHLD, |
| SHRD, |
| |
| /// FAND - Bitwise logical AND of floating point values. This corresponds |
| /// to X86::ANDPS or X86::ANDPD. |
| FAND, |
| |
| /// FOR - Bitwise logical OR of floating point values. This corresponds |
| /// to X86::ORPS or X86::ORPD. |
| FOR, |
| |
| /// FXOR - Bitwise logical XOR of floating point values. This corresponds |
| /// to X86::XORPS or X86::XORPD. |
| FXOR, |
| |
| /// FSRL - Bitwise logical right shift of floating point values. These |
| /// corresponds to X86::PSRLDQ. |
| FSRL, |
| |
| /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the |
| /// integer source in memory and FP reg result. This corresponds to the |
| /// X86::FILD*m instructions. It has three inputs (token chain, address, |
| /// and source type) and two outputs (FP value and token chain). FILD_FLAG |
| /// also produces a flag). |
| FILD, |
| FILD_FLAG, |
| |
| /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the |
| /// integer destination in memory and a FP reg source. This corresponds |
| /// to the X86::FIST*m instructions and the rounding mode change stuff. It |
| /// has two inputs (token chain and address) and two outputs (int value |
| /// and token chain). |
| FP_TO_INT16_IN_MEM, |
| FP_TO_INT32_IN_MEM, |
| FP_TO_INT64_IN_MEM, |
| |
| /// FLD - This instruction implements an extending load to FP stack slots. |
| /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain |
| /// operand, ptr to load from, and a ValueType node indicating the type |
| /// to load to. |
| FLD, |
| |
| /// FST - This instruction implements a truncating store to FP stack |
| /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a |
| /// chain operand, value to store, address, and a ValueType to store it |
| /// as. |
| FST, |
| |
| /// CALL/TAILCALL - These operations represent an abstract X86 call |
| /// instruction, which includes a bunch of information. In particular the |
| /// operands of these node are: |
| /// |
| /// #0 - The incoming token chain |
| /// #1 - The callee |
| /// #2 - The number of arg bytes the caller pushes on the stack. |
| /// #3 - The number of arg bytes the callee pops off the stack. |
| /// #4 - The value to pass in AL/AX/EAX (optional) |
| /// #5 - The value to pass in DL/DX/EDX (optional) |
| /// |
| /// The result values of these nodes are: |
| /// |
| /// #0 - The outgoing token chain |
| /// #1 - The first register result value (optional) |
| /// #2 - The second register result value (optional) |
| /// |
| /// The CALL vs TAILCALL distinction boils down to whether the callee is |
| /// known not to modify the caller's stack frame, as is standard with |
| /// LLVM. |
| CALL, |
| TAILCALL, |
| |
| /// RDTSC_DAG - This operation implements the lowering for |
| /// readcyclecounter |
| RDTSC_DAG, |
| |
| /// X86 compare and logical compare instructions. |
| CMP, COMI, UCOMI, |
| |
| /// X86 bit-test instructions. |
| BT, |
| |
| /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag |
| /// operand produced by a CMP instruction. |
| SETCC, |
| |
| /// X86 conditional moves. Operand 1 and operand 2 are the two values |
| /// to select from (operand 1 is a R/W operand). Operand 3 is the |
| /// condition code, and operand 4 is the flag operand produced by a CMP |
| /// or TEST instruction. It also writes a flag result. |
| CMOV, |
| |
| /// X86 conditional branches. Operand 1 is the chain operand, operand 2 |
| /// is the block to branch if condition is true, operand 3 is the |
| /// condition code, and operand 4 is the flag operand produced by a CMP |
| /// or TEST instruction. |
| BRCOND, |
| |
| /// Return with a flag operand. Operand 1 is the chain operand, operand |
| /// 2 is the number of bytes of stack to pop. |
| RET_FLAG, |
| |
| /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. |
| REP_STOS, |
| |
| /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. |
| REP_MOVS, |
| |
| /// GlobalBaseReg - On Darwin, this node represents the result of the popl |
| /// at function entry, used for PIC code. |
| GlobalBaseReg, |
| |
| /// Wrapper - A wrapper node for TargetConstantPool, |
| /// TargetExternalSymbol, and TargetGlobalAddress. |
| Wrapper, |
| |
| /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP |
| /// relative displacements. |
| WrapperRIP, |
| |
| /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to |
| /// i32, corresponds to X86::PEXTRB. |
| PEXTRB, |
| |
| /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to |
| /// i32, corresponds to X86::PEXTRW. |
| PEXTRW, |
| |
| /// INSERTPS - Insert any element of a 4 x float vector into any element |
| /// of a destination 4 x floatvector. |
| INSERTPS, |
| |
