| ///===-- FastISel.cpp - Implementation of the FastISel class --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the FastISel class. |
| // |
| // "Fast" instruction selection is designed to emit very poor code quickly. |
| // Also, it is not designed to be able to do much lowering, so most illegal |
| // types (e.g. i64 on 32-bit targets) and operations are not supported. It is |
| // also not intended to be able to do much optimization, except in a few cases |
| // where doing optimizations reduces overall compile time. For example, folding |
| // constants into immediate fields is often done, because it's cheap and it |
| // reduces the number of instructions later phases have to examine. |
| // |
| // "Fast" instruction selection is able to fail gracefully and transfer |
| // control to the SelectionDAG selector for operations that it doesn't |
| // support. In many cases, this allows us to avoid duplicating a lot of |
| // the complicated lowering logic that SelectionDAG currently has. |
| // |
| // The intended use for "fast" instruction selection is "-O0" mode |
| // compilation, where the quality of the generated code is irrelevant when |
| // weighed against the speed at which the code can be generated. Also, |
| // at -O0, the LLVM optimizers are not running, and this makes the |
| // compile time of codegen a much higher portion of the overall compile |
| // time. Despite its limitations, "fast" instruction selection is able to |
| // handle enough code on its own to provide noticeable overall speedups |
| // in -O0 compiles. |
| // |
| // Basic operations are supported in a target-independent way, by reading |
| // the same instruction descriptions that the SelectionDAG selector reads, |
| // and identifying simple arithmetic operations that can be directly selected |
| // from simple operators. More complicated operations currently require |
| // target-specific code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "FunctionLoweringInfo.h" |
| using namespace llvm; |
| |
| unsigned FastISel::getRegForValue(const Value *V) { |
| EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); |
| // Don't handle non-simple values in FastISel. |
| if (!RealVT.isSimple()) |
| return 0; |
| |
| // Ignore illegal types. We must do this before looking up the value |
| // in ValueMap because Arguments are given virtual registers regardless |
| // of whether FastISel can handle them. |
| MVT VT = RealVT.getSimpleVT(); |
| if (!TLI.isTypeLegal(VT)) { |
| // Promote MVT::i1 to a legal type though, because it's common and easy. |
| if (VT == MVT::i1) |
| VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); |
| else |
| return 0; |
| } |
| |
| // Look up the value to see if we already have a register for it. We |
| // cache values defined by Instructions across blocks, and other values |
| // only locally. This is because Instructions already have the SSA |
| // def-dominates-use requirement enforced. |
| if (ValueMap.count(V)) |
| return ValueMap[V]; |
| unsigned Reg = LocalValueMap[V]; |
| if (Reg != 0) |
| return Reg; |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->getValue().getActiveBits() <= 64) |
| Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); |
| } else if (isa<AllocaInst>(V)) { |
| Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); |
| } else if (isa<ConstantPointerNull>(V)) { |
| // Translate this as an integer zero so that it can be |
| // local-CSE'd with actual integer zeros. |
| Reg = |
| getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); |
| } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| // Try to emit the constant directly. |
| Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); |
| |
| if (!Reg) { |
| // Try to emit the constant by using an integer constant with a cast. |
| const APFloat &Flt = CF->getValueAPF(); |
| EVT IntVT = TLI.getPointerTy(); |
| |
| uint64_t x[2]; |
| uint32_t IntBitWidth = IntVT.getSizeInBits(); |
| bool isExact; |
| (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, |
| APFloat::rmTowardZero, &isExact); |
| if (isExact) { |
| APInt IntVal(IntBitWidth, 2, x); |
| |
| unsigned IntegerReg = |
| getRegForValue(ConstantInt::get(V->getContext(), IntVal)); |
| if (IntegerReg != 0) |
| Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); |
| } |
| } |
| } else if (const Operator *Op = dyn_cast<Operator>(V)) { |
| if (!SelectOperator(Op, Op->getOpcode())) return 0; |
| Reg = LocalValueMap[Op]; |
| } else if (isa<UndefValue>(V)) { |
| Reg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); |
| } |
| |
