| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86InstrInfo.h" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "X86GenInstrInfo.inc" |
| using namespace llvm; |
| |
| X86InstrInfo::X86InstrInfo() |
| : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])) { |
| } |
| |
| |
| bool X86InstrInfo::isMoveInstr(const MachineInstr& MI, |
| unsigned& sourceReg, |
| unsigned& destReg) const { |
| MachineOpCode oc = MI.getOpcode(); |
| if (oc == X86::MOV8rr || oc == X86::MOV16rr || oc == X86::MOV32rr || |
| oc == X86::FpMOV || oc == X86::MOVAPDrr || oc == X86::MOVAPSrr) { |
| assert(MI.getNumOperands() == 2 && |
| MI.getOperand(0).isRegister() && |
| MI.getOperand(1).isRegister() && |
| "invalid register-register move instruction"); |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const { |
| // All instructions input are two-addr instructions. Get the known operands. |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Src = MI->getOperand(1).getReg(); |
| |
| // FIXME: None of these instructions are promotable to LEAs without |
| // additional information. In particular, LEA doesn't set the flags that |
| // add and inc do. :( |
| return 0; |
| |
| // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When |
| // we have subtarget support, enable the 16-bit LEA generation here. |
| bool DisableLEA16 = true; |
| |
| switch (MI->getOpcode()) { |
| case X86::INC32r: |
| assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); |
| return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, 1); |
| case X86::INC16r: |
| if (DisableLEA16) return 0; |
| assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); |
| return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, 1); |
| case X86::DEC32r: |
| assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); |
| return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, -1); |
| case X86::DEC16r: |
| if (DisableLEA16) return 0; |
| assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); |
| return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, -1); |
| case X86::ADD32rr: |
| assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); |
| return addRegReg(BuildMI(X86::LEA32r, 5, Dest), Src, |
| MI->getOperand(2).getReg()); |
| case X86::ADD16rr: |
| if (DisableLEA16) return 0; |
| assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); |
| return addRegReg(BuildMI(X86::LEA16r, 5, Dest), Src, |
| MI->getOperand(2).getReg()); |
| case X86::ADD32ri: |
| assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); |
| if (MI->getOperand(2).isImmediate()) |
| return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, |
| MI->getOperand(2).getImmedValue()); |
| return 0; |
| case X86::ADD16ri: |
| if (DisableLEA16) return 0; |
| assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); |
| if (MI->getOperand(2).isImmediate()) |
| return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, |
| MI->getOperand(2).getImmedValue()); |
| break; |
| |
| case X86::SHL16ri: |
| if (DisableLEA16) return 0; |
| case X86::SHL32ri: |
| assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() && |
| "Unknown shl instruction!"); |
| unsigned ShAmt = MI->getOperand(2).getImmedValue(); |
| if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) { |
| X86AddressMode AM; |
| AM.Scale = 1 << ShAmt; |
| AM.IndexReg = Src; |
| unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r; |
| return addFullAddress(BuildMI(Opc, 5, Dest), AM); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /// commuteInstruction - We have a few instructions that must be hacked on to |
| /// commute them. |
| /// |
| MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) |
| case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) |
| case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) |
| case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) |
| unsigned Opc; |
| unsigned Size; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "Unreachable!"); |
| case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; |
| case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; |
| case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; |
| case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; |
| } |
| unsigned Amt = MI->getOperand(3).getImmedValue(); |
| unsigned A = MI->getOperand(0).getReg(); |
| unsigned B = MI->getOperand(1).getReg(); |
| unsigned C = MI->getOperand(2).getReg(); |
| return BuildMI(Opc, 3, A).addReg(C).addReg(B).addImm(Size-Amt); |
| } |
| default: |
| return TargetInstrInfo::commuteInstruction(MI); |
| } |
| } |
| |
| |
| void X86InstrInfo::insertGoto(MachineBasicBlock& MBB, |
| MachineBasicBlock& TMBB) const { |
| BuildMI(MBB, MBB.end(), X86::JMP, 1).addMBB(&TMBB); |
| } |
| |
| MachineBasicBlock::iterator |
| X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const { |
| unsigned Opcode = MI->getOpcode(); |
| assert(isBranch(Opcode) && "MachineInstr must be a branch"); |
| unsigned ROpcode; |
| switch (Opcode) { |
| default: assert(0 && "Cannot reverse unconditional branches!"); |
| case X86::JB: ROpcode = X86::JAE; break; |
| case X86::JAE: ROpcode = X86::JB; break; |
| case X86::JE: ROpcode = X86::JNE; break; |
| case X86::JNE: ROpcode = X86::JE; break; |
| case X86::JBE: ROpcode = X86::JA; break; |
| case X86::JA: ROpcode = X86::JBE; break; |
| case X86::JS: ROpcode = X86::JNS; break; |
| case X86::JNS: ROpcode = X86::JS; break; |
| case X86::JP: ROpcode = X86::JNP; break; |
| case X86::JNP: ROpcode = X86::JP; break; |
| case X86::JL: ROpcode = X86::JGE; break; |
| case X86::JGE: ROpcode = X86::JL; break; |
| case X86::JLE: ROpcode = X86::JG; break; |
| case X86::JG: ROpcode = X86::JLE; break; |
| } |
| MachineBasicBlock* MBB = MI->getParent(); |
| MachineBasicBlock* TMBB = MI->getOperand(0).getMachineBasicBlock(); |
| return BuildMI(*MBB, MBB->erase(MI), ROpcode, 1).addMBB(TMBB); |
| } |
| |