| /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, |
| /// corresponds to X86::PINSRB. |
| PINSRB, |
| |
| /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, |
| /// corresponds to X86::PINSRW. |
| PINSRW, |
| |
| /// FMAX, FMIN - Floating point max and min. |
| /// |
| FMAX, FMIN, |
| |
| /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal |
| /// approximation. Note that these typically require refinement |
| /// in order to obtain suitable precision. |
| FRSQRT, FRCP, |
| |
| // TLSADDR, THREAD_POINTER - Thread Local Storage. |
| TLSADDR, THREAD_POINTER, |
| |
| // EH_RETURN - Exception Handling helpers. |
| EH_RETURN, |
| |
| /// TC_RETURN - Tail call return. |
| /// operand #0 chain |
| /// operand #1 callee (register or absolute) |
| /// operand #2 stack adjustment |
| /// operand #3 optional in flag |
| TC_RETURN, |
| |
| // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap. |
| LCMPXCHG_DAG, |
| LCMPXCHG8_DAG, |
| |
| // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, |
| // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - |
| // Atomic 64-bit binary operations. |
| ATOMADD64_DAG, |
| ATOMSUB64_DAG, |
| ATOMOR64_DAG, |
| ATOMXOR64_DAG, |
| ATOMAND64_DAG, |
| ATOMNAND64_DAG, |
| ATOMSWAP64_DAG, |
| |
| // FNSTCW16m - Store FP control world into i16 memory. |
| FNSTCW16m, |
| |
| // VZEXT_MOVL - Vector move low and zero extend. |
| VZEXT_MOVL, |
| |
| // VZEXT_LOAD - Load, scalar_to_vector, and zero extend. |
| VZEXT_LOAD, |
| |
| // VSHL, VSRL - Vector logical left / right shift. |
| VSHL, VSRL, |
| |
| // CMPPD, CMPPS - Vector double/float comparison. |
| CMPPD, CMPPS, |
| |
| // PCMP* - Vector integer comparisons. |
| PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ, |
| PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ, |
| |
| // ADD, SUB, SMUL, UMUL - Arithmetic operations with overflow/carry |
| // intrinsics. |
| ADD, SUB, SMUL, UMUL |
| }; |
| } |
| |
| /// Define some predicates that are used for node matching. |
| namespace X86 { |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFDMask(SDNode *N); |
| |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFHWMask(SDNode *N); |
| |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFLWMask(SDNode *N); |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| bool isSHUFPMask(SDNode *N); |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool isMOVHLPSMask(SDNode *N); |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| bool isMOVHLPS_v_undef_Mask(SDNode *N); |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| bool isMOVLPMask(SDNode *N); |
| |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} |
| /// as well as MOVLHPS. |
| bool isMOVHPMask(SDNode *N); |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false); |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false); |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| bool isUNPCKL_v_undef_Mask(SDNode *N); |
| |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| /// <2, 2, 3, 3> |
| bool isUNPCKH_v_undef_Mask(SDNode *N); |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| bool isMOVLMask(SDNode *N); |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool isMOVSHDUPMask(SDNode *N); |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool isMOVSLDUPMask(SDNode *N); |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element. |
| bool isSplatMask(SDNode *N); |
| |
| /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of zero element. |
| bool isSplatLoMask(SDNode *N); |
| |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVDDUP. |
| bool isMOVDDUPMask(SDNode *N); |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| /// instructions. |
| unsigned getShuffleSHUFImmediate(SDNode *N); |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW |
| /// instructions. |
| unsigned getShufflePSHUFHWImmediate(SDNode *N); |
| |
| /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW |
| /// instructions. |
| unsigned getShufflePSHUFLWImmediate(SDNode *N); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // X86TargetLowering - X86 Implementation of the TargetLowering interface |
| class X86TargetLowering : public TargetLowering { |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area. |
| int RegSaveFrameIndex; // X86-64 vararg func register save area. |
| unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset. |
| unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset. |
| int BytesToPopOnReturn; // Number of arg bytes ret should pop. |
| int BytesCallerReserves; // Number of arg bytes caller makes. |
| |
| public: |
| explicit X86TargetLowering(X86TargetMachine &TM); |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const; |
| |
| // Return the number of bytes that a function should pop when it returns (in |
| // addition to the space used by the return address). |
| // |
| unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } |
| |
| // Return the number of bytes that the caller reserves for arguments passed |
| // to this function. |
| unsigned getBytesCallerReserves() const { return BytesCallerReserves; } |
| |
| /// getStackPtrReg - Return the stack pointer register we are using: either |
| /// ESP or RSP. |
| unsigned getStackPtrReg() const { return X86StackPtr; } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contains are placed at 16-byte boundaries while the rest are at |
| /// 4-byte boundaries. |
| virtual unsigned getByValTypeAlignment(const Type *Ty) const; |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for |
| /// determining it. |
| virtual |
| MVT getOptimalMemOpType(uint64_t Size, unsigned Align, |
| bool isSrcConst, bool isSrcStr) const; |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG); |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| /// |
| virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG); |
| |
| |
| virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB); |
| |
| |
| /// getTargetNodeName - This method returns the name of a target specific |
| /// DAG node. |
| virtual const char *getTargetNodeName(unsigned Opcode) const; |
| |
| /// getSetCCResultType - Return the ISD::SETCC ValueType |
| virtual MVT getSetCCResultType(MVT VT) const; |
| |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| /// in Mask are known to be either zero or one and return them in the |
| /// KnownZero/KnownOne bitsets. |
| virtual void computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const; |
| |
| virtual bool |
| isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const; |
| |
| SDValue getReturnAddressFrameIndex(SelectionDAG &DAG); |
| |
| ConstraintType getConstraintType(const std::string &Constraint) const; |
| |
| std::vector<unsigned> |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const; |
| |
| virtual const char *LowerXConstraint(MVT ConstraintVT) const; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. If hasMemory is |
| /// true it means one of the asm constraint of the inline asm instruction |
| /// being processed is 'm'. |
| virtual void LowerAsmOperandForConstraint(SDValue Op, |
| char ConstraintLetter, |
| bool hasMemory, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const; |
| |
| /// getRegForInlineAsmConstraint - Given a physical register constraint |
| /// (e.g. {edx}), return the register number and the register class for the |
| /// register. This should only be used for C_Register constraints. On |
| /// error, this returns a register number of 0. |
| std::pair<unsigned, const TargetRegisterClass*> |
| getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const; |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const; |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in |
| /// register EAX to i16 by referencing its sub-register AX. |
| virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const; |
| virtual bool isTruncateFree(MVT VT1, MVT VT2) const; |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask |
| /// values are assumed to be legal. |
| virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const; |
| |
| /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is |
| /// used by Targets can use this to indicate if there is a suitable |
| /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant |
| /// pool entry. |
| virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps, |
| MVT EVT, SelectionDAG &DAG) const; |
| |
| /// ShouldShrinkFPConstant - If true, then instruction selection should |
| /// seek to shrink the FP constant of the specified type to a smaller type |
| /// in order to save space and / or reduce runtime. |
| virtual bool ShouldShrinkFPConstant(MVT VT) const { |
| // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more |
| // expensive than a straight movsd. On the other hand, it's important to |
| // shrink long double fp constant since fldt is very slow. |
| return !X86ScalarSSEf64 || VT == MVT::f80; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Target which want to do tail call |
| /// optimization should implement this function. |
| virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall, |
| SDValue Ret, |
| SelectionDAG &DAG) const; |
| |
| virtual const X86Subtarget* getSubtarget() { |
| return Subtarget; |
| } |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(MVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 |
| } |
| |
| /// getWidenVectorType: given a vector type, returns the type to widen |
| /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself. |
| /// If there is no vector type that we want to widen to, returns MVT::Other |
| /// When and were to widen is target dependent based on the cost of |
| /// scalarizing vs using the wider vector type. |
| virtual MVT getWidenVectorType(MVT VT) const; |
| |
| /// createFastISel - This method returns a target specific FastISel object, |
| /// or null if the target does not support "fast" ISel. |
| virtual FastISel * |
| createFastISel(MachineFunction &mf, |
| MachineModuleInfo *mmi, DwarfWriter *dw, |
| DenseMap<const Value *, unsigned> &, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &, |
| DenseMap<const AllocaInst *, int> & |
| #ifndef NDEBUG |
| , SmallSet<Instruction*, 8> & |
| #endif |
| ); |
| |
| private: |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| const X86RegisterInfo *RegInfo; |
| const TargetData *TD; |
| |
| /// X86StackPtr - X86 physical register used as stack ptr. |
| unsigned X86StackPtr; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf32; |
| bool X86ScalarSSEf64; |
| |
| SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, |
| unsigned CallingConv, SelectionDAG &DAG); |
| |
| SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG, |
| const CCValAssign &VA, MachineFrameInfo *MFI, |
| unsigned CC, SDValue Root, unsigned i); |
| |
| SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, |
| const SDValue &StackPtr, |
| const CCValAssign &VA, SDValue Chain, |
| SDValue Arg, ISD::ArgFlagsTy Flags); |
| |
| // Call lowering helpers. |
| bool IsCalleePop(bool isVarArg, unsigned CallingConv); |
| bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall); |
| bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall); |
| SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, |
| SDValue Chain, bool IsTailCall, bool Is64Bit, |
| int FPDiff); |
| |
| CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const; |
| NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op); |
| unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG); |
| |
| std::pair<SDValue,SDValue> FP_TO_SINTHelper(SDValue Op, |
| SelectionDAG &DAG); |
| |
| SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerGlobalAddress(const GlobalValue *GV, int64_t Offset, |
| SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerShift(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFABS(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerCALL(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerRET(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG); |
| |
| SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG); |
| SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG); |
| |
| void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG, unsigned NewOp); |
| |
| SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, |
| SDValue Chain, |
| SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| const Value *DstSV, uint64_t DstSVOff); |
| SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, |
| SDValue Chain, |
| SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff); |
| |
| /// Utility function to emit atomic bitwise operations (and, or, xor). |
| // It takes the bitwise instruction to expand, the associated machine basic |
| // block, and the associated X86 opcodes for reg/reg and reg/imm. |
| MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter( |
| MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned regOpc, |
| unsigned immOpc, |
| unsigned loadOpc, |
| unsigned cxchgOpc, |
| unsigned copyOpc, |
| unsigned notOpc, |
| unsigned EAXreg, |
| TargetRegisterClass *RC, |
| bool invSrc = false); |
| |
| MachineBasicBlock *EmitAtomicBit6432WithCustomInserter( |
| MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned regOpcL, |
| unsigned regOpcH, |
| unsigned immOpcL, |
| unsigned immOpcH, |
| bool invSrc = false); |
| |
| /// Utility function to emit atomic min and max. It takes the min/max |
| // instruction to expand, the associated basic block, and the associated |
| // cmov opcode for moving the min or max value. |
| MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned cmovOpc); |
| }; |
| |
| namespace X86 { |
| FastISel *createFastISel(MachineFunction &mf, |
| MachineModuleInfo *mmi, DwarfWriter *dw, |
| DenseMap<const Value *, unsigned> &, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &, |
| DenseMap<const AllocaInst *, int> & |
| #ifndef NDEBUG |
| , SmallSet<Instruction*, 8> & |
| #endif |
| ); |
| } |
| } |
| |
| #endif // X86ISELLOWERING_H |