| // If target-independent code couldn't handle the value, give target-specific |
| // code a try. |
| if (!Reg && isa<Constant>(V)) |
| Reg = TargetMaterializeConstant(cast<Constant>(V)); |
| |
| // Don't cache constant materializations in the general ValueMap. |
| // To do so would require tracking what uses they dominate. |
| if (Reg != 0) |
| LocalValueMap[V] = Reg; |
| return Reg; |
| } |
| |
| unsigned FastISel::lookUpRegForValue(const Value *V) { |
| // Look up the value to see if we already have a register for it. We |
| // cache values defined by Instructions across blocks, and other values |
| // only locally. This is because Instructions already have the SSA |
| // def-dominatess-use requirement enforced. |
| if (ValueMap.count(V)) |
| return ValueMap[V]; |
| return LocalValueMap[V]; |
| } |
| |
| /// UpdateValueMap - Update the value map to include the new mapping for this |
| /// instruction, or insert an extra copy to get the result in a previous |
| /// determined register. |
| /// NOTE: This is only necessary because we might select a block that uses |
| /// a value before we select the block that defines the value. It might be |
| /// possible to fix this by selecting blocks in reverse postorder. |
| unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) { |
| if (!isa<Instruction>(I)) { |
| LocalValueMap[I] = Reg; |
| return Reg; |
| } |
| |
| unsigned &AssignedReg = ValueMap[I]; |
| if (AssignedReg == 0) |
| AssignedReg = Reg; |
| else if (Reg != AssignedReg) { |
| const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); |
| TII.copyRegToReg(*MBB, MBB->end(), AssignedReg, |
| Reg, RegClass, RegClass); |
| } |
| return AssignedReg; |
| } |
| |
| unsigned FastISel::getRegForGEPIndex(const Value *Idx) { |
| unsigned IdxN = getRegForValue(Idx); |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return 0; |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend it. |
| MVT PtrVT = TLI.getPointerTy(); |
| EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); |
| if (IdxVT.bitsLT(PtrVT)) |
| IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); |
| else if (IdxVT.bitsGT(PtrVT)) |
| IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); |
| return IdxN; |
| } |
| |
| /// SelectBinaryOp - Select and emit code for a binary operator instruction, |
| /// which has an opcode which directly corresponds to the given ISD opcode. |
| /// |
| bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { |
| EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !VT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| if (!TLI.isTypeLegal(VT)) { |
| // MVT::i1 is special. Allow AND, OR, or XOR because they |
| // don't require additional zeroing, which makes them easy. |
| if (VT == MVT::i1 && |
| (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || |
| ISDOpcode == ISD::XOR)) |
| VT = TLI.getTypeToTransformTo(I->getContext(), VT); |
| else |
| return false; |
| } |
| |
| unsigned Op0 = getRegForValue(I->getOperand(0)); |
| if (Op0 == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // Check if the second operand is a constant and handle it appropriately. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISDOpcode, Op0, CI->getZExtValue()); |
| if (ResultReg != 0) { |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| // Check if the second operand is a constant float. |
| if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { |
| unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISDOpcode, Op0, CF); |
| if (ResultReg != 0) { |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| unsigned Op1 = getRegForValue(I->getOperand(1)); |
| if (Op1 == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // Now we have both operands in registers. Emit the instruction. |
| unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISDOpcode, Op0, Op1); |
| if (ResultReg == 0) |
| // Target-specific code wasn't able to find a machine opcode for |
| // the given ISD opcode and type. Halt "fast" selection and bail. |
| return false; |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool FastISel::SelectGetElementPtr(const User *I) { |
| unsigned N = getRegForValue(I->getOperand(0)); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| const Type *Ty = I->getOperand(0)->getType(); |
| MVT VT = TLI.getPointerTy(); |
| for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, |
| E = I->op_end(); OI != E; ++OI) { |
| const Value *Idx = *OI; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); |
| // FIXME: This can be optimized by combining the add with a |
| // subsequent one. |
| N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| } |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->getZExtValue() == 0) continue; |
| uint64_t Offs = |
| TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); |
| N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| uint64_t ElementSize = TD.getTypeAllocSize(Ty); |
| unsigned IdxN = getRegForGEPIndex(Idx); |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| if (ElementSize != 1) { |
| IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); |
| if (IdxN == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| } |
| N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN); |
| if (N == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| } |
| } |
| |
| // We successfully emitted code for the given LLVM Instruction. |
| UpdateValueMap(I, N); |
| return true; |
| } |
| |
| bool FastISel::SelectCall(const User *I) { |
| const Function *F = cast<CallInst>(I)->getCalledFunction(); |
| if (!F) return false; |
| |
| // Handle selected intrinsic function calls. |
| unsigned IID = F->getIntrinsicID(); |
| switch (IID) { |
| default: break; |
| case Intrinsic::dbg_declare: { |
| const DbgDeclareInst *DI = cast<DbgDeclareInst>(I); |
| if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None) || |
| !MF.getMMI().hasDebugInfo()) |
| return true; |
| |
| const Value *Address = DI->getAddress(); |
| if (!Address) |
| return true; |
| if (isa<UndefValue>(Address)) |
| return true; |
| const AllocaInst *AI = dyn_cast<AllocaInst>(Address); |
| // Don't handle byval struct arguments or VLAs, for example. |
| if (!AI) break; |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| StaticAllocaMap.find(AI); |
| if (SI == StaticAllocaMap.end()) break; // VLAs. |
| int FI = SI->second; |
| if (!DI->getDebugLoc().isUnknown()) |
| MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc()); |
| |
| // Building the map above is target independent. Generating DBG_VALUE |
| // inline is target dependent; do this now. |
| (void)TargetSelectInstruction(cast<Instruction>(I)); |
| return true; |
| } |
| case Intrinsic::dbg_value: { |
| // This form of DBG_VALUE is target-independent. |
| const DbgValueInst *DI = cast<DbgValueInst>(I); |
| const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); |
| const Value *V = DI->getValue(); |
| if (!V) { |
| // Currently the optimizer can produce this; insert an undef to |
| // help debugging. Probably the optimizer should not do this. |
| BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). |
| addMetadata(DI->getVariable()); |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()). |
| addMetadata(DI->getVariable()); |
| } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()). |
| addMetadata(DI->getVariable()); |
| } else if (unsigned Reg = lookUpRegForValue(V)) { |
| BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()). |
| addMetadata(DI->getVariable()); |
| } else { |
| // We can't yet handle anything else here because it would require |
| // generating code, thus altering codegen because of debug info. |
| // Insert an undef so we can see what we dropped. |
| BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). |
| addMetadata(DI->getVariable()); |
| } |
| return true; |
| } |
| case Intrinsic::eh_exception: { |
| EVT VT = TLI.getValueType(I->getType()); |
| switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) { |
| default: break; |
| case TargetLowering::Expand: { |
| assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!"); |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
| unsigned ResultReg = createResultReg(RC); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| Reg, RC, RC); |
| assert(InsertedCopy && "Can't copy address registers!"); |
| InsertedCopy = InsertedCopy; |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| break; |
| } |
| case Intrinsic::eh_selector: { |
| EVT VT = TLI.getValueType(I->getType()); |
| switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) { |
| default: break; |
| case TargetLowering::Expand: { |
| if (MBB->isLandingPad()) |
| AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB); |
| else { |
| #ifndef NDEBUG |
| CatchInfoLost.insert(cast<CallInst>(I)); |
| #endif |
| // FIXME: Mark exception selector register as live in. Hack for PR1508. |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) MBB->addLiveIn(Reg); |
| } |
| |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| EVT SrcVT = TLI.getPointerTy(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); |
| unsigned ResultReg = createResultReg(RC); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg, |
| RC, RC); |
| assert(InsertedCