| //===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <set> |
| #include <algorithm> |
| using namespace llvm; |
| |
| // FIXME: temporary. |
| #include "llvm/Support/CommandLine.h" |
| static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, |
| cl::desc("Enable fastcc on X86")); |
| |
| namespace { |
| // X86 Specific DAG Nodes |
| namespace X86ISD { |
| enum NodeType { |
| // Start the numbering where the builtin ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// FILD64m - This instruction implements SINT_TO_FP with a |
| /// 64-bit source in memory and a FP reg result. This corresponds to |
| /// the X86::FILD64m instruction. It has two inputs (token chain and |
| /// address) and two outputs (FP value and token chain). |
| FILD64m, |
| |
| /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the |
| /// integer destination in memory and a FP reg source. This corresponds |
| /// to the X86::FIST*m instructions and the rounding mode change stuff. It |
| /// has two inputs (token chain and address) and two outputs (FP value and |
| /// token chain). |
| FP_TO_INT16_IN_MEM, |
| FP_TO_INT32_IN_MEM, |
| FP_TO_INT64_IN_MEM, |
| |
| /// CALL/TAILCALL - These operations represent an abstract X86 call |
| /// instruction, which includes a bunch of information. In particular the |
| /// operands of these node are: |
| /// |
| /// #0 - The incoming token chain |
| /// #1 - The callee |
| /// #2 - The number of arg bytes the caller pushes on the stack. |
| /// #3 - The number of arg bytes the callee pops off the stack. |
| /// #4 - The value to pass in AL/AX/EAX (optional) |
| /// #5 - The value to pass in DL/DX/EDX (optional) |
| /// |
| /// The result values of these nodes are: |
| /// |
| /// #0 - The outgoing token chain |
| /// #1 - The first register result value (optional) |
| /// #2 - The second register result value (optional) |
| /// |
| /// The CALL vs TAILCALL distinction boils down to whether the callee is |
| /// known not to modify the caller's stack frame, as is standard with |
| /// LLVM. |
| CALL, |
| TAILCALL, |
| }; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86TargetLowering - X86 Implementation of the TargetLowering interface |
| namespace { |
| class X86TargetLowering : public TargetLowering { |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area. |
| int ReturnAddrIndex; // FrameIndex for return slot. |
| int BytesToPopOnReturn; // Number of arg bytes ret should pop. |
| int BytesCallerReserves; // Number of arg bytes caller makes. |
| public: |
| X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setSetCCResultType(MVT::i8); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| |
| // Set up the register classes. |
| // FIXME: Eliminate these two classes when legalize can handle promotions |
| // well. |
| addRegisterClass(MVT::i1, X86::R8RegisterClass); |
| addRegisterClass(MVT::i8, X86::R8RegisterClass); |
| addRegisterClass(MVT::i16, X86::R16RegisterClass); |
| addRegisterClass(MVT::i32, X86::R32RegisterClass); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| |
| if (!X86ScalarSSE) { |
| // We can handle SINT_TO_FP and FP_TO_SINT from/TO i64 even though i64 |
| // isn't legal. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); |
| setOperationAction(ISD::SREM , MVT::f64 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Expand); |
| |
| setOperationAction(ISD::READIO , MVT::i1 , Expand); |
| setOperationAction(ISD::READIO , MVT::i8 , Expand); |
| setOperationAction(ISD::READIO , MVT::i16 , Expand); |
| setOperationAction(ISD::READIO , MVT::i32 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i1 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i8 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i16 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i32 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSE) { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::RXMMRegisterClass); |
| addRegisterClass(MVT::f64, X86::RXMMRegisterClass); |
| |
| // SSE has no load+extend ops |
| setOperationAction(ISD::EXTLOAD, MVT::f32, Expand); |
| setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); |
| |
| // SSE has no i16 to fp conversion, only i32 |
| setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); |
| |
| // We don't support sin/cos/sqrt/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FABS , MVT::f64, Expand); |
| setOperationAction(ISD::FNEG , MVT::f64, Expand); |
| setOperationAction(ISD::SREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FABS , MVT::f32, Expand); |
| setOperationAction(ISD::FNEG , MVT::f32, Expand); |
| setOperationAction(ISD::SREM , MVT::f32, Expand); |
| } else { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFPRegisterClass); |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| |
| addLegalFPImmediate(+0.0); // FLD0 |
| addLegalFPImmediate(+1.0); // FLD1 |
| addLegalFPImmediate(-0.0); // FLD0/FCHS |
| addLegalFPImmediate(-1.0); // FLD1/FCHS |
| } |
| computeRegisterProperties(); |
| |
| maxStoresPerMemSet = 8; // For %llvm.memset -> sequence of stores |
| maxStoresPerMemCpy = 8; // For %llvm.memcpy -> sequence of stores |
| maxStoresPerMemMove = 8; // For %llvm.memmove -> sequence of stores |
| allowUnalignedStores = true; // x86 supports it! |
| } |
| |
| // Return the number of bytes that a function should pop when it returns (in |
| // addition to the space used by the return address). |
| // |
| unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } |
| |
| // Return the number of bytes that the caller reserves for arguments passed |
| // to this function. |
| unsigned getBytesCallerReserves() const { return BytesCallerReserves; } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); |
| |
| /// LowerArguments - This hook must be implemented to indicate how we should |
| /// lower the arguments for the specified function, into the specified DAG. |
| virtual std::vector<SDOperand> |
| LowerArguments(Function &F, SelectionDAG &DAG); |
| |
| /// LowerCallTo - This hook lowers an abstract call to a function into an |
| /// actual call. |
| virtual std::pair<SDOperand, SDOperand> |
| LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, |
| bool isTailCall, SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG); |
| |
| virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP, |
| Value *VAListV, SelectionDAG &DAG); |
| virtual std::pair<SDOperand,SDOperand> |
| LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV, |
| const Type *ArgTy, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG); |
| |
| SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG); |
| |
| private: |
| // C Calling Convention implementation. |
| std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG); |
| std::pair<SDOperand, SDOperand> |
| LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, |
| bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); |
| |
| // Fast Calling Convention implementation. |
| std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG); |
| std::pair<SDOperand, SDOperand> |
| LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); |
| }; |
| } |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCArguments(F, DAG); |
| return LowerCCCArguments(F, DAG); |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, |
| bool isVarArg, unsigned CallingConv, |
| bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| assert((!isVarArg || CallingConv == CallingConv::C) && |
| "Only C takes varargs!"); |
| if (CallingConv == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); |
| return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is four bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize; |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = ArgIncrement = 8; break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = ArgIncrement = 8; break; |
| } |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| |
| // Create the SelectionDAG nodes corresponding to a load from this parameter |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| // Don't codegen dead arguments. FIXME: remove this check when we can nuke |
| // dead loads. |
| SDOperand ArgValue; |
| if (!I->use_empty()) |
| ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| else { |
| if (MVT::isInteger(ObjectVT)) |
| ArgValue = DAG.getConstant(0, ObjectVT); |
| else |
| ArgValue = DAG.getConstantFP(0, ObjectVT); |
| } |
| ArgValues.push_back(ArgValue); |
| |
| ArgOffset += ArgIncrement; // Move on to the next argument... |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (F.isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| } |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, |
| bool isVarArg, bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| if (Args.empty()) { |
| // Save zero bytes. |
| Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, |
| DAG.getConstant(0, getPointerTy())); |
| } else { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32, |
| DAG.getEntryNode()); |
| std::vector<SDOperand> Stores; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| if (Args[i].second->isSigned()) |
| Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); |
| else |
| Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); |
| |
| // FALL THROUGH |
| case MVT::i32: |
| case MVT::f32: |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| RetVals.push_back(MVT::Other); |
| |
| // The result values produced have to be legal. Promote the result. |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| RetVals.push_back(RetTyVT); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| RetVals.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| if (X86ScalarSSE) |
| RetVals.push_back(MVT::f32); |
| else |
| RetVals.push_back(MVT::f64); |
| break; |
| case MVT::i64: |
| RetVals.push_back(MVT::i32); |
| RetVals.push_back(MVT::i32); |
| break; |
| } |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(0, getPointerTy())); |
| SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| RetVals, Ops); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); |
| |
| SDOperand ResultVal; |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| ResultVal = TheCall.getValue(1); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); |
| break; |
| case MVT::f32: |
| // FIXME: we would really like to remember that this FP_ROUND operation is |
| // okay to eliminate if we allow excess FP precision. |
| ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); |
| break; |
| case MVT::i64: |
| ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), |
| TheCall.getValue(2)); |
| break; |
| } |
| |
| return std::make_pair(ResultVal, Chain); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, |
| Value *VAListV, SelectionDAG &DAG) { |
| // vastart just stores the address of the VarArgsFrameIndex slot. |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, |
| DAG.getSrcValue(VAListV)); |
| } |
| |
| |
| std::pair<SDOperand,SDOperand> |
| X86TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, |
| Value *VAListV, const Type *ArgTy, |
| SelectionDAG &DAG) { |
| MVT::ValueType ArgVT = getValueType(ArgTy); |
| SDOperand Val = DAG.getLoad(MVT::i32, Chain, |
| VAListP, DAG.getSrcValue(VAListV)); |
| SDOperand Result = DAG.getLoad(ArgVT, Chain, Val, |
| DAG.getSrcValue(NULL)); |
| unsigned Amt; |
| if (ArgVT == MVT::i32) |
| Amt = 4; |
| else { |
| assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && |
| "Other types should have been promoted for varargs!"); |
| Amt = 8; |
| } |
| Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, |
| DAG.getConstant(Amt, Val.getValueType())); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Val, VAListP, DAG.getSrcValue(VAListV)); |
| return std::make_pair(Result, Chain); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The X86 'fast' calling convention passes up to two integer arguments in |
| // registers (an appropriate portion of EAX/EDX), passes arguments in C order, |
| // and requires that the callee pop its arguments off the stack (allowing proper |
| // tail calls), and has the same return value conventions as C calling convs. |
| // |
| // This calling convention always arranges for the callee pop value to be 8n+4 |
| // bytes, which is needed for tail recursion elimination and stack alignment |
| // reasons. |
| // |
| // Note that this can be enhanced in the future to pass fp vals in registers |
| // (when we have a global fp allocator) and do other tricks. |
| // |
| |
| /// AddLiveIn - This helper function adds the specified physical register to the |
| /// MachineFunction as a live in value. It also creates a corresponding virtual |
| /// register for it. |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| TargetRegisterClass *RC) { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); |
| MF.addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Add DAG nodes to load the arguments... On entry to a function the stack |
| // frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first nonreg argument (leftmost lexically) |
| // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size |
| // ... |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| SDOperand ArgValue; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, |
| X86::R8RegisterClass); |
| ArgValue = DAG.getCopyFromReg(VReg, MVT::i8, DAG.getRoot()); |
| DAG.setRoot(ArgValue.getValue(1)); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| |
| ObjSize = 1; |
| break; |
| case MVT::i16: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, |
| X86::R16RegisterClass); |
| ArgValue = DAG.getCopyFromReg(VReg, MVT::i16, DAG.getRoot()); |
| DAG.setRoot(ArgValue.getValue(1)); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| ObjSize = 2; |
| break; |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, |
| X86::R32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(VReg, MVT::i32, DAG.getRoot()); |
| DAG.setRoot(ArgValue.getValue(1)); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| ObjSize = 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs == 0) { |
| if (!I->use_empty()) { |
| unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); |
| unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); |
| |
| SDOperand Low=DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot()); |
| SDOperand Hi =DAG.getCopyFromReg(TopReg, MVT::i32, Low.getValue(1)); |
| DAG.setRoot(Hi.getValue(1)); |
| |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); |
| } |
| NumIntRegs = 2; |
| break; |
| } else if (NumIntRegs == 1) { |
| if (!I->use_empty()) { |
| unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); |
| SDOperand Low = DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot()); |
| DAG.setRoot(Low.getValue(1)); |
| |
| // Load the high part from memory. |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(4, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); |
| } |
| ArgOffset += 4; |
| NumIntRegs = 2; |
| break; |
| } |
| ObjSize = ArgIncrement = 8; |
| break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = ArgIncrement = 8; break; |
| } |
| |
| // Don't codegen dead arguments. FIXME: remove this check when we can nuke |
| // dead loads. |
| if (ObjSize && !I->use_empty()) { |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| } else if (ArgValue.Val == 0) { |
| if (MVT::isInteger(ObjectVT)) |
| ArgValue = DAG.getConstant(0, ObjectVT); |
| else |
| ArgValue = DAG.getConstantFP(0, ObjectVT); |
| } |
| ArgValues.push_back(ArgValue); |
| |
| if (ObjSize) |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. |
| BytesCallerReserves = 0; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| } |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, |
| bool isTailCall, SDOperand Callee, |
| ArgListTy &Args, SelectionDAG &DAG) { |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| ++NumIntRegs; |
| break; |
| } |
| // fall through |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs == 0) { |
| NumIntRegs = 2; |
| break; |
| } else if (NumIntRegs == 1) { |
| NumIntRegs = 2; |
| NumBytes += 4; |
| break; |
| } |
| |
| // fall through |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((NumBytes & 7) == 0) |
| NumBytes += 4; |
| |
| Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32, |
| DAG.getEntryNode()); |
| NumIntRegs = 0; |
| std::vector<SDOperand> Stores; |
| std::vector<SDOperand> RegValuesToPass; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| RegValuesToPass.push_back(Args[i].first); |
| ++NumIntRegs; |
| break; |
| } |
| // Fall through |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::i64: |
| if (NumIntRegs < 2) { // Can pass part of it in regs? |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(1, MVT::i32)); |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(0, MVT::i32)); |
| RegValuesToPass.push_back(Lo); |
| ++NumIntRegs; |
| if (NumIntRegs < 2) { // Pass both parts in regs? |
| RegValuesToPass.push_back(Hi); |
| ++NumIntRegs; |
| } else { |
| // Pass the high part in memory. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Hi, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| } |
| break; |
| } |
| // Fall through |
| case MVT::f64: |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| } |
| if (!Stores.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| |
| RetVals.push_back(MVT::Other); |
| |
| // The result values produced have to be legal. Promote the result. |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| RetVals.push_back(RetTyVT); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| RetVals.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| if (X86ScalarSSE) |
| RetVals.push_back(MVT::f32); |
| else |
| RetVals.push_back(MVT::f64); |
| break; |
| case MVT::i64: |
| RetVals.push_back(MVT::i32); |
| RetVals.push_back(MVT::i32); |
| break; |
| } |
| |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); |
| // Callee pops all arg values on the stack. |
| Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); |
| |
| // Pass register arguments as needed. |
| Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); |
| |
| SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| RetVals, Ops); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); |
| |
| SDOperand ResultVal; |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| ResultVal = TheCall.getValue(1); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); |
| break; |
| case MVT::f32: |
| // FIXME: we would really like to remember that this FP_ROUND operation is |
| // okay to eliminate if we allow excess FP precision. |
| ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); |
| break; |
| case MVT::i64: |
| ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), |
| TheCall.getValue(2)); |
| break; |
| } |
| |
| return std::make_pair(ResultVal, Chain); |
| } |
| |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); |
| } |
| |
| |
| |
| std::pair<SDOperand, SDOperand> X86TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| SDOperand Result; |
| if (Depth) // Depths > 0 not supported yet! |
| Result = DAG.getConstant(0, getPointerTy()); |
| else { |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| if (!isFrameAddress) |
| // Just load the return address |
| Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, |
| DAG.getSrcValue(NULL)); |
| else |
| Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, |
| DAG.getConstant(4, MVT::i32)); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Custom Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::SINT_TO_FP: { |
| assert(Op.getValueType() == MVT::f64 && |
| Op.getOperand(0).getValueType() == MVT::i64 && |
| "Unknown SINT_TO_FP to lower!"); |
| // We lower sint64->FP into a store to a temporary stack slot, followed by a |
| // FILD64m node. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), |
| Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL)); |
| std::vector<MVT::ValueType> RTs; |
| RTs.push_back(MVT::f64); |
| RTs.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Store); |
| Ops.push_back(StackSlot); |
| return DAG.getNode(X86ISD::FILD64m, RTs, Ops); |
| } |
| case ISD::FP_TO_SINT: { |
| assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| Op.getOperand(0).getValueType() == MVT::f64 && |
| "Unknown FP_TO_SINT to lower!"); |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| std::vector<SDOperand> Ops; |
| Ops.push_back(DAG.getEntryNode()); |
| Ops.push_back(Op.getOperand(0)); |
| Ops.push_back(StackSlot); |
| SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), FIST, StackSlot, |
| DAG.getSrcValue(NULL)); |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern Matcher Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses |
| /// SDOperand's instead of register numbers for the leaves of the matched |
| /// tree. |
| struct X86ISelAddressMode { |
| enum { |
| RegBase, |
| FrameIndexBase, |
| } BaseType; |
| |
| struct { // This is really a union, discriminated by BaseType! |
| SDOperand Reg; |
| int FrameIndex; |
| } Base; |
| |
| unsigned Scale; |
| SDOperand IndexReg; |
| unsigned Disp; |
| GlobalValue *GV; |
| |
| X86ISelAddressMode() |
| : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) { |
| } |
| }; |
| } |
| |
| |
| namespace { |
| Statistic<> |
| NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); |
| |
| //===--------------------------------------------------------------------===// |
| /// ISel - X86 specific code to select X86 machine instructions for |
| /// SelectionDAG operations. |
| /// |
| class ISel : public SelectionDAGISel { |
| /// ContainsFPCode - Every instruction we select that uses or defines a FP |
| /// register should set this to true. |
| bool ContainsFPCode; |
| |
| /// X86Lowering - This object fully describes how to lower LLVM code to an |
| /// X86-specific SelectionDAG. |
| X86TargetLowering X86Lowering; |
| |
| /// RegPressureMap - This keeps an approximate count of the number of |
| /// registers required to evaluate each node in the graph. |
| std::map<SDNode*, unsigned> RegPressureMap; |
| |
| /// ExprMap - As shared expressions are codegen'd, we keep track of which |
| /// vreg the value is produced in, so we only emit one copy of each compiled |
| /// tree. |
| std::map<SDOperand, unsigned> ExprMap; |
| |
| /// TheDAG - The DAG being selected during Select* operations. |
| SelectionDAG *TheDAG; |
| |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| public: |
| ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) { |
| Subtarget = TM.getSubtarget<const X86Subtarget>(); |
| } |
| |
| virtual const char *getPassName() const { |
| return "X86 Pattern Instruction Selection"; |
| } |
| |
| unsigned getRegPressure(SDOperand O) { |
| return RegPressureMap[O.Val]; |
| } |
| unsigned ComputeRegPressure(SDOperand O); |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); |
| |
| virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); |
| |
| bool isFoldableLoad(SDOperand Op, SDOperand OtherOp, |
| bool FloatPromoteOk = false); |
| void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM); |
| bool TryToFoldLoadOpStore(SDNode *Node); |
| bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg); |
| void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse); |
| bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond); |
| void EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, |
| unsigned RTrue, unsigned RFalse, unsigned RDest); |
| unsigned SelectExpr(SDOperand N); |
| |
| X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM); |
| bool MatchAddress(SDOperand N, X86ISelAddressMode &AM); |
| void SelectAddress(SDOperand N, X86AddressMode &AM); |
| bool EmitPotentialTailCall(SDNode *Node); |
| void EmitFastCCToFastCCTailCall(SDNode *TailCallNode); |
| void Select(SDOperand N); |
| }; |
| } |
| |
| /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in |
| /// the main function. |
| static void EmitSpecialCodeForMain(MachineBasicBlock *BB, |
| MachineFrameInfo *MFI) { |
| // Switch the FPU to 64-bit precision mode for better compatibility and speed. |
| int CWFrameIdx = MFI->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); |
| |
| // Set the high part to be 64-bit precision. |
| addFrameReference(BuildMI(BB, X86::MOV8mi, 5), |
| CWFrameIdx, 1).addImm(2); |
| |
| // Reload the modified control word now. |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| } |
| |
| void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { |
| // If this function has live-in values, emit the copies from pregs to vregs at |
| // the top of the function, before anything else. |
| MachineBasicBlock *BB = MF.begin(); |
| if (MF.livein_begin() != MF.livein_end()) { |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| for (MachineFunction::livein_iterator LI = MF.livein_begin(), |
| E = MF.livein_end(); LI != E; ++LI) { |
| const TargetRegisterClass *RC = RegMap->getRegClass(LI->second); |
| if (RC == X86::R8RegisterClass) { |
| BuildMI(BB, X86::MOV8rr, 1, LI->second).addReg(LI->first); |
| } else if (RC == X86::R16RegisterClass) { |
| BuildMI(BB, X86::MOV16rr, 1, LI->second).addReg(LI->first); |
| } else if (RC == X86::R32RegisterClass) { |
| BuildMI(BB, X86::MOV32rr, 1, LI->second).addReg(LI->first); |
| } else if (RC == X86::RFPRegisterClass) { |
| BuildMI(BB, X86::FpMOV, 1, LI->second).addReg(LI->first); |
| } else if (RC == X86::RXMMRegisterClass) { |
| BuildMI(BB, X86::MOVAPDrr, 1, LI->second).addReg(LI->first); |
| } else { |
| assert(0 && "Unknown regclass!"); |
| } |
| } |
| } |
| |
| |
| // If this is main, emit special code for main. |
| if (Fn.hasExternalLinkage() && Fn.getName() == "main") |
| EmitSpecialCodeForMain(BB, MF.getFrameInfo()); |
| } |
| |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel |
| /// when it has created a SelectionDAG for us to codegen. |
| void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| // While we're doing this, keep track of whether we see any FP code for |
| // FP_REG_KILL insertion. |
| ContainsFPCode = false; |
| MachineFunction *MF = BB->getParent(); |
| |
| // Scan the PHI nodes that already are inserted into this basic block. If any |
| // of them is a PHI of a floating point value, we need to insert an |
| // FP_REG_KILL. |
| SSARegMap *RegMap = MF->getSSARegMap(); |
| if (BB != MF->begin()) |
| for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); |
| I != E; ++I) { |
| assert(I->getOpcode() == X86::PHI && |
| "Isn't just PHI nodes?"); |
| if (RegMap->getRegClass(I->getOperand(0).getReg()) == |
| X86::RFPRegisterClass) { |
| ContainsFPCode = true; |
| break; |
| } |
| } |
| |
| // Compute the RegPressureMap, which is an approximation for the number of |
| // registers required to compute each node. |
| ComputeRegPressure(DAG.getRoot()); |
| |
| TheDAG = &DAG; |
| |
| // Codegen the basic block. |
| Select(DAG.getRoot()); |
| |
| TheDAG = 0; |
| |
| // Finally, look at all of the successors of this block. If any contain a PHI |
| // node of FP type, we need to insert an FP_REG_KILL in this block. |
| for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), |
| E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI) |
| for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end(); |
| I != E && I->getOpcode() == X86::PHI; ++I) { |
| if (RegMap->getRegClass(I->getOperand(0).getReg()) == |
| X86::RFPRegisterClass) { |
| ContainsFPCode = true; |
| break; |
| } |
| } |
| |
| // Final check, check LLVM BB's that are successors to the LLVM BB |
| // corresponding to BB for FP PHI nodes. |
| const BasicBlock *LLVMBB = BB->getBasicBlock(); |
| const PHINode *PN; |
| if (!ContainsFPCode) |
| for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); |
| SI != E && !ContainsFPCode; ++SI) |
| for (BasicBlock::const_iterator II = SI->begin(); |
| (PN = dyn_cast<PHINode>(II)); ++II) |
| if (PN->getType()->isFloatingPoint()) { |
| ContainsFPCode = true; |
| break; |
| } |
| |
| |
| // Insert FP_REG_KILL instructions into basic blocks that need them. This |
| // only occurs due to the floating point stackifier not being aggressive |
| // enough to handle arbitrary global stackification. |
| // |
| // Currently we insert an FP_REG_KILL instruction into each block that uses or |
| // defines a floating point virtual register. |
| // |
| // When the global register allocators (like linear scan) finally update live |
| // variable analysis, we can keep floating point values in registers across |
| // basic blocks. This will be a huge win, but we are waiting on the global |
| // allocators before we can do this. |
| // |
| if (ContainsFPCode) { |
| BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); |
| ++NumFPKill; |
| } |
| |
| // Clear state used for selection. |
| ExprMap.clear(); |
| RegPressureMap.clear(); |
| } |
| |
| |
| // ComputeRegPressure - Compute the RegPressureMap, which is an approximation |
| // for the number of registers required to compute each node. This is basically |
| // computing a generalized form of the Sethi-Ullman number for each node. |
| unsigned ISel::ComputeRegPressure(SDOperand O) { |
| SDNode *N = O.Val; |
| unsigned &Result = RegPressureMap[N]; |
| if (Result) return Result; |
| |
| // FIXME: Should operations like CALL (which clobber lots o regs) have a |
| // higher fixed cost?? |
| |
| if (N->getNumOperands() == 0) { |
| Result = 1; |
| } else { |
| unsigned MaxRegUse = 0; |
| unsigned NumExtraMaxRegUsers = 0; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| unsigned Regs; |
| if (N->getOperand(i).getOpcode() == ISD::Constant) |
| Regs = 0; |
| else |
| Regs = ComputeRegPressure(N->getOperand(i)); |
| if (Regs > MaxRegUse) { |
| MaxRegUse = Regs; |
| NumExtraMaxRegUsers = 0; |
| } else if (Regs == MaxRegUse && |
| N->getOperand(i).getValueType() != MVT::Other) { |
| ++NumExtraMaxRegUsers; |
| } |
| } |
| |
| if (O.getOpcode() != ISD::TokenFactor) |
| Result = MaxRegUse+NumExtraMaxRegUsers; |
| else |
| Result = MaxRegUse == 1 ? 0 : MaxRegUse-1; |
| } |
| |
| //std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n"; |
| return Result; |
| } |
| |
| /// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op. |
| /// The DAG cannot have cycles in it, by definition, so the visited set is not |
| /// needed to prevent infinite loops. The DAG CAN, however, have unbounded |
| /// reuse, so it prevents exponential cases. |
| /// |
| static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op, |
| std::set<SDNode*> &Visited) { |
| if (N == Op) return true; // Found it. |
| SDNode *Node = N.Val; |
| if (Node->getNumOperands() == 0 || // Leaf? |
| Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it? |
| if (!Visited.insert(Node).second) return false; // Already visited? |
| |
| // Recurse for the first N-1 operands. |
| for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) |
| if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited)) |
| return true; |
| |
| // Tail recurse for the last operand. |
| return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited); |
| } |
| |
| X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) { |
| X86AddressMode Result; |
| |
| // If we need to emit two register operands, emit the one with the highest |
| // register pressure first. |
| if (IAM.BaseType == X86ISelAddressMode::RegBase && |
| IAM.Base.Reg.Val && IAM.IndexReg.Val) { |
| bool EmitBaseThenIndex; |
| if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) { |
| std::set<SDNode*> Visited; |
| EmitBaseThenIndex = true; |
| // If Base ends up pointing to Index, we must emit index first. This is |
| // because of the way we fold loads, we may end up doing bad things with |
| // the folded add. |
| if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited)) |
| EmitBaseThenIndex = false; |
| } else { |
| std::set<SDNode*> Visited; |
| EmitBaseThenIndex = false; |
| // If Base ends up pointing to Index, we must emit index first. This is |
| // because of the way we fold loads, we may end up doing bad things with |
| // the folded add. |
| if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited)) |
| EmitBaseThenIndex = true; |
| } |
| |
| if (EmitBaseThenIndex) { |
| Result.Base.Reg = SelectExpr(IAM.Base.Reg); |
| Result.IndexReg = SelectExpr(IAM.IndexReg); |
| } else { |
| Result.IndexReg = SelectExpr(IAM.IndexReg); |
| Result.Base.Reg = SelectExpr(IAM.Base.Reg); |
| } |
| |
| } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) { |
| Result.Base.Reg = SelectExpr(IAM.Base.Reg); |
| } else if (IAM.IndexReg.Val) { |
| Result.IndexReg = SelectExpr(IAM.IndexReg); |
| } |
| |
| switch (IAM.BaseType) { |
| case X86ISelAddressMode::RegBase: |
| Result.BaseType = X86AddressMode::RegBase; |
| break; |
| case X86ISelAddressMode::FrameIndexBase: |
| Result.BaseType = X86AddressMode::FrameIndexBase; |
| Result.Base.FrameIndex = IAM.Base.FrameIndex; |
| break; |
| default: |
| assert(0 && "Unknown base type!"); |
| break; |
| } |
| Result.Scale = IAM.Scale; |
| Result.Disp = IAM.Disp; |
| Result.GV = IAM.GV; |
| return Result; |
| } |
| |
| /// SelectAddress - Pattern match the maximal addressing mode for this node and |
| /// emit all of the leaf registers. |
| void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) { |
| X86ISelAddressMode IAM; |
| MatchAddress(N, IAM); |
| AM = SelectAddrExprs(IAM); |
| } |
| |
| /// MatchAddress - Add the specified node to the specified addressing mode, |
| /// returning true if it cannot be done. This just pattern matches for the |
| /// addressing mode, it does not cause any code to be emitted. For that, use |
| /// SelectAddress. |
| bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) { |
| switch (N.getOpcode()) { |
| default: break; |
| case ISD::FrameIndex: |
| if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { |
| AM.BaseType = X86ISelAddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); |
| return false; |
| } |
| break; |
| case ISD::GlobalAddress: |
| if (AM.GV == 0) { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); |
| // For Darwin, external and weak symbols are indirect, so we want to load |
| // the value at address GV, not the value of GV itself. This means that |
| // the GlobalAddress must be in the base or index register of the address, |
| // not the GV offset field. |
| if (Subtarget->getIndirectExternAndWeakGlobals() && |
| (GV->hasWeakLinkage() || GV->isExternal())) { |
| break; |
| } else { |
| AM.GV = GV; |
| return false; |
| } |
| } |
| break; |
| case ISD::Constant: |
| AM.Disp += cast<ConstantSDNode>(N)->getValue(); |
| return false; |
| case ISD::SHL: |
| // We might have folded the load into this shift, so don't regen the value |
| // if so. |
| if (ExprMap.count(N)) break; |
| |
| if (AM.IndexReg.Val == 0 && AM.Scale == 1) |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) { |
| unsigned Val = CN->getValue(); |
| if (Val == 1 || Val == 2 || Val == 3) { |
| AM.Scale = 1 << Val; |
| SDOperand ShVal = N.Val->getOperand(0); |
| |
| // Okay, we know that we have a scale by now. However, if the scaled |
| // value is an add of something and a constant, we can fold the |
| // constant into the disp field here. |
| if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && |
| isa<ConstantSDNode>(ShVal.Val->getOperand(1))) { |
| AM.IndexReg = ShVal.Val->getOperand(0); |
| ConstantSDNode *AddVal = |
| cast<ConstantSDNode>(ShVal.Val->getOperand(1)); |
| AM.Disp += AddVal->getValue() << Val; |
| } else { |
| AM.IndexReg = ShVal; |
| } |
| return false; |
| } |
| } |
| break; |
| case ISD::MUL: |
| // We might have folded the load into this mul, so don't regen the value if |
| // so. |
| if (ExprMap.count(N)) break; |
| |
| // X*[3,5,9] -> X+X*[2,4,8] |
| if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base.Reg.Val == 0) |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) |
| if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { |
| AM.Scale = unsigned(CN->getValue())-1; |
| |
| SDOperand MulVal = N.Val->getOperand(0); |
| SDOperand Reg; |
| |
| // Okay, we know that we have a scale by now. However, if the scaled |
| // value is an add of something and a constant, we can fold the |
| // constant into the disp field here. |
| if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && |
| isa<ConstantSDNode>(MulVal.Val->getOperand(1))) { |
| Reg = MulVal.Val->getOperand(0); |
| ConstantSDNode *AddVal = |
| cast<ConstantSDNode>(MulVal.Val->getOperand(1)); |
| AM.Disp += AddVal->getValue() * CN->getValue(); |
| } else { |
| Reg = N.Val->getOperand(0); |
| } |
| |
| AM.IndexReg = AM.Base.Reg = Reg; |
| return false; |
| } |
| break; |
| |
| case ISD::ADD: { |
| // We might have folded the load into this mul, so don't regen the value if |
| // so. |
| if (ExprMap.count(N)) break; |
| |
| X86ISelAddressMode Backup = AM; |
| if (!MatchAddress(N.Val->getOperand(0), AM) && |
| !MatchAddress(N.Val->getOperand(1), AM)) |
| return false; |
| AM = Backup; |
| if (!MatchAddress(N.Val->getOperand(1), AM) && |
| !MatchAddress(N.Val->getOperand(0), AM)) |
| return false; |
| AM = Backup; |
| break; |
| } |
| } |
| |
| // Is the base register already occupied? |
| if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { |
| // If so, check to see if the scale index register is set. |
| if (AM.IndexReg.Val == 0) { |
| AM.IndexReg = N; |
| AM.Scale = 1; |
| return false; |
| } |
| |
| // Otherwise, we cannot select it. |
| return true; |
| } |
| |
| // Default, generate it as a register. |
| AM.BaseType = X86ISelAddressMode::RegBase; |
| AM.Base.Reg = N; |
| return false; |
| } |
| |
| /// Emit2SetCCsAndLogical - Emit the following sequence of instructions, |
| /// assuming that the temporary registers are in the 8-bit register class. |
| /// |
| /// Tmp1 = setcc1 |
| /// Tmp2 = setcc2 |
| /// DestReg = logicalop Tmp1, Tmp2 |
| /// |
| static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1, |
| unsigned SetCC2, unsigned LogicalOp, |
| unsigned DestReg) { |
| SSARegMap *RegMap = BB->getParent()->getSSARegMap(); |
| unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass); |
| unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass); |
| BuildMI(BB, SetCC1, 0, Tmp1); |
| BuildMI(BB, SetCC2, 0, Tmp2); |
| BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2); |
| } |
| |
| /// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the |
| /// condition codes match the specified SetCCOpcode. Note that some conditions |
| /// require multiple instructions to generate the correct value. |
| static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg, |
| ISD::CondCode SetCCOpcode, bool isFP) { |
| unsigned Opc; |
| if (!isFP) { |
| switch (SetCCOpcode) { |
| default: assert(0 && "Illegal integer SetCC!"); |
| case ISD::SETEQ: Opc = X86::SETEr; break; |
| case ISD::SETGT: Opc = X86::SETGr; break; |
| case ISD::SETGE: Opc = X86::SETGEr; break; |
| case ISD::SETLT: Opc = X86::SETLr; break; |
| case ISD::SETLE: Opc = X86::SETLEr; break; |
| case ISD::SETNE: Opc = X86::SETNEr; break; |
| case ISD::SETULT: Opc = X86::SETBr; break; |
| case ISD::SETUGT: Opc = X86::SETAr; break; |
| case ISD::SETULE: Opc = X86::SETBEr; break; |
| case ISD::SETUGE: Opc = X86::SETAEr; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| // |
| switch (SetCCOpcode) { |
| default: assert(0 && "Invalid FP setcc!"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: |
| Opc = X86::SETEr; // True if ZF = 1 |
| break; |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| Opc = X86::SETAr; // True if CF = 0 and ZF = 0 |
| break; |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| Opc = X86::SETAEr; // True if CF = 0 |
| break; |
| case ISD::SETULT: |
| case ISD::SETLT: |
| Opc = X86::SETBr; // True if CF = 1 |
| break; |
| case ISD::SETULE: |
| case ISD::SETLE: |
| Opc = X86::SETBEr; // True if CF = 1 or ZF = 1 |
| break; |
| case ISD::SETONE: |
| case ISD::SETNE: |
| Opc = X86::SETNEr; // True if ZF = 0 |
| break; |
| case ISD::SETUO: |
| Opc = X86::SETPr; // True if PF = 1 |
| break; |
| case ISD::SETO: |
| Opc = X86::SETNPr; // True if PF = 0 |
| break; |
| case ISD::SETOEQ: // !PF & ZF |
| Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg); |
| return; |
| case ISD::SETOLT: // !PF & CF |
| Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg); |
| return; |
| case ISD::SETOLE: // !PF & (CF || ZF) |
| Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg); |
| return; |
| case ISD::SETUGT: // PF | (!ZF & !CF) |
| Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg); |
| return; |
| case ISD::SETUGE: // PF | !CF |
| Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg); |
| return; |
| case ISD::SETUNE: // PF | !ZF |
| Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg); |
| return; |
| } |
| } |
| BuildMI(BB, Opc, 0, DestReg); |
| } |
| |
| |
| /// EmitBranchCC - Emit code into BB that arranges for control to transfer to |
| /// the Dest block if the Cond condition is true. If we cannot fold this |
| /// condition into the branch, return true. |
| /// |
| bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, |
| SDOperand Cond) { |
| // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A > |
| // B) using two conditional branches instead of one condbr, two setcc's, and |
| // an or. |
| if ((Cond.getOpcode() == ISD::OR || |
| Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) { |
| // And and or set the flags for us, so there is no need to emit a TST of the |
| // result. It is only safe to do this if there is only a single use of the |
| // AND/OR though, otherwise we don't know it will be emitted here. |
| Select(Chain); |
| SelectExpr(Cond); |
| BuildMI(BB, X86::JNE, 1).addMBB(Dest); |
| return false; |
| } |
| |
| // Codegen br not C -> JE. |
| if (Cond.getOpcode() == ISD::XOR) |
| if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1))) |
| if (NC->isAllOnesValue()) { |
| unsigned CondR; |
| if (getRegPressure(Chain) > getRegPressure(Cond)) { |
| Select(Chain); |
| CondR = SelectExpr(Cond.Val->getOperand(0)); |
| } else { |
| CondR = SelectExpr(Cond.Val->getOperand(0)); |
| Select(Chain); |
| } |
| BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR); |
| BuildMI(BB, X86::JE, 1).addMBB(Dest); |
| return false; |
| } |
| |
| SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond); |
| if (SetCC == 0) |
| return true; // Can only handle simple setcc's so far. |
| |
| unsigned Opc; |
| |
| // Handle integer conditions first. |
| if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Illegal integer SetCC!"); |
| case ISD::SETEQ: Opc = X86::JE; break; |
| case ISD::SETGT: Opc = X86::JG; break; |
| case ISD::SETGE: Opc = X86::JGE; break; |
| case ISD::SETLT: Opc = X86::JL; break; |
| case ISD::SETLE: Opc = X86::JLE; break; |
| case ISD::SETNE: Opc = X86::JNE; break; |
| case ISD::SETULT: Opc = X86::JB; break; |
| case ISD::SETUGT: Opc = X86::JA; break; |
| case ISD::SETULE: Opc = X86::JBE; break; |
| case ISD::SETUGE: Opc = X86::JAE; break; |
| } |
| Select(Chain); |
| EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse()); |
| BuildMI(BB, Opc, 1).addMBB(Dest); |
| return false; |
| } |
| |
| unsigned Opc2 = 0; // Second branch if needed. |
| |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| // |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Invalid FP setcc!"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1 |
| case ISD::SETOGT: |
| case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0 |
| case ISD::SETOGE: |
| case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0 |
| case ISD::SETULT: |
| case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1 |
| case ISD::SETULE: |
| case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1 |
| case ISD::SETONE: |
| case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0 |
| case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1 |
| case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0 |
| case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) |
| Opc = X86::JA; // ZF = 0 & CF = 0 |
| Opc2 = X86::JP; // PF = 1 |
| break; |
| case ISD::SETUGE: // PF = 1 | CF = 0 |
| Opc = X86::JAE; // CF = 0 |
| Opc2 = X86::JP; // PF = 1 |
| break; |
| case ISD::SETUNE: // PF = 1 | ZF = 0 |
| Opc = X86::JNE; // ZF = 0 |
| Opc2 = X86::JP; // PF = 1 |
| break; |
| case ISD::SETOEQ: // PF = 0 & ZF = 1 |
| //X86::JNP, X86::JE |
| //X86::AND8rr |
| return true; // FIXME: Emit more efficient code for this branch. |
| case ISD::SETOLT: // PF = 0 & CF = 1 |
| //X86::JNP, X86::JB |
| //X86::AND8rr |
| return true; // FIXME: Emit more efficient code for this branch. |
| case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) |
| //X86::JNP, X86::JBE |
| //X86::AND8rr |
| return true; // FIXME: Emit more efficient code for this branch. |
| } |
| |
| Select(Chain); |
| EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse()); |
| BuildMI(BB, Opc, 1).addMBB(Dest); |
| if (Opc2) |
| BuildMI(BB, Opc2, 1).addMBB(Dest); |
| return false; |
| } |
| |
| /// EmitSelectCC - Emit code into BB that performs a select operation between |
| /// the two registers RTrue and RFalse, generating a result into RDest. Return |
| /// true if the fold cannot be performed. |
| /// |
| void ISel::EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, |
| unsigned RTrue, unsigned RFalse, unsigned RDest) { |
| enum Condition { |
| EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP, |
| NOT_SET |
| } CondCode = NOT_SET; |
| |
| static const unsigned CMOVTAB16[] = { |
| X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr, |
| X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr, |
| X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr, |
| }; |
| static const unsigned CMOVTAB32[] = { |
| X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr, |
| X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr, |
| X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr, |
| }; |
| static const unsigned CMOVTABFP[] = { |
| X86::FCMOVE , X86::FCMOVNE, /*missing*/0, /*missing*/0, |
| /*missing*/0, /*missing*/0, X86::FCMOVB , X86::FCMOVBE, |
| X86::FCMOVA , X86::FCMOVAE, X86::FCMOVP , X86::FCMOVNP |
| }; |
| static const int SSE_CMOVTAB[] = { |
| 0 /* CMPEQSS */, 4 /* CMPNEQSS */, 1 /* CMPLTSS */, 2 /* CMPLESS */, |
| 1 /* CMPLTSS */, 2 /* CMPLESS */, /*missing*/0, /*missing*/0, |
| /*missing*/0, /*missing*/0, /*missing*/0, /*missing*/0 |
| }; |
| |
| if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond)) { |
| if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unknown integer comparison!"); |
| case ISD::SETEQ: CondCode = EQ; break; |
| case ISD::SETGT: CondCode = GT; break; |
| case ISD::SETGE: CondCode = GE; break; |
| case ISD::SETLT: CondCode = LT; break; |
| case ISD::SETLE: CondCode = LE; break; |
| case ISD::SETNE: CondCode = NE; break; |
| case ISD::SETULT: CondCode = B; break; |
| case ISD::SETUGT: CondCode = A; break; |
| case ISD::SETULE: CondCode = BE; break; |
| case ISD::SETUGE: CondCode = AE; break; |
| } |
| } else if (X86ScalarSSE) { |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unknown scalar fp comparison!"); |
| case ISD::SETEQ: CondCode = EQ; break; |
| case ISD::SETNE: CondCode = NE; break; |
| case ISD::SETULT: |
| case ISD::SETLT: CondCode = LT; break; |
| case ISD::SETULE: |
| case ISD::SETLE: CondCode = LE; break; |
| case ISD::SETUGT: |
| case ISD::SETGT: CondCode = GT; break; |
| case ISD::SETUGE: |
| case ISD::SETGE: CondCode = GE; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| // |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unknown FP comparison!"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1 |
| case ISD::SETOGT: |
| case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0 |
| case ISD::SETOGE: |
| case ISD::SETGE: CondCode = AE; break; // True if CF = 0 |
| case ISD::SETULT: |
| case ISD::SETLT: CondCode = B; break; // True if CF = 1 |
| case ISD::SETULE: |
| case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1 |
| case ISD::SETONE: |
| case ISD::SETNE: CondCode = NE; break; // True if ZF = 0 |
| case ISD::SETUO: CondCode = P; break; // True if PF = 1 |
| case ISD::SETO: CondCode = NP; break; // True if PF = 0 |
| case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) |
| case ISD::SETUGE: // PF = 1 | CF = 0 |
| case ISD::SETUNE: // PF = 1 | ZF = 0 |
| case ISD::SETOEQ: // PF = 0 & ZF = 1 |
| case ISD::SETOLT: // PF = 0 & CF = 1 |
| case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) |
| // We cannot emit this comparison as a single cmov. |
| break; |
| } |
| } |
| } |
| |
| // There's no SSE equivalent of FCMOVE. In some cases we can fake it up, in |
| // Others we will have to do the PowerPC thing and generate an MBB for the |
| // true and false values and select between them with a PHI. |
| if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) { |
| if (0 && CondCode != NOT_SET) { |
| // FIXME: check for min and max |
| } else { |
| // FIXME: emit a direct compare and branch rather than setting a cond reg |
| // and testing it. |
| unsigned CondReg = SelectExpr(Cond); |
| BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); |
| |
| // Create an iterator with which to insert the MBB for copying the false |
| // value and the MBB to hold the PHI instruction for this SetCC. |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC sinkMBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse) |
| .addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB); |
| } |
| return; |
| } |
| |
| unsigned Opc = 0; |
| if (CondCode != NOT_SET) { |
| switch (SVT) { |
| default: assert(0 && "Cannot select this type!"); |
| case MVT::i16: Opc = CMOVTAB16[CondCode]; break; |
| case MVT::i32: Opc = CMOVTAB32[CondCode]; break; |
| case MVT::f64: Opc = CMOVTABFP[CondCode]; break; |
| } |
| } |
| |
| // Finally, if we weren't able to fold this, just emit the condition and test |
| // it. |
| if (CondCode == NOT_SET || Opc == 0) { |
| // Get the condition into the zero flag. |
| unsigned CondReg = SelectExpr(Cond); |
| BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); |
| |
| switch (SVT) { |
| default: assert(0 && "Cannot select this type!"); |
| case MVT::i16: Opc = X86::CMOVE16rr; break; |
| case MVT::i32: Opc = X86::CMOVE32rr; break; |
| case MVT::f64: Opc = X86::FCMOVE; break; |
| } |
| } else { |
| // FIXME: CMP R, 0 -> TEST R, R |
| EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse()); |
| std::swap(RTrue, RFalse); |
| } |
| BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse); |
| } |
| |
| void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) { |
| unsigned Opc; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { |
| Opc = 0; |
| if (HasOneUse && isFoldableLoad(LHS, RHS)) { |
| switch (RHS.getValueType()) { |
| default: break; |
| case MVT::i1: |
| case MVT::i8: Opc = X86::CMP8mi; break; |
| case MVT::i16: Opc = X86::CMP16mi; break; |
| case MVT::i32: Opc = X86::CMP32mi; break; |
| } |
| if (Opc) { |
| X86AddressMode AM; |
| EmitFoldedLoad(LHS, AM); |
| addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue()); |
| return; |
| } |
| } |
| |
| switch (RHS.getValueType()) { |
| default: break; |
| case MVT::i1: |
| case MVT::i8: Opc = X86::CMP8ri; break; |
| case MVT::i16: Opc = X86::CMP16ri; break; |
| case MVT::i32: Opc = X86::CMP32ri; break; |
| } |
| if (Opc) { |
| unsigned Tmp1 = SelectExpr(LHS); |
| BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue()); |
| return; |
| } |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) { |
| if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) || |
| CN->isExactlyValue(-0.0))) { |
| unsigned Reg = SelectExpr(LHS); |
| BuildMI(BB, X86::FTST, 1).addReg(Reg); |
| BuildMI(BB, X86::FNSTSW8r, 0); |
| BuildMI(BB, X86::SAHF, 1); |
| return; |
| } |
| } |
| |
| Opc = 0; |
| if (HasOneUse && isFoldableLoad(LHS, RHS)) { |
| switch (RHS.getValueType()) { |
| default: break; |
| case MVT::i1: |
| case MVT::i8: Opc = X86::CMP8mr; break; |
| case MVT::i16: Opc = X86::CMP16mr; break; |
| case MVT::i32: Opc = X86::CMP32mr; break; |
| } |
| if (Opc) { |
| X86AddressMode AM; |
| EmitFoldedLoad(LHS, AM); |
| unsigned Reg = SelectExpr(RHS); |
| addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg); |
| return; |
| } |
| } |
| |
| switch (LHS.getValueType()) { |
| default: assert(0 && "Cannot compare this value!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::CMP8rr; break; |
| case MVT::i16: Opc = X86::CMP16rr; break; |
| case MVT::i32: Opc = X86::CMP32rr; break; |
| case MVT::f32: Opc = X86::UCOMISSrr; break; |
| case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FUCOMIr; break; |
| } |
| unsigned Tmp1, Tmp2; |
| if (getRegPressure(LHS) > getRegPressure(RHS)) { |
| Tmp1 = SelectExpr(LHS); |
| Tmp2 = SelectExpr(RHS); |
| } else { |
| Tmp2 = SelectExpr(RHS); |
| Tmp1 = SelectExpr(LHS); |
| } |
| BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2); |
| } |
| |
| /// isFoldableLoad - Return true if this is a load instruction that can safely |
| /// be folded into an operation that uses it. |
| bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){ |
| if (Op.getOpcode() == ISD::LOAD) { |
| // FIXME: currently can't fold constant pool indexes. |
| if (isa<ConstantPoolSDNode>(Op.getOperand(1))) |
| return false; |
| } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD && |
| cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::f32) { |
| // FIXME: currently can't fold constant pool indexes. |
| if (isa<ConstantPoolSDNode>(Op.getOperand(1))) |
| return false; |
| } else { |
| return false; |
| } |
| |
| // If this load has already been emitted, we clearly can't fold it. |
| assert(Op.ResNo == 0 && "Not a use of the value of the load?"); |
| if (ExprMap.count(Op.getValue(1))) return false; |
| assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?"); |
| assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?"); |
| |
| // If there is not just one use of its value, we cannot fold. |
| if (!Op.Val->hasNUsesOfValue(1, 0)) return false; |
| |
| // Finally, we cannot fold the load into the operation if this would induce a |
| // cycle into the resultant dag. To check for this, see if OtherOp (the other |
| // operand of the operation we are folding the load into) can possible use the |
| // chain node defined by the load. |
| if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain? |
| std::set<SDNode*> Visited; |
| if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited)) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| /// EmitFoldedLoad - Ensure that the arguments of the load are code generated, |
| /// and compute the address being loaded into AM. |
| void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) { |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Address = Op.getOperand(1); |
| |
| if (getRegPressure(Chain) > getRegPressure(Address)) { |
| Select(Chain); |
| SelectAddress(Address, AM); |
| } else { |
| SelectAddress(Address, AM); |
| Select(Chain); |
| } |
| |
| // The chain for this load is now lowered. |
| assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 && |
| "Load emitted more than once?"); |
| if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second) |
| assert(0 && "Load emitted more than once!"); |
| } |
| |
| // EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1 |
| // and op2 are i8/i16/i32 values with one use each (the or). If we can form a |
| // SHLD or SHRD, emit the instruction (generating the value into DestReg) and |
| // return true. |
| bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) { |
| if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) { |
| // good! |
| } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) { |
| std::swap(Op1, Op2); // Op1 is the SHL now. |
| } else { |
| return false; // No match |
| } |
| |
| SDOperand ShlVal = Op1.getOperand(0); |
| SDOperand ShlAmt = Op1.getOperand(1); |
| SDOperand ShrVal = Op2.getOperand(0); |
| SDOperand ShrAmt = Op2.getOperand(1); |
| |
| unsigned RegSize = MVT::getSizeInBits(Op1.getValueType()); |
| |
| // Find out if ShrAmt = 32-ShlAmt or ShlAmt = 32-ShrAmt. |
| if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt) |
| if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0))) |
| if (SubCST->getValue() == RegSize) { |
| // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt |
| // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt |
| if (ShrVal == ShlVal) { |
| unsigned Reg, ShAmt; |
| if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) { |
| Reg = SelectExpr(ShrVal); |
| ShAmt = SelectExpr(ShrAmt); |
| } else { |
| ShAmt = SelectExpr(ShrAmt); |
| Reg = SelectExpr(ShrVal); |
| } |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); |
| unsigned Opc = RegSize == 8 ? X86::ROR8rCL : |
| (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL); |
| BuildMI(BB, Opc, 1, DestReg).addReg(Reg); |
| return true; |
| } else if (RegSize != 8) { |
| unsigned AReg, BReg; |
| if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { |
| BReg = SelectExpr(ShlVal); |
| AReg = SelectExpr(ShrVal); |
| } else { |
| AReg = SelectExpr(ShrVal); |
| BReg = SelectExpr(ShlVal); |
| } |
| unsigned ShAmt = SelectExpr(ShrAmt); |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); |
| unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL; |
| BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); |
| return true; |
| } |
| } |
| |
| if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt) |
| if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0))) |
| if (SubCST->getValue() == RegSize) { |
| // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt |
| // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt |
| if (ShrVal == ShlVal) { |
| unsigned Reg, ShAmt; |
| if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) { |
| Reg = SelectExpr(ShrVal); |
| ShAmt = SelectExpr(ShlAmt); |
| } else { |
| ShAmt = SelectExpr(ShlAmt); |
| Reg = SelectExpr(ShrVal); |
| } |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); |
| unsigned Opc = RegSize == 8 ? X86::ROL8rCL : |
| (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL); |
| BuildMI(BB, Opc, 1, DestReg).addReg(Reg); |
| return true; |
| } else if (RegSize != 8) { |
| unsigned AReg, BReg; |
| if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { |
| AReg = SelectExpr(ShlVal); |
| BReg = SelectExpr(ShrVal); |
| } else { |
| BReg = SelectExpr(ShrVal); |
| AReg = SelectExpr(ShlVal); |
| } |
| unsigned ShAmt = SelectExpr(ShlAmt); |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); |
| unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL; |
| BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); |
| return true; |
| } |
| } |
| |
| if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt)) |
| if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt)) |
| if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize) |
| if (ShrCst->getValue() == RegSize-ShlCst->getValue()) { |
| // (A >> 5) | (A << 27) --> ROR A, 5 |
| // (A >> 5) | (B << 27) --> SHRD A, B, 5 |
| if (ShrVal == ShlVal) { |
| unsigned Reg = SelectExpr(ShrVal); |
| unsigned Opc = RegSize == 8 ? X86::ROR8ri : |
| (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri); |
| BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue()); |
| return true; |
| } else if (RegSize != 8) { |
| unsigned AReg, BReg; |
| if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { |
| BReg = SelectExpr(ShlVal); |
| AReg = SelectExpr(ShrVal); |
| } else { |
| AReg = SelectExpr(ShrVal); |
| BReg = SelectExpr(ShlVal); |
| } |
| unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8; |
| BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg) |
| .addImm(ShrCst->getValue()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| unsigned ISel::SelectExpr(SDOperand N) { |
| unsigned Result; |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| SDNode *Node = N.Val; |
| SDOperand Op0, Op1; |
| |
| if (Node->getOpcode() == ISD::CopyFromReg) { |
| if (MRegisterInfo::isVirtualRegister(cast<RegSDNode>(Node)->getReg()) || |
| cast<RegSDNode>(Node)->getReg() == X86::ESP) { |
| // Just use the specified register as our input. |
| return cast<RegSDNode>(Node)->getReg(); |
| } |
| } |
| |
| unsigned &Reg = ExprMap[N]; |
| if (Reg) return Reg; |
| |
| switch (N.getOpcode()) { |
| default: |
| Reg = Result = (N.getValueType() != MVT::Other) ? |
| MakeReg(N.getValueType()) : 1; |
| break; |
| case X86ISD::TAILCALL: |
| case X86ISD::CALL: |
| // If this is a call instruction, make sure to prepare ALL of the result |
| // values as well as the chain. |
| ExprMap[N.getValue(0)] = 1; |
| if (Node->getNumValues() > 1) { |
| Result = MakeReg(Node->getValueType(1)); |
| ExprMap[N.getValue(1)] = Result; |
| for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| } else { |
| Result = 1; |
| } |
| break; |
| case ISD::ADD_PARTS: |
| case ISD::SUB_PARTS: |
| case ISD::SHL_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| break; |
| } |
| |
| switch (N.getOpcode()) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| case ISD::FP_EXTEND: |
| assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1); |
| return Result; |
| case ISD::FP_ROUND: |
| assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, X86::CVTSD2SSrr, 1, Result).addReg(Tmp1); |
| return Result; |
| case ISD::CopyFromReg: |
| Select(N.getOperand(0)); |
| if (Result == 1) { |
| Reg = Result = ExprMap[N.getValue(0)] = |
| MakeReg(N.getValue(0).getValueType()); |
| } |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Cannot CopyFromReg this!"); |
| case MVT::i1: |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr, 1, |
| Result).addReg(cast<RegSDNode>(Node)->getReg()); |
| return Result; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1, |
| Result).addReg(cast<RegSDNode>(Node)->getReg()); |
| return Result; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, |
| Result).addReg(cast<RegSDNode>(Node)->getReg()); |
| return Result; |
| } |
| |
| case ISD::FrameIndex: |
| Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); |
| addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1); |
| return Result; |
| case ISD::ConstantPool: |
| Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex(); |
| addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1); |
| return Result; |
| case ISD::ConstantFP: |
| ContainsFPCode = true; |
| Tmp1 = Result; // Intermediate Register |
| if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) |
| Tmp1 = MakeReg(MVT::f64); |
| |
| if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) |
| BuildMI(BB, X86::FLD0, 0, Tmp1); |
| else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0)) |
| BuildMI(BB, X86::FLD1, 0, Tmp1); |
| else |
| assert(0 && "Unexpected constant!"); |
| if (Tmp1 != Result) |
| BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); |
| return Result; |
| case ISD::Constant: |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot use constants of this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8ri; break; |
| case MVT::i16: Opc = X86::MOV16ri; break; |
| case MVT::i32: Opc = X86::MOV32ri; break; |
| } |
| BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue()); |
| return Result; |
| case ISD::UNDEF: |
| if (Node->getValueType(0) == MVT::f64) { |
| // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES! |
| BuildMI(BB, X86::FLD0, 0, Result); |
| } else { |
| BuildMI(BB, X86::IMPLICIT_DEF, 0, Result); |
| } |
| return Result; |
| case ISD::GlobalAddress: { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); |
| // For Darwin, external and weak symbols are indirect, so we want to load |
| // the value at address GV, not the value of GV itself. |
| if (Subtarget->getIndirectExternAndWeakGlobals() && |
| (GV->hasWeakLinkage() || GV->isExternal())) { |
| BuildMI(BB, X86::MOV32rm, 4, Result).addReg(0).addZImm(1).addReg(0) |
| .addGlobalAddress(GV, false, 0); |
| } else { |
| BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV); |
| } |
| return Result; |
| } |
| case ISD::ExternalSymbol: { |
| const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); |
| BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym); |
| return Result; |
| } |
| case ISD::ZERO_EXTEND: { |
| int DestIs16 = N.getValueType() == MVT::i16; |
| int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; |
| |
| // FIXME: This hack is here for zero extension casts from bool to i8. This |
| // would not be needed if bools were promoted by Legalize. |
| if (N.getValueType() == MVT::i8) { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| if (isFoldableLoad(N.getOperand(0), SDOperand())) { |
| static const unsigned Opc[3] = { |
| X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8 |
| }; |
| |
| X86AddressMode AM; |
| EmitFoldedLoad(N.getOperand(0), AM); |
| addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); |
| |
| return Result; |
| } |
| |
| static const unsigned Opc[3] = { |
| X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8 |
| }; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| case ISD::SIGN_EXTEND: { |
| int DestIs16 = N.getValueType() == MVT::i16; |
| int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; |
| |
| // FIXME: Legalize should promote bools to i8! |
| assert(N.getOperand(0).getValueType() != MVT::i1 && |
| "Sign extend from bool not implemented!"); |
| |
| if (isFoldableLoad(N.getOperand(0), SDOperand())) { |
| static const unsigned Opc[3] = { |
| X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8 |
| }; |
| |
| X86AddressMode AM; |
| EmitFoldedLoad(N.getOperand(0), AM); |
| addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); |
| return Result; |
| } |
| |
| static const unsigned Opc[3] = { |
| X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8 |
| }; |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| case ISD::TRUNCATE: |
| // Fold TRUNCATE (LOAD P) into a smaller load from P. |
| // FIXME: This should be performed by the DAGCombiner. |
| if (isFoldableLoad(N.getOperand(0), SDOperand())) { |
| switch (N.getValueType()) { |
| default: assert(0 && "Unknown truncate!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8rm; break; |
| case MVT::i16: Opc = X86::MOV16rm; break; |
| } |
| X86AddressMode AM; |
| EmitFoldedLoad(N.getOperand(0), AM); |
| addFullAddress(BuildMI(BB, Opc, 4, Result), AM); |
| return Result; |
| } |
| |
| // Handle cast of LARGER int to SMALLER int using a move to EAX followed by |
| // a move out of AX or AL. |
| switch (N.getOperand(0).getValueType()) { |
| default: assert(0 && "Unknown truncate!"); |
| case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; |
| case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; |
| case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Unknown truncate!"); |
| case MVT::i1: |
| case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; |
| case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; |
| } |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp2); |
| return Result; |
| |
| case ISD::SINT_TO_FP: { |
| Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register |
| unsigned PromoteOpcode = 0; |
| |
| // We can handle any sint to fp with the direct sse conversion instructions. |
| if (X86ScalarSSE) { |
| Opc = (N.getValueType() == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr; |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| ContainsFPCode = true; |
| |
| // Spill the integer to memory and reload it from there. |
| MVT::ValueType SrcTy = N.getOperand(0).getValueType(); |
| unsigned Size = MVT::getSizeInBits(SrcTy)/8; |
| MachineFunction *F = BB->getParent(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); |
| |
| switch (SrcTy) { |
| case MVT::i32: |
| addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1); |
| addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx); |
| break; |
| case MVT::i16: |
| addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1); |
| addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx); |
| break; |
| default: break; // No promotion required. |
| } |
| return Result; |
| } |
| case ISD::FP_TO_SINT: |
| Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register |
| |
| // If the target supports SSE2 and is performing FP operations in SSE regs |
| // instead of the FP stack, then we can use the efficient CVTSS2SI and |
| // CVTSD2SI instructions. |
| assert(X86ScalarSSE); |
| if (MVT::f32 == N.getOperand(0).getValueType()) { |
| BuildMI(BB, X86::CVTTSS2SIrr, 1, Result).addReg(Tmp1); |
| } else if (MVT::f64 == N.getOperand(0).getValueType()) { |
| BuildMI(BB, X86::CVTTSD2SIrr, 1, Result).addReg(Tmp1); |
| } else { |
| assert(0 && "Not an f32 or f64?"); |
| abort(); |
| } |
| return Result; |
| |
| case ISD::ADD: |
| Op0 = N.getOperand(0); |
| Op1 = N.getOperand(1); |
| |
| if (isFoldableLoad(Op0, Op1, true)) { |
| std::swap(Op0, Op1); |
| goto FoldAdd; |
| } |
| |
| if (isFoldableLoad(Op1, Op0, true)) { |
| FoldAdd: |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot add this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::ADD8rm; break; |
| case MVT::i16: Opc = X86::ADD16rm; break; |
| case MVT::i32: Opc = X86::ADD32rm; break; |
| case MVT::f32: Opc = X86::ADDSSrm; break; |
| case MVT::f64: |
| // For F64, handle promoted load operations (from F32) as well! |
| if (X86ScalarSSE) { |
| assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted"); |
| Opc = X86::ADDSDrm; |
| } else { |
| Opc = Op1.getOpcode() == ISD::LOAD ? X86::FADD64m : X86::FADD32m; |
| } |
| break; |
| } |
| X86AddressMode AM; |
| EmitFoldedLoad(Op1, AM); |
| Tmp1 = SelectExpr(Op0); |
| addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); |
| return Result; |
| } |
| |
| // See if we can codegen this as an LEA to fold operations together. |
| if (N.getValueType() == MVT::i32) { |
| ExprMap.erase(N); |
| X86ISelAddressMode AM; |
| MatchAddress(N, AM); |
| ExprMap[N] = Result; |
| |
| // If this is not just an add, emit the LEA. For a simple add (like |
| // reg+reg or reg+imm), we just emit an add. It might be a good idea to |
| // leave this as LEA, then peephole it to 'ADD' after two address elim |
| // happens. |
| if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase|| |
| AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) { |
| X86AddressMode XAM = SelectAddrExprs(AM); |
| addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM); |
| return Result; |
| } |
| } |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { |
| Opc = 0; |
| if (CN->getValue() == 1) { // add X, 1 -> inc X |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot integer add this type!"); |
| case MVT::i8: Opc = X86::INC8r; break; |
| case MVT::i16: Opc = X86::INC16r; break; |
| case MVT::i32: Opc = X86::INC32r; break; |
| } |
| } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot integer add this type!"); |
| case MVT::i8: Opc = X86::DEC8r; break; |
| case MVT::i16: Opc = X86::DEC16r; break; |
| case MVT::i32: Opc = X86::DEC32r; break; |
| } |
| } |
| |
| if (Opc) { |
| Tmp1 = SelectExpr(Op0); |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot add this type!"); |
| case MVT::i8: Opc = X86::ADD8ri; break; |
| case MVT::i16: Opc = X86::ADD16ri; break; |
| case MVT::i32: Opc = X86::ADD32ri; break; |
| } |
| if (Opc) { |
| Tmp1 = SelectExpr(Op0); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); |
| return Result; |
| } |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot add this type!"); |
| case MVT::i8: Opc = X86::ADD8rr; break; |
| case MVT::i16: Opc = X86::ADD16rr; break; |
| case MVT::i32: Opc = X86::ADD32rr; break; |
| case MVT::f32: Opc = X86::ADDSSrr; break; |
| case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break; |
| } |
| |
| if (getRegPressure(Op0) > getRegPressure(Op1)) { |
| Tmp1 = SelectExpr(Op0); |
| Tmp2 = SelectExpr(Op1); |
| } else { |
| Tmp2 = SelectExpr(Op1); |
| Tmp1 = SelectExpr(Op0); |
| } |
| |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::FSQRT: |
| Tmp1 = SelectExpr(Node->getOperand(0)); |
| if (X86ScalarSSE) { |
| Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr; |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| } else { |
| BuildMI(BB, X86::FSQRT, 1, Result).addReg(Tmp1); |
| } |
| return Result; |
| |
| // FIXME: |
| // Once we can spill 16 byte constants into the constant pool, we can |
| // implement SSE equivalents of FABS and FCHS. |
| case ISD::FABS: |
| case ISD::FNEG: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| assert(N.getValueType()==MVT::f64 && "Illegal type for this operation"); |
| Tmp1 = SelectExpr(Node->getOperand(0)); |
| switch (N.getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case ISD::FABS: BuildMI(BB, X86::FABS, 1, Result).addReg(Tmp1); break; |
| case ISD::FNEG: BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); break; |
| case ISD::FSIN: BuildMI(BB, X86::FSIN, 1, Result).addReg(Tmp1); break; |
| case ISD::FCOS: BuildMI(BB, X86::FCOS, 1, Result).addReg(Tmp1); break; |
| } |
| return Result; |
| |
| case ISD::MULHU: |
| switch (N.getValueType()) { |
| default: assert(0 && "Unsupported VT!"); |
| case MVT::i8: Tmp2 = X86::MUL8r; break; |
| case MVT::i16: Tmp2 = X86::MUL16r; break; |
| case MVT::i32: Tmp2 = X86::MUL32r; break; |
| } |
| // FALL THROUGH |
| case ISD::MULHS: { |
| unsigned MovOpc, LowReg, HiReg; |
| switch (N.getValueType()) { |
| default: assert(0 && "Unsupported VT!"); |
| case MVT::i8: |
| MovOpc = X86::MOV8rr; |
| LowReg = X86::AL; |
| HiReg = X86::AH; |
| Opc = X86::IMUL8r; |
| break; |
| case MVT::i16: |
| MovOpc = X86::MOV16rr; |
| LowReg = X86::AX; |
| HiReg = X86::DX; |
| Opc = X86::IMUL16r; |
| break; |
| case MVT::i32: |
| MovOpc = X86::MOV32rr; |
| LowReg = X86::EAX; |
| HiReg = X86::EDX; |
| Opc = X86::IMUL32r; |
| break; |
| } |
| if (Node->getOpcode() != ISD::MULHS) |
| Opc = Tmp2; // Get the MULHU opcode. |
| |
| Op0 = Node->getOperand(0); |
| Op1 = Node->getOperand(1); |
| if (getRegPressure(Op0) > getRegPressure(Op1)) { |
| Tmp1 = SelectExpr(Op0); |
| Tmp2 = SelectExpr(Op1); |
| } else { |
| Tmp2 = SelectExpr(Op1); |
| Tmp1 = SelectExpr(Op0); |
| } |
| |
| // FIXME: Implement folding of loads into the memory operands here! |
| BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1); |
| BuildMI(BB, Opc, 1).addReg(Tmp2); |
| BuildMI(BB, MovOpc, 1, Result).addReg(HiReg); |
| return Result; |
| } |
| |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| static const unsigned SUBTab[] = { |
| X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, |
| X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FSUB32m, X86::FSUB64m, |
| X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB, |
| }; |
| static const unsigned SSE_SUBTab[] = { |
| X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, |
| X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm, |
| X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr, |
| }; |
| static const unsigned MULTab[] = { |
| 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, |
| 0, X86::IMUL16rm , X86::IMUL32rm, X86::FMUL32m, X86::FMUL64m, |
| 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL, |
| }; |
| static const unsigned SSE_MULTab[] = { |
| 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, |
| 0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm, |
| 0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr, |
| }; |
| static const unsigned ANDTab[] = { |
| X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0, |
| X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0, |
| X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0, |
| }; |
| static const unsigned ORTab[] = { |
| X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0, |
| X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0, |
| X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0, |
| }; |
| static const unsigned XORTab[] = { |
| X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0, |
| X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0, |
| X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0, |
| }; |
| |
| Op0 = Node->getOperand(0); |
| Op1 = Node->getOperand(1); |
| |
| if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse()) |
| if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates. |
| return Result; |
| |
| if (Node->getOpcode() == ISD::SUB) |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0))) |
| if (CN->isNullValue()) { // 0 - N -> neg N |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot sub this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::NEG8r; break; |
| case MVT::i16: Opc = X86::NEG16r; break; |
| case MVT::i32: Opc = X86::NEG32r; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { |
| if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) { |
| Opc = 0; |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot add this type!"); |
| case MVT::i1: break; // Not supported, don't invert upper bits! |
| case MVT::i8: Opc = X86::NOT8r; break; |
| case MVT::i16: Opc = X86::NOT16r; break; |
| case MVT::i32: Opc = X86::NOT32r; break; |
| } |
| if (Opc) { |
| Tmp1 = SelectExpr(Op0); |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| } |
| |
| // Fold common multiplies into LEA instructions. |
| if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) { |
| switch ((int)CN->getValue()) { |
| default: break; |
| case 3: |
| case 5: |
| case 9: |
| // Remove N from exprmap so SelectAddress doesn't get confused. |
| ExprMap.erase(N); |
| X86AddressMode AM; |
| SelectAddress(N, AM); |
| // Restore it to the map. |
| ExprMap[N] = Result; |
| addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM); |
| return Result; |
| } |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot xor this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = 0; break; |
| case MVT::i16: Opc = 1; break; |
| case MVT::i32: Opc = 2; break; |
| } |
| switch (Node->getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; |
| case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; |
| case ISD::AND: Opc = ANDTab[Opc]; break; |
| case ISD::OR: Opc = ORTab[Opc]; break; |
| case ISD::XOR: Opc = XORTab[Opc]; break; |
| } |
| if (Opc) { // Can't fold MUL:i8 R, imm |
| Tmp1 = SelectExpr(Op0); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); |
| return Result; |
| } |
| } |
| |
| if (isFoldableLoad(Op0, Op1, true)) |
| if (Node->getOpcode() != ISD::SUB) { |
| std::swap(Op0, Op1); |
| goto FoldOps; |
| } else { |
| // For FP, emit 'reverse' subract, with a memory operand. |
| if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { |
| if (Op0.getOpcode() == ISD::EXTLOAD) |
| Opc = X86::FSUBR32m; |
| else |
| Opc = X86::FSUBR64m; |
| |
| X86AddressMode AM; |
| EmitFoldedLoad(Op0, AM); |
| Tmp1 = SelectExpr(Op1); |
| addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); |
| return Result; |
| } |
| } |
| |
| if (isFoldableLoad(Op1, Op0, true)) { |
| FoldOps: |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot operate on this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = 5; break; |
| case MVT::i16: Opc = 6; break; |
| case MVT::i32: Opc = 7; break; |
| case MVT::f32: Opc = 8; break; |
| // For F64, handle promoted load operations (from F32) as well! |
| case MVT::f64: |
| assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) && |
| "SSE load should have been promoted"); |
| Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break; |
| } |
| switch (Node->getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; |
| case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; |
| case ISD::AND: Opc = ANDTab[Opc]; break; |
| case ISD::OR: Opc = ORTab[Opc]; break; |
| case ISD::XOR: Opc = XORTab[Opc]; break; |
| } |
| |
| X86AddressMode AM; |
| EmitFoldedLoad(Op1, AM); |
| Tmp1 = SelectExpr(Op0); |
| if (Opc) { |
| addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); |
| } else { |
| assert(Node->getOpcode() == ISD::MUL && |
| N.getValueType() == MVT::i8 && "Unexpected situation!"); |
| // Must use the MUL instruction, which forces use of AL. |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); |
| addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM); |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); |
| } |
| return Result; |
| } |
| |
| if (getRegPressure(Op0) > getRegPressure(Op1)) { |
| Tmp1 = SelectExpr(Op0); |
| Tmp2 = SelectExpr(Op1); |
| } else { |
| Tmp2 = SelectExpr(Op1); |
| Tmp1 = SelectExpr(Op0); |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot add this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = 10; break; |
| case MVT::i16: Opc = 11; break; |
| case MVT::i32: Opc = 12; break; |
| case MVT::f32: Opc = 13; break; |
| case MVT::f64: Opc = 14; break; |
| } |
| switch (Node->getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; |
| case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; |
| case ISD::AND: Opc = ANDTab[Opc]; break; |
| case ISD::OR: Opc = ORTab[Opc]; break; |
| case ISD::XOR: Opc = XORTab[Opc]; break; |
| } |
| if (Opc) { |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } else { |
| assert(Node->getOpcode() == ISD::MUL && |
| N.getValueType() == MVT::i8 && "Unexpected situation!"); |
| // Must use the MUL instruction, which forces use of AL. |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); |
| BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2); |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); |
| } |
| return Result; |
| } |
| case ISD::ADD_PARTS: |
| case ISD::SUB_PARTS: { |
| assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && |
| "Not an i64 add/sub!"); |
| // Emit all of the operands. |
| std::vector<unsigned> InVals; |
| for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) |
| InVals.push_back(SelectExpr(N.getOperand(i))); |
| if (N.getOpcode() == ISD::ADD_PARTS) { |
| BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); |
| BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]); |
| } else { |
| BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); |
| BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]); |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: { |
| assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && |
| "Not an i64 shift!"); |
| unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); |
| unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); |
| unsigned TmpReg = MakeReg(MVT::i32); |
| if (N.getOpcode() == ISD::SRA_PARTS) { |
| // If this is a SHR of a Long, then we need to do funny sign extension |
| // stuff. TmpReg gets the value to use as the high-part if we are |
| // shifting more than 32 bits. |
| BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31); |
| } else { |
| // Other shifts use a fixed zero value if the shift is more than 32 bits. |
| BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0); |
| } |
| |
| // Initialize CL with the shift amount. |
| unsigned ShiftAmountReg = SelectExpr(N.getOperand(2)); |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); |
| |
| unsigned TmpReg2 = MakeReg(MVT::i32); |
| unsigned TmpReg3 = MakeReg(MVT::i32); |
| if (N.getOpcode() == ISD::SHL_PARTS) { |
| // TmpReg2 = shld inHi, inLo |
| BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi) |
| .addReg(ShiftOpLo); |
| // TmpReg3 = shl inLo, CL |
| BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo); |
| |
| // Set the flags to indicate whether the shift was by more than 32 bits. |
| BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); |
| |
| // DestHi = (>32) ? TmpReg3 : TmpReg2; |
| BuildMI(BB, X86::CMOVNE32rr, 2, |
| Result+1).addReg(TmpReg2).addReg(TmpReg3); |
| // DestLo = (>32) ? TmpReg : TmpReg3; |
| BuildMI(BB, X86::CMOVNE32rr, 2, |
| Result).addReg(TmpReg3).addReg(TmpReg); |
| } else { |
| // TmpReg2 = shrd inLo, inHi |
| BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo) |
| .addReg(ShiftOpHi); |
| // TmpReg3 = s[ah]r inHi, CL |
| BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL |
| : X86::SHR32rCL, 1, TmpReg3) |
| .addReg(ShiftOpHi); |
| |
| // Set the flags to indicate whether the shift was by more than 32 bits. |
| BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); |
| |
| // DestLo = (>32) ? TmpReg3 : TmpReg2; |
| BuildMI(BB, X86::CMOVNE32rr, 2, |
| Result).addReg(TmpReg2).addReg(TmpReg3); |
| |
| // DestHi = (>32) ? TmpReg : TmpReg3; |
| BuildMI(BB, X86::CMOVNE32rr, 2, |
| Result+1).addReg(TmpReg3).addReg(TmpReg); |
| } |
| return Result+N.ResNo; |
| } |
| |
| case ISD::SELECT: |
| if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(2)); |
| } else { |
| Tmp3 = SelectExpr(N.getOperand(2)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } |
| EmitSelectCC(N.getOperand(0), N.getValueType(), Tmp2, Tmp3, Result); |
| return Result; |
| |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: { |
| assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) && |
| "We don't support this operator!"); |
| |
| if (N.getOpcode() == ISD::SDIV) { |
| // We can fold loads into FpDIVs, but not really into any others. |
| if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { |
| // Check for reversed and unreversed DIV. |
| if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) { |
| if (N.getOperand(0).getOpcode() == ISD::EXTLOAD) |
| Opc = X86::FDIVR32m; |
| else |
| Opc = X86::FDIVR64m; |
| X86AddressMode AM; |
| EmitFoldedLoad(N.getOperand(0), AM); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); |
| return Result; |
| } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) && |
| N.getOperand(1).getOpcode() == ISD::LOAD) { |
| if (N.getOperand(1).getOpcode() == ISD::EXTLOAD) |
| Opc = X86::FDIV32m; |
| else |
| Opc = X86::FDIV64m; |
| X86AddressMode AM; |
| EmitFoldedLoad(N.getOperand(1), AM); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); |
| return Result; |
| } |
| } |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| // FIXME: These special cases should be handled by the lowering impl! |
| unsigned RHS = CN->getValue(); |
| bool isNeg = false; |
| if ((int)RHS < 0) { |
| isNeg = true; |
| RHS = -RHS; |
| } |
| if (RHS && (RHS & (RHS-1)) == 0) { // Signed division by power of 2? |
| unsigned Log = Log2_32(RHS); |
| unsigned SAROpc, SHROpc, ADDOpc, NEGOpc; |
| switch (N.getValueType()) { |
| default: assert("Unknown type to signed divide!"); |
| case MVT::i8: |
| SAROpc = X86::SAR8ri; |
| SHROpc = X86::SHR8ri; |
| ADDOpc = X86::ADD8rr; |
| NEGOpc = X86::NEG8r; |
| break; |
| case MVT::i16: |
| SAROpc = X86::SAR16ri; |
| SHROpc = X86::SHR16ri; |
| ADDOpc = X86::ADD16rr; |
| NEGOpc = X86::NEG16r; |
| break; |
| case MVT::i32: |
| SAROpc = X86::SAR32ri; |
| SHROpc = X86::SHR32ri; |
| ADDOpc = X86::ADD32rr; |
| NEGOpc = X86::NEG32r; |
| break; |
| } |
| unsigned RegSize = MVT::getSizeInBits(N.getValueType()); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| unsigned TmpReg; |
| if (Log != 1) { |
| TmpReg = MakeReg(N.getValueType()); |
| BuildMI(BB, SAROpc, 2, TmpReg).addReg(Tmp1).addImm(Log-1); |
| } else { |
| TmpReg = Tmp1; |
| } |
| unsigned TmpReg2 = MakeReg(N.getValueType()); |
| BuildMI(BB, SHROpc, 2, TmpReg2).addReg(TmpReg).addImm(RegSize-Log); |
| unsigned TmpReg3 = MakeReg(N.getValueType()); |
| BuildMI(BB, ADDOpc, 2, TmpReg3).addReg(Tmp1).addReg(TmpReg2); |
| |
| unsigned TmpReg4 = isNeg ? MakeReg(N.getValueType()) : Result; |
| BuildMI(BB, SAROpc, 2, TmpReg4).addReg(TmpReg3).addImm(Log); |
| if (isNeg) |
| BuildMI(BB, NEGOpc, 1, Result).addReg(TmpReg4); |
| return Result; |
| } |
| } |
| } |
| |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| } |
| |
| bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM; |
| bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV; |
| unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode; |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot sdiv this type!"); |
| case MVT::i8: |
| DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r; |
| LoReg = X86::AL; |
| HiReg = X86::AH; |
| MovOpcode = X86::MOV8rr; |
| ClrOpcode = X86::MOV8ri; |
| SExtOpcode = X86::CBW; |
| break; |
| case MVT::i16: |
| DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r; |
| LoReg = X86::AX; |
| HiReg = X86::DX; |
| MovOpcode = X86::MOV16rr; |
| ClrOpcode = X86::MOV16ri; |
| SExtOpcode = X86::CWD; |
| break; |
| case MVT::i32: |
| DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r; |
| LoReg = X86::EAX; |
| HiReg = X86::EDX; |
| MovOpcode = X86::MOV32rr; |
| ClrOpcode = X86::MOV32ri; |
| SExtOpcode = X86::CDQ; |
| break; |
| case MVT::f32: |
| BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| case MVT::f64: |
| Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV; |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| } |
| |
| // Set up the low part. |
| BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1); |
| |
| if (isSigned) { |
| // Sign extend the low part into the high part. |
| BuildMI(BB, SExtOpcode, 0); |
| } else { |
| // Zero out the high part, effectively zero extending the input. |
| BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0); |
| } |
| |
| // Emit the DIV/IDIV instruction. |
| BuildMI(BB, DivOpcode, 1).addReg(Tmp2); |
| |
| // Get the result of the divide or rem. |
| BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg); |
| return Result; |
| } |
| |
| case ISD::SHL: |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8: Opc = X86::ADD8rr; break; |
| case MVT::i16: Opc = X86::ADD16rr; break; |
| case MVT::i32: Opc = X86::ADD32rr; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1); |
| return Result; |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8: Opc = X86::SHL8ri; break; |
| case MVT::i16: Opc = X86::SHL16ri; break; |
| case MVT::i32: Opc = X86::SHL32ri; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); |
| return Result; |
| } |
| |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8 : Opc = X86::SHL8rCL; break; |
| case MVT::i16: Opc = X86::SHL16rCL; break; |
| case MVT::i32: Opc = X86::SHL32rCL; break; |
| } |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| case ISD::SRL: |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8: Opc = X86::SHR8ri; break; |
| case MVT::i16: Opc = X86::SHR16ri; break; |
| case MVT::i32: Opc = X86::SHR32ri; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); |
| return Result; |
| } |
| |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8 : Opc = X86::SHR8rCL; break; |
| case MVT::i16: Opc = X86::SHR16rCL; break; |
| case MVT::i32: Opc = X86::SHR32rCL; break; |
| } |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| case ISD::SRA: |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8: Opc = X86::SAR8ri; break; |
| case MVT::i16: Opc = X86::SAR16ri; break; |
| case MVT::i32: Opc = X86::SAR32ri; break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); |
| return Result; |
| } |
| |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| } |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot shift this type!"); |
| case MVT::i8 : Opc = X86::SAR8rCL; break; |
| case MVT::i16: Opc = X86::SAR16rCL; break; |
| case MVT::i32: Opc = X86::SAR32rCL; break; |
| } |
| BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); |
| BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| |
| case ISD::SETCC: |
| EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse()); |
| EmitSetCC(BB, Result, cast<SetCCSDNode>(N)->getCondition(), |
| MVT::isFloatingPoint(N.getOperand(1).getValueType())); |
| return Result; |
| case ISD::LOAD: |
| // Make sure we generate both values. |
| if (Result != 1) { // Generate the token |
| if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) |
| assert(0 && "Load already emitted!?"); |
| } else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Cannot load this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8rm; break; |
| case MVT::i16: Opc = X86::MOV16rm; break; |
| case MVT::i32: Opc = X86::MOV32rm; break; |
| case MVT::f32: Opc = X86::MOVSSrm; break; |
| case MVT::f64: |
| if (X86ScalarSSE) { |
| Opc = X86::MOVSDrm; |
| } else { |
| Opc = X86::FLD64m; |
| ContainsFPCode = true; |
| } |
| break; |
| } |
| |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){ |
| Select(N.getOperand(0)); |
| addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CP->getIndex()); |
| } else { |
| X86AddressMode AM; |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| if (getRegPressure(Chain) > getRegPressure(Address)) { |
| Select(Chain); |
| SelectAddress(Address, AM); |
| } else { |
| SelectAddress(Address, AM); |
| Select(Chain); |
| } |
| |
| addFullAddress(BuildMI(BB, Opc, 4, Result), AM); |
| } |
| return Result; |
| case X86ISD::FILD64m: |
| // Make sure we generate both values. |
| assert(Result != 1 && N.getValueType() == MVT::f64); |
| if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) |
| assert(0 && "Load already emitted!?"); |
| |
| { |
| X86AddressMode AM; |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| if (getRegPressure(Chain) > getRegPressure(Address)) { |
| Select(Chain); |
| SelectAddress(Address, AM); |
| } else { |
| SelectAddress(Address, AM); |
| Select(Chain); |
| } |
| |
| addFullAddress(BuildMI(BB, X86::FILD64m, 4, Result), AM); |
| } |
| return Result; |
| |
| case ISD::EXTLOAD: // Arbitrarily codegen extloads as MOVZX* |
| case ISD::ZEXTLOAD: { |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))) |
| if (Node->getValueType(0) == MVT::f64) { |
| assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && |
| "Bad EXTLOAD!"); |
| addConstantPoolReference(BuildMI(BB, X86::FLD32m, 4, Result), |
| CP->getIndex()); |
| return Result; |
| } |
| |
| X86AddressMode AM; |
| if (getRegPressure(Node->getOperand(0)) > |
| getRegPressure(Node->getOperand(1))) { |
| Select(Node->getOperand(0)); // chain |
| SelectAddress(Node->getOperand(1), AM); |
| } else { |
| SelectAddress(Node->getOperand(1), AM); |
| Select(Node->getOperand(0)); // chain |
| } |
| |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Unknown type to sign extend to."); |
| case MVT::f64: |
| assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 && |
| "Bad EXTLOAD!"); |
| addFullAddress(BuildMI(BB, X86::FLD32m, 5, Result), AM); |
| break; |
| case MVT::i32: |
| switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { |
| default: |
| assert(0 && "Bad zero extend!"); |
| case MVT::i1: |
| case MVT::i8: |
| addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM); |
| break; |
| case MVT::i16: |
| addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM); |
| break; |
| } |
| break; |
| case MVT::i16: |
| assert(cast<VTSDNode>(Node->getOperand(3))->getVT() <= MVT::i8 && |
| "Bad zero extend!"); |
| addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); |
| break; |
| case MVT::i8: |
| assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i1 && |
| "Bad zero extend!"); |
| addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM); |
| break; |
| } |
| return Result; |
| } |
| case ISD::SEXTLOAD: { |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| X86AddressMode AM; |
| if (getRegPressure(Node->getOperand(0)) > |
| getRegPressure(Node->getOperand(1))) { |
| Select(Node->getOperand(0)); // chain |
| SelectAddress(Node->getOperand(1), AM); |
| } else { |
| SelectAddress(Node->getOperand(1), AM); |
| Select(Node->getOperand(0)); // chain |
| } |
| |
| switch (Node->getValueType(0)) { |
| case MVT::i8: assert(0 && "Cannot sign extend from bool!"); |
| default: assert(0 && "Unknown type to sign extend to."); |
| case MVT::i32: |
| switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) { |
| default: |
| case MVT::i1: assert(0 && "Cannot sign extend from bool!"); |
| case MVT::i8: |
| addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM); |
| break; |
| case MVT::i16: |
| addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM); |
| break; |
| } |
| break; |
| case MVT::i16: |
| assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i8 && |
| "Cannot sign extend from bool!"); |
| addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); |
| break; |
| } |
| return Result; |
| } |
| |
| case ISD::DYNAMIC_STACKALLOC: |
| // Generate both result values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| // FIXME: We are currently ignoring the requested alignment for handling |
| // greater than the stack alignment. This will need to be revisited at some |
| // point. Align = N.getOperand(2); |
| |
| if (!isa<ConstantSDNode>(N.getOperand(2)) || |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { |
| std::cerr << "Cannot allocate stack object with greater alignment than" |
| << " the stack alignment yet!"; |
| abort(); |
| } |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP) |
| .addImm(CN->getValue()); |
| } else { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1); |
| } |
| |
| // Put a pointer to the space into the result register, by copying the stack |
| // pointer. |
| BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP); |
| return Result; |
| |
| case X86ISD::TAILCALL: |
| case X86ISD::CALL: { |
| // The chain for this call is now lowered. |
| ExprMap.insert(std::make_pair(N.getValue(0), 1)); |
| |
| bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) || |
| isa<ExternalSymbolSDNode>(N.getOperand(1)); |
| unsigned Callee = 0; |
| if (isDirect) { |
| Select(N.getOperand(0)); |
| } else { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Callee = SelectExpr(N.getOperand(1)); |
| } else { |
| Callee = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| } |
| |
| // If this call has values to pass in registers, do so now. |
| if (Node->getNumOperands() > 4) { |
| // The first value is passed in (a part of) EAX, the second in EDX. |
| unsigned RegOp1 = SelectExpr(N.getOperand(4)); |
| unsigned RegOp2 = |
| Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0; |
| |
| switch (N.getOperand(4).getValueType()) { |
| default: assert(0 && "Bad thing to pass in regs"); |
| case MVT::i1: |
| case MVT::i8: BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break; |
| case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break; |
| case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break; |
| } |
| if (RegOp2) |
| switch (N.getOperand(5).getValueType()) { |
| default: assert(0 && "Bad thing to pass in regs"); |
| case MVT::i1: |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2); |
| break; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); |
| break; |
| } |
| } |
| |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { |
| BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true); |
| } else if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) { |
| BuildMI(BB, X86::CALLpcrel32, |
| 1).addExternalSymbol(ESSDN->getSymbol(), true); |
| } else { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| |
| BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1); |
| } |
| |
| // Get caller stack amount and amount the callee added to the stack pointer. |
| Tmp1 = cast<ConstantSDNode>(N.getOperand(2))->getValue(); |
| Tmp2 = cast<ConstantSDNode>(N.getOperand(3))->getValue(); |
| BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2); |
| |
| if (Node->getNumValues() != 1) |
| switch (Node->getValueType(1)) { |
| default: assert(0 && "Unknown value type for call result!"); |
| case MVT::Other: return 1; |
| case MVT::i1: |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); |
| break; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); |
| if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32) |
| BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX); |
| break; |
| case MVT::f64: // Floating-point return values live in %ST(0) |
| if (X86ScalarSSE) { |
| ContainsFPCode = true; |
| BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0); |
| |
| unsigned Size = MVT::getSizeInBits(MVT::f64)/8; |
| MachineFunction *F = BB->getParent(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); |
| addFrameReference(BuildMI(BB, X86::FST64m, 5), FrameIdx).addReg(X86::FP0); |
| addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx); |
| break; |
| } else { |
| ContainsFPCode = true; |
| BuildMI(BB, X86::FpGETRESULT, 1, Result); |
| break; |
| } |
| } |
| return Result+N.ResNo-1; |
| } |
| case ISD::READPORT: |
| // First, determine that the size of the operand falls within the acceptable |
| // range for this architecture. |
| // |
| if (Node->getOperand(1).getValueType() != MVT::i16) { |
| std::cerr << "llvm.readport: Address size is not 16 bits\n"; |
| exit(1); |
| } |
| |
| // Make sure we generate both values. |
| if (Result != 1) { // Generate the token |
| if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) |
| assert(0 && "readport already emitted!?"); |
| } else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| Select(Node->getOperand(0)); // Select the chain. |
| |
| // If the port is a single-byte constant, use the immediate form. |
| if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1))) |
| if ((Port->getValue() & 255) == Port->getValue()) { |
| switch (Node->getValueType(0)) { |
| case MVT::i8: |
| BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue()); |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); |
| return Result; |
| case MVT::i16: |
| BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue()); |
| BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); |
| return Result; |
| case MVT::i32: |
| BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue()); |
| BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); |
| return Result; |
| default: break; |
| } |
| } |
| |
| // Now, move the I/O port address into the DX register and use the IN |
| // instruction to get the input data. |
| // |
| Tmp1 = SelectExpr(Node->getOperand(1)); |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1); |
| switch (Node->getValueType(0)) { |
| case MVT::i8: |
| BuildMI(BB, X86::IN8rr, 0); |
| BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); |
| return Result; |
| case MVT::i16: |
| BuildMI(BB, X86::IN16rr, 0); |
| BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); |
| return Result; |
| case MVT::i32: |
| BuildMI(BB, X86::IN32rr, 0); |
| BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); |
| return Result; |
| default: |
| std::cerr << "Cannot do input on this data type"; |
| exit(1); |
| } |
| |
| } |
| |
| return 0; |
| } |
| |
| /// TryToFoldLoadOpStore - Given a store node, try to fold together a |
| /// load/op/store instruction. If successful return true. |
| bool ISel::TryToFoldLoadOpStore(SDNode *Node) { |
| assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!"); |
| SDOperand Chain = Node->getOperand(0); |
| SDOperand StVal = Node->getOperand(1); |
| SDOperand StPtr = Node->getOperand(2); |
| |
| // The chain has to be a load, the stored value must be an integer binary |
| // operation with one use. |
| if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 || |
| MVT::isFloatingPoint(StVal.getValueType())) |
| return false; |
| |
| // Token chain must either be a factor node or the load to fold. |
| if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor) |
| return false; |
| |
| SDOperand TheLoad; |
| |
| // Check to see if there is a load from the same pointer that we're storing |
| // to in either operand of the binop. |
| if (StVal.getOperand(0).getOpcode() == ISD::LOAD && |
| StVal.getOperand(0).getOperand(1) == StPtr) |
| TheLoad = StVal.getOperand(0); |
| else if (StVal.getOperand(1).getOpcode() == ISD::LOAD && |
| StVal.getOperand(1).getOperand(1) == StPtr) |
| TheLoad = StVal.getOperand(1); |
| else |
| return false; // No matching load operand. |
| |
| // We can only fold the load if there are no intervening side-effecting |
| // operations. This means that the store uses the load as its token chain, or |
| // there are only token factor nodes in between the store and load. |
| if (Chain != TheLoad.getValue(1)) { |
| // Okay, the other option is that we have a store referring to (possibly |
| // nested) token factor nodes. For now, just try peeking through one level |
| // of token factors to see if this is the case. |
| bool ChainOk = false; |
| if (Chain.getOpcode() == ISD::TokenFactor) { |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) |
| if (Chain.getOperand(i) == TheLoad.getValue(1)) { |
| ChainOk = true; |
| break; |
| } |
| } |
| |
| if (!ChainOk) return false; |
| } |
| |
| if (TheLoad.getOperand(1) != StPtr) |
| return false; |
| |
| // Make sure that one of the operands of the binop is the load, and that the |
| // load folds into the binop. |
| if (((StVal.getOperand(0) != TheLoad || |
| !isFoldableLoad(TheLoad, StVal.getOperand(1))) && |
| (StVal.getOperand(1) != TheLoad || |
| !isFoldableLoad(TheLoad, StVal.getOperand(0))))) |
| return false; |
| |
| // Finally, check to see if this is one of the ops we can handle! |
| static const unsigned ADDTAB[] = { |
| X86::ADD8mi, X86::ADD16mi, X86::ADD32mi, |
| X86::ADD8mr, X86::ADD16mr, X86::ADD32mr, |
| }; |
| static const unsigned SUBTAB[] = { |
| X86::SUB8mi, X86::SUB16mi, X86::SUB32mi, |
| X86::SUB8mr, X86::SUB16mr, X86::SUB32mr, |
| }; |
| static const unsigned ANDTAB[] = { |
| X86::AND8mi, X86::AND16mi, X86::AND32mi, |
| X86::AND8mr, X86::AND16mr, X86::AND32mr, |
| }; |
| static const unsigned ORTAB[] = { |
| X86::OR8mi, X86::OR16mi, X86::OR32mi, |
| X86::OR8mr, X86::OR16mr, X86::OR32mr, |
| }; |
| static const unsigned XORTAB[] = { |
| X86::XOR8mi, X86::XOR16mi, X86::XOR32mi, |
| X86::XOR8mr, X86::XOR16mr, X86::XOR32mr, |
| }; |
| static const unsigned SHLTAB[] = { |
| X86::SHL8mi, X86::SHL16mi, X86::SHL32mi, |
| /*Have to put the reg in CL*/0, 0, 0, |
| }; |
| static const unsigned SARTAB[] = { |
| X86::SAR8mi, X86::SAR16mi, X86::SAR32mi, |
| /*Have to put the reg in CL*/0, 0, 0, |
| }; |
| static const unsigned SHRTAB[] = { |
| X86::SHR8mi, X86::SHR16mi, X86::SHR32mi, |
| /*Have to put the reg in CL*/0, 0, 0, |
| }; |
| |
| const unsigned *TabPtr = 0; |
| switch (StVal.getOpcode()) { |
| default: |
| std::cerr << "CANNOT [mem] op= val: "; |
| StVal.Val->dump(); std::cerr << "\n"; |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: return false; |
| |
| case ISD::ADD: TabPtr = ADDTAB; break; |
| case ISD::SUB: TabPtr = SUBTAB; break; |
| case ISD::AND: TabPtr = ANDTAB; break; |
| case ISD:: OR: TabPtr = ORTAB; break; |
| case ISD::XOR: TabPtr = XORTAB; break; |
| case ISD::SHL: TabPtr = SHLTAB; break; |
| case ISD::SRA: TabPtr = SARTAB; break; |
| case ISD::SRL: TabPtr = SHRTAB; break; |
| } |
| |
| // Handle: [mem] op= CST |
| SDOperand Op0 = StVal.getOperand(0); |
| SDOperand Op1 = StVal.getOperand(1); |
| unsigned Opc = 0; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) { |
| switch (Op0.getValueType()) { // Use Op0's type because of shifts. |
| default: break; |
| case MVT::i1: |
| case MVT::i8: Opc = TabPtr[0]; break; |
| case MVT::i16: Opc = TabPtr[1]; break; |
| case MVT::i32: Opc = TabPtr[2]; break; |
| } |
| |
| if (Opc) { |
| if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) |
| assert(0 && "Already emitted?"); |
| Select(Chain); |
| |
| X86AddressMode AM; |
| if (getRegPressure(TheLoad.getOperand(0)) > |
| getRegPressure(TheLoad.getOperand(1))) { |
| Select(TheLoad.getOperand(0)); |
| SelectAddress(TheLoad.getOperand(1), AM); |
| } else { |
| SelectAddress(TheLoad.getOperand(1), AM); |
| Select(TheLoad.getOperand(0)); |
| } |
| |
| if (StVal.getOpcode() == ISD::ADD) { |
| if (CN->getValue() == 1) { |
| switch (Op0.getValueType()) { |
| default: break; |
| case MVT::i8: |
| addFullAddress(BuildMI(BB, X86::INC8m, 4), AM); |
| return true; |
| case MVT::i16: Opc = TabPtr[1]; |
| addFullAddress(BuildMI(BB, X86::INC16m, 4), AM); |
| return true; |
| case MVT::i32: Opc = TabPtr[2]; |
| addFullAddress(BuildMI(BB, X86::INC32m, 4), AM); |
| return true; |
| } |
| } else if (CN->getValue()+1 == 0) { // [X] += -1 -> DEC [X] |
| switch (Op0.getValueType()) { |
| default: break; |
| case MVT::i8: |
| addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM); |
| return true; |
| case MVT::i16: Opc = TabPtr[1]; |
| addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM); |
| return true; |
| case MVT::i32: Opc = TabPtr[2]; |
| addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM); |
| return true; |
| } |
| } |
| } |
| |
| addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue()); |
| return true; |
| } |
| } |
| |
| // If we have [mem] = V op [mem], try to turn it into: |
| // [mem] = [mem] op V. |
| if (Op1 == TheLoad && StVal.getOpcode() != ISD::SUB && |
| StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA && |
| StVal.getOpcode() != ISD::SRL) |
| std::swap(Op0, Op1); |
| |
| if (Op0 != TheLoad) return false; |
| |
| switch (Op0.getValueType()) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: Opc = TabPtr[3]; break; |
| case MVT::i16: Opc = TabPtr[4]; break; |
| case MVT::i32: Opc = TabPtr[5]; break; |
| } |
| |
| // Table entry doesn't exist? |
| if (Opc == 0) return false; |
| |
| if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) |
| assert(0 && "Already emitted?"); |
| Select(Chain); |
| Select(TheLoad.getOperand(0)); |
| |
| X86AddressMode AM; |
| SelectAddress(TheLoad.getOperand(1), AM); |
| unsigned Reg = SelectExpr(Op1); |
| addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg); |
| return true; |
| } |
| |
| /// If node is a ret(tailcall) node, emit the specified tail call and return |
| /// true, otherwise return false. |
| /// |
| /// FIXME: This whole thing should be a post-legalize optimization pass which |
| /// recognizes and transforms the dag. We don't want the selection phase doing |
| /// this stuff!! |
| /// |
| bool ISel::EmitPotentialTailCall(SDNode *RetNode) { |
| assert(RetNode->getOpcode() == ISD::RET && "Not a return"); |
| |
| SDOperand Chain = RetNode->getOperand(0); |
| |
| // If this is a token factor node where one operand is a call, dig into it. |
| SDOperand TokFactor; |
| unsigned TokFactorOperand = 0; |
| if (Chain.getOpcode() == ISD::TokenFactor) { |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) |
| if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END || |
| Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) { |
| TokFactorOperand = i; |
| TokFactor = Chain; |
| Chain = Chain.getOperand(i); |
| break; |
| } |
| if (TokFactor.Val == 0) return false; // No call operand. |
| } |
| |
| // Skip the CALLSEQ_END node if present. |
| if (Chain.getOpcode() == ISD::CALLSEQ_END) |
| Chain = Chain.getOperand(0); |
| |
| // Is a tailcall the last control operation that occurs before the return? |
| if (Chain.getOpcode() != X86ISD::TAILCALL) |
| return false; |
| |
| // If we return a value, is it the value produced by the call? |
| if (RetNode->getNumOperands() > 1) { |
| // Not returning the ret val of the call? |
| if (Chain.Val->getNumValues() == 1 || |
| RetNode->getOperand(1) != Chain.getValue(1)) |
| return false; |
| |
| if (RetNode->getNumOperands() > 2) { |
| if (Chain.Val->getNumValues() == 2 || |
| RetNode->getOperand(2) != Chain.getValue(2)) |
| return false; |
| } |
| assert(RetNode->getNumOperands() <= 3); |
| } |
| |
| // CalleeCallArgAmt - The total number of bytes used for the callee arg area. |
| // For FastCC, this will always be > 0. |
| unsigned CalleeCallArgAmt = |
| cast<ConstantSDNode>(Chain.getOperand(2))->getValue(); |
| |
| // CalleeCallArgPopAmt - The number of bytes in the call area popped by the |
| // callee. For FastCC this will always be > 0, for CCC this is always 0. |
| unsigned CalleeCallArgPopAmt = |
| cast<ConstantSDNode>(Chain.getOperand(3))->getValue(); |
| |
| // There are several cases we can handle here. First, if the caller and |
| // callee are both CCC functions, we can tailcall if the callee takes <= the |
| // number of argument bytes that the caller does. |
| if (CalleeCallArgPopAmt == 0 && // Callee is C CallingConv? |
| X86Lowering.getBytesToPopOnReturn() == 0) { // Caller is C CallingConv? |
| // Check to see if caller arg area size >= callee arg area size. |
| if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) { |
| //std::cerr << "CCC TAILCALL UNIMP!\n"; |
| // If TokFactor is non-null, emit all operands. |
| |
| //EmitCCCToCCCTailCall(Chain.Val); |
| //return true; |
| } |
| return false; |
| } |
| |
| // Second, if both are FastCC functions, we can always perform the tail call. |
| if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) { |
| // If TokFactor is non-null, emit all operands before the call. |
| if (TokFactor.Val) { |
| for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i) |
| if (i != TokFactorOperand) |
| Select(TokFactor.getOperand(i)); |
| } |
| |
| EmitFastCCToFastCCTailCall(Chain.Val); |
| return true; |
| } |
| |
| // We don't support mixed calls, due to issues with alignment. We could in |
| // theory handle some mixed calls from CCC -> FastCC if the stack is properly |
| // aligned (which depends on the number of arguments to the callee). TODO. |
| return false; |
| } |
| |
| static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset, |
| SelectionDAG &DAG) { |
| MVT::ValueType StoreVT; |
| switch (Chain.getOpcode()) { |
| case ISD::CALLSEQ_START: |
| // If we found the start of the call sequence, we're done. We actually |
| // strip off the CALLSEQ_START node, to avoid generating the |
| // ADJCALLSTACKDOWN marker for the tail call. |
| return Chain.getOperand(0); |
| case ISD::TokenFactor: { |
| std::vector<SDOperand> Ops; |
| Ops.reserve(Chain.getNumOperands()); |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) |
| Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG)); |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); |
| } |
| case ISD::STORE: // Normal store |
| StoreVT = Chain.getOperand(1).getValueType(); |
| break; |
| case ISD::TRUNCSTORE: // FLOAT store |
| StoreVT = cast<VTSDNode>(Chain.getOperand(4))->getVT(); |
| break; |
| } |
| |
| SDOperand OrigDest = Chain.getOperand(2); |
| unsigned OrigOffset; |
| |
| if (OrigDest.getOpcode() == ISD::CopyFromReg) { |
| OrigOffset = 0; |
| assert(cast<RegSDNode>(OrigDest)->getReg() == X86::ESP); |
| } else { |
| // We expect only (ESP+C) |
| assert(OrigDest.getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(OrigDest.getOperand(1)) && |
| OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg && |
| cast<RegSDNode>(OrigDest.getOperand(0))->getReg() == X86::ESP); |
| OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue(); |
| } |
| |
| // Compute the new offset from the incoming ESP value we wish to use. |
| unsigned NewOffset = OrigOffset + Offset; |
| |
| unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8; // Bits -> Bytes |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset, |
| DAG); |
| if (Chain.getOpcode() == ISD::STORE) |
| return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1), |
| FIN); |
| assert(Chain.getOpcode() == ISD::TRUNCSTORE); |
| return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1), |
| FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT)); |
| } |
| |
| |
| /// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a |
| /// fastcc function from a fastcc function, emit the code to emit a 'proper' |
| /// tail call. |
| void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) { |
| unsigned CalleeCallArgSize = |
| cast<ConstantSDNode>(TailCallNode->getOperand(2))->getValue(); |
| unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn(); |
| |
| //std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n"; |
| |
| // Adjust argument stores. Instead of storing to [ESP], f.e., store to frame |
| // indexes that are relative to the incoming ESP. If the incoming and |
| // outgoing arg sizes are the same we will store to [InESP] instead of |
| // [CurESP] and the ESP referenced will be relative to the incoming function |
| // ESP. |
| int ESPOffset = CallerArgSize-CalleeCallArgSize; |
| SDOperand AdjustedArgStores = |
| GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG); |
| |
| // Copy the return address of the caller into a virtual register so we don't |
| // clobber it. |
| SDOperand RetVal; |
| if (ESPOffset) { |
| SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG); |
| RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(), |
| RetValAddr, TheDAG->getSrcValue(NULL)); |
| SelectExpr(RetVal); |
| } |
| |
| // Codegen all of the argument stores. |
| Select(AdjustedArgStores); |
| |
| if (RetVal.Val) { |
| // Emit a store of the saved ret value to the new location. |
| MachineFunction &MF = TheDAG->getMachineFunction(); |
| int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4); |
| SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32); |
| Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(), |
| RetVal, RetValAddr)); |
| } |
| |
| // Get the destination value. |
| SDOperand Callee = TailCallNode->getOperand(1); |
| bool isDirect = isa<GlobalAddressSDNode>(Callee) || |
| isa<ExternalSymbolSDNode>(Callee); |
| unsigned CalleeReg = 0; |
| if (!isDirect) CalleeReg = SelectExpr(Callee); |
| |
| unsigned RegOp1 = 0; |
| unsigned RegOp2 = 0; |
| |
| if (TailCallNode->getNumOperands() > 4) { |
| // The first value is passed in (a part of) EAX, the second in EDX. |
| RegOp1 = SelectExpr(TailCallNode->getOperand(4)); |
| if (TailCallNode->getNumOperands() > 5) |
| RegOp2 = SelectExpr(TailCallNode->getOperand(5)); |
| |
| switch (TailCallNode->getOperand(4).getValueType()) { |
| default: assert(0 && "Bad thing to pass in regs"); |
| case MVT::i1: |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1); |
| RegOp1 = X86::AL; |
| break; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); |
| RegOp1 = X86::AX; |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1); |
| RegOp1 = X86::EAX; |
| break; |
| } |
| if (RegOp2) |
| switch (TailCallNode->getOperand(5).getValueType()) { |
| default: assert(0 && "Bad thing to pass in regs"); |
| case MVT::i1: |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2); |
| RegOp2 = X86::DL; |
| break; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); |
| RegOp2 = X86::DX; |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); |
| RegOp2 = X86::EDX; |
| break; |
| } |
| } |
| |
| // Adjust ESP. |
| if (ESPOffset) |
| BuildMI(BB, X86::ADJSTACKPTRri, 2, |
| X86::ESP).addReg(X86::ESP).addImm(ESPOffset); |
| |
| // TODO: handle jmp [mem] |
| if (!isDirect) { |
| BuildMI(BB, X86::TAILJMPr, 1).addReg(CalleeReg); |
| } else if (GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Callee)){ |
| BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true); |
| } else { |
| ExternalSymbolSDNode *ESSDN = cast<ExternalSymbolSDNode>(Callee); |
| BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true); |
| } |
| // ADD IMPLICIT USE RegOp1/RegOp2's |
| } |
| |
| |
| void ISel::Select(SDOperand N) { |
| unsigned Tmp1, Tmp2, Opc; |
| |
| if (!ExprMap.insert(std::make_pair(N, 1)).second) |
| return; // Already selected. |
| |
| SDNode *Node = N.Val; |
| |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); std::cerr << "\n"; |
| assert(0 && "Node not handled yet!"); |
| case ISD::EntryToken: return; // Noop |
| case ISD::TokenFactor: |
| if (Node->getNumOperands() == 2) { |
| bool OneFirst = |
| getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0)); |
| Select(Node->getOperand(OneFirst)); |
| Select(Node->getOperand(!OneFirst)); |
| } else { |
| std::vector<std::pair<unsigned, unsigned> > OpsP; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i)); |
| std::sort(OpsP.begin(), OpsP.end()); |
| std::reverse(OpsP.begin(), OpsP.end()); |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Select(Node->getOperand(OpsP[i].second)); |
| } |
| return; |
| case ISD::CopyToReg: |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| Tmp2 = cast<RegSDNode>(N)->getReg(); |
| |
| if (Tmp1 != Tmp2) { |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && "Invalid type for operation!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8rr; break; |
| case MVT::i16: Opc = X86::MOV16rr; break; |
| case MVT::i32: Opc = X86::MOV32rr; break; |
| case MVT::f32: Opc = X86::MOVAPSrr; break; |
| case MVT::f64: |
| if (X86ScalarSSE) { |
| Opc = X86::MOVAPDrr; |
| } else { |
| Opc = X86::FpMOV; |
| ContainsFPCode = true; |
| } |
| break; |
| } |
| BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); |
| } |
| return; |
| case ISD::RET: |
| if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END || |
| N.getOperand(0).getOpcode() == X86ISD::TAILCALL || |
| N.getOperand(0).getOpcode() == ISD::TokenFactor) |
| if (EmitPotentialTailCall(Node)) |
| return; |
| |
| switch (N.getNumOperands()) { |
| default: |
| assert(0 && "Unknown return instruction!"); |
| case 3: |
| assert(N.getOperand(1).getValueType() == MVT::i32 && |
| N.getOperand(2).getValueType() == MVT::i32 && |
| "Unknown two-register value!"); |
| if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = SelectExpr(N.getOperand(2)); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(2)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } |
| Select(N.getOperand(0)); |
| |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2); |
| break; |
| case 2: |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && "All other types should have been promoted!!"); |
| case MVT::f32: |
| if (X86ScalarSSE) { |
| // Spill the value to memory and reload it into top of stack. |
| unsigned Size = MVT::getSizeInBits(MVT::f32)/8; |
| MachineFunction *F = BB->getParent(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); |
| addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1); |
| addFrameReference(BuildMI(BB, X86::FLD32m, 4, X86::FP0), FrameIdx); |
| BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); |
| ContainsFPCode = true; |
| } else { |
| assert(0 && "MVT::f32 only legal with scalar sse fp"); |
| abort(); |
| } |
| break; |
| case MVT::f64: |
| if (X86ScalarSSE) { |
| // Spill the value to memory and reload it into top of stack. |
| unsigned Size = MVT::getSizeInBits(MVT::f64)/8; |
| MachineFunction *F = BB->getParent(); |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); |
| addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1); |
| addFrameReference(BuildMI(BB, X86::FLD64m, 4, X86::FP0), FrameIdx); |
| BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); |
| ContainsFPCode = true; |
| } else { |
| BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1); |
| } |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); |
| break; |
| } |
| break; |
| case 1: |
| Select(N.getOperand(0)); |
| break; |
| } |
| if (X86Lowering.getBytesToPopOnReturn() == 0) |
| BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction |
| else |
| BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn()); |
| return; |
| case ISD::BR: { |
| Select(N.getOperand(0)); |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); |
| BuildMI(BB, X86::JMP, 1).addMBB(Dest); |
| return; |
| } |
| |
| case ISD::BRCOND: { |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); |
| |
| // Try to fold a setcc into the branch. If this fails, emit a test/jne |
| // pair. |
| if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Select(N.getOperand(0)); |
| } |
| BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1); |
| BuildMI(BB, X86::JNE, 1).addMBB(Dest); |
| } |
| |
| return; |
| } |
| |
| case ISD::LOAD: |
| // If this load could be folded into the only using instruction, and if it |
| // is safe to emit the instruction here, try to do so now. |
| if (Node->hasNUsesOfValue(1, 0)) { |
| SDOperand TheVal = N.getValue(0); |
| SDNode *User = 0; |
| for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) { |
| assert(UI != Node->use_end() && "Didn't find use!"); |
| SDNode *UN = *UI; |
| for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i) |
| if (UN->getOperand(i) == TheVal) { |
| User = UN; |
| goto FoundIt; |
| } |
| } |
| FoundIt: |
| // Only handle unary operators right now. |
| if (User->getNumOperands() == 1) { |
| ExprMap.erase(N); |
| SelectExpr(SDOperand(User, 0)); |
| return; |
| } |
| } |
| ExprMap.erase(N); |
| SelectExpr(N); |
| return; |
| case ISD::READPORT: |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::DYNAMIC_STACKALLOC: |
| case X86ISD::TAILCALL: |
| case X86ISD::CALL: |
| ExprMap.erase(N); |
| SelectExpr(N); |
| return; |
| case ISD::CopyFromReg: |
| case X86ISD::FILD64m: |
| ExprMap.erase(N); |
| SelectExpr(N.getValue(0)); |
| return; |
| |
| case X86ISD::FP_TO_INT16_IN_MEM: |
| case X86ISD::FP_TO_INT32_IN_MEM: |
| case X86ISD::FP_TO_INT64_IN_MEM: { |
| assert(N.getOperand(1).getValueType() == MVT::f64); |
| X86AddressMode AM; |
| Select(N.getOperand(0)); // Select the token chain |
| |
| unsigned ValReg; |
| if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { |
| ValReg = SelectExpr(N.getOperand(1)); |
| SelectAddress(N.getOperand(2), AM); |
| } else { |
| SelectAddress(N.getOperand(2), AM); |
| ValReg = SelectExpr(N.getOperand(1)); |
| } |
| |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| // |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = MakeReg(MVT::i16); |
| addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| switch (N.getOpcode()) { |
| case X86ISD::FP_TO_INT16_IN_MEM: Tmp1 = X86::FIST16m; break; |
| case X86ISD::FP_TO_INT32_IN_MEM: Tmp1 = X86::FIST32m; break; |
| case X86ISD::FP_TO_INT64_IN_MEM: Tmp1 = X86::FISTP64m; break; |
| } |
| |
| addFullAddress(BuildMI(BB, Tmp1, 5), AM).addReg(ValReg); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| return; |
| } |
| |
| case ISD::TRUNCSTORE: { // truncstore chain, val, ptr, SRCVALUE, storety |
| X86AddressMode AM; |
| MVT::ValueType StoredTy = cast<VTSDNode>(N.getOperand(4))->getVT(); |
| assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 || |
| StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/) |
| && "Unsupported TRUNCSTORE for this target!"); |
| |
| if (StoredTy == MVT::i16) { |
| // FIXME: This is here just to allow testing. X86 doesn't really have a |
| // TRUNCSTORE i16 operation, but this is required for targets that do not |
| // have 16-bit integer registers. We occasionally disable 16-bit integer |
| // registers to test the promotion code. |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| SelectAddress(N.getOperand(2), AM); |
| |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); |
| addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX); |
| return; |
| } |
| |
| // Store of constant bool? |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { |
| Select(N.getOperand(0)); |
| SelectAddress(N.getOperand(2), AM); |
| } else { |
| SelectAddress(N.getOperand(2), AM); |
| Select(N.getOperand(0)); |
| } |
| addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue()); |
| return; |
| } |
| |
| switch (StoredTy) { |
| default: assert(0 && "Cannot truncstore this type!"); |
| case MVT::i1: Opc = X86::MOV8mr; break; |
| case MVT::f32: |
| assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs"); |
| Opc = X86::FST32m; break; |
| } |
| |
| std::vector<std::pair<unsigned, unsigned> > RP; |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); |
| std::sort(RP.begin(), RP.end()); |
| |
| Tmp1 = 0; // Silence a warning. |
| for (unsigned i = 0; i != 3; ++i) |
| switch (RP[2-i].second) { |
| default: assert(0 && "Unknown operand number!"); |
| case 0: Select(N.getOperand(0)); break; |
| case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; |
| case 2: SelectAddress(N.getOperand(2), AM); break; |
| } |
| |
| addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); |
| return; |
| } |
| case ISD::STORE: { |
| X86AddressMode AM; |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Opc = 0; |
| switch (CN->getValueType(0)) { |
| default: assert(0 && "Invalid type for operation!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8mi; break; |
| case MVT::i16: Opc = X86::MOV16mi; break; |
| case MVT::i32: Opc = X86::MOV32mi; break; |
| } |
| if (Opc) { |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { |
| Select(N.getOperand(0)); |
| SelectAddress(N.getOperand(2), AM); |
| } else { |
| SelectAddress(N.getOperand(2), AM); |
| Select(N.getOperand(0)); |
| } |
| addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue()); |
| return; |
| } |
| } else if (GlobalAddressSDNode *GA = |
| dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) { |
| assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand"); |
| |
| if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { |
| Select(N.getOperand(0)); |
| SelectAddress(N.getOperand(2), AM); |
| } else { |
| SelectAddress(N.getOperand(2), AM); |
| Select(N.getOperand(0)); |
| } |
| GlobalValue *GV = GA->getGlobal(); |
| // For Darwin, external and weak symbols are indirect, so we want to load |
| // the value at address GV, not the value of GV itself. |
| if (Subtarget->getIndirectExternAndWeakGlobals() && |
| (GV->hasWeakLinkage() || GV->isExternal())) { |
| Tmp1 = MakeReg(MVT::i32); |
| BuildMI(BB, X86::MOV32rm, 4, Tmp1).addReg(0).addZImm(1).addReg(0) |
| .addGlobalAddress(GV, false, 0); |
| addFullAddress(BuildMI(BB, X86::MOV32mr, 4+1),AM).addReg(Tmp1); |
| } else { |
| addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),AM).addGlobalAddress(GV); |
| } |
| return; |
| } |
| |
| // Check to see if this is a load/op/store combination. |
| if (TryToFoldLoadOpStore(Node)) |
| return; |
| |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && "Cannot store this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = X86::MOV8mr; break; |
| case MVT::i16: Opc = X86::MOV16mr; break; |
| case MVT::i32: Opc = X86::MOV32mr; break; |
| case MVT::f32: Opc = X86::MOVSSmr; break; |
| case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FST64m; break; |
| } |
| |
| std::vector<std::pair<unsigned, unsigned> > RP; |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); |
| RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); |
| std::sort(RP.begin(), RP.end()); |
| |
| Tmp1 = 0; // Silence a warning. |
| for (unsigned i = 0; i != 3; ++i) |
| switch (RP[2-i].second) { |
| default: assert(0 && "Unknown operand number!"); |
| case 0: Select(N.getOperand(0)); break; |
| case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; |
| case 2: SelectAddress(N.getOperand(2), AM); break; |
| } |
| |
| addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); |
| return; |
| } |
| case ISD::CALLSEQ_START: |
| Select(N.getOperand(0)); |
| // Stack amount |
| Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); |
| BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1); |
| return; |
| case ISD::CALLSEQ_END: |
| Select(N.getOperand(0)); |
| return; |
| case ISD::MEMSET: { |
| Select(N.getOperand(0)); // Select the chain. |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| // Turn the byte code into # iterations |
| unsigned CountReg; |
| unsigned Opcode; |
| if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { |
| unsigned Val = ValC->getValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| CountReg = MakeReg(MVT::i32); |
| if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { |
| BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); |
| } else { |
| unsigned ByteReg = SelectExpr(Node->getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); |
| } |
| BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); |
| Opcode = X86::REP_STOSW; |
| break; |
| case 0: // DWORD aligned |
| CountReg = MakeReg(MVT::i32); |
| if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { |
| BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); |
| } else { |
| unsigned ByteReg = SelectExpr(Node->getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); |
| } |
| Val = (Val << 8) | Val; |
| BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); |
| Opcode = X86::REP_STOSD; |
| break; |
| default: // BYTE aligned |
| CountReg = SelectExpr(Node->getOperand(3)); |
| BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); |
| Opcode = X86::REP_STOSB; |
| break; |
| } |
| } else { |
| // If it's not a constant value we are storing, just fall back. We could |
| // try to be clever to form 16 bit and 32 bit values, but we don't yet. |
| unsigned ValReg = SelectExpr(Node->getOperand(2)); |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); |
| CountReg = SelectExpr(Node->getOperand(3)); |
| Opcode = X86::REP_STOSB; |
| } |
| |
| // No matter what the alignment is, we put the source in ESI, the |
| // destination in EDI, and the count in ECX. |
| unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); |
| BuildMI(BB, Opcode, 0); |
| return; |
| } |
| case ISD::MEMCPY: { |
| Select(N.getOperand(0)); // Select the chain. |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| // Turn the byte code into # iterations |
| unsigned CountReg; |
| unsigned Opcode; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| CountReg = MakeReg(MVT::i32); |
| if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { |
| BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); |
| } else { |
| unsigned ByteReg = SelectExpr(Node->getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); |
| } |
| Opcode = X86::REP_MOVSW; |
| break; |
| case 0: // DWORD aligned |
| CountReg = MakeReg(MVT::i32); |
| if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) { |
| BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); |
| } else { |
| unsigned ByteReg = SelectExpr(Node->getOperand(3)); |
| BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); |
| } |
| Opcode = X86::REP_MOVSD; |
| break; |
| default: // BYTE aligned |
| CountReg = SelectExpr(Node->getOperand(3)); |
| Opcode = X86::REP_MOVSB; |
| break; |
| } |
| |
| // No matter what the alignment is, we put the source in ESI, the |
| // destination in EDI, and the count in ECX. |
| unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); |
| unsigned TmpReg2 = SelectExpr(Node->getOperand(2)); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); |
| BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); |
| BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); |
| BuildMI(BB, Opcode, 0); |
| return; |
| } |
| case ISD::WRITEPORT: |
| if (Node->getOperand(2).getValueType() != MVT::i16) { |
| std::cerr << "llvm.writeport: Address size is not 16 bits\n"; |
| exit(1); |
| } |
| Select(Node->getOperand(0)); // Emit the chain. |
| |
| Tmp1 = SelectExpr(Node->getOperand(1)); |
| switch (Node->getOperand(1).getValueType()) { |
| case MVT::i8: |
| BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); |
| Tmp2 = X86::OUT8ir; Opc = X86::OUT8rr; |
| break; |
| case MVT::i16: |
| BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1); |
| Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr; |
| break; |
| case MVT::i32: |
| BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); |
| Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr; |
| break; |
| default: |
| std::cerr << "llvm.writeport: invalid data type for X86 target"; |
| exit(1); |
| } |
| |
| // If the port is a single-byte constant, use the immediate form. |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2))) |
| if ((CN->getValue() & 255) == CN->getValue()) { |
| BuildMI(BB, Tmp2, 1).addImm(CN->getValue()); |
| return; |
| } |
| |
| // Otherwise, move the I/O port address into the DX register. |
| unsigned Reg = SelectExpr(Node->getOperand(2)); |
| BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); |
| BuildMI(BB, Opc, 0); |
| return; |
| } |
| assert(0 && "Should not be reached!"); |
| } |
| |
| |
| /// createX86PatternInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation using pattern matching and a machine |
| /// description file. |
| /// |
| FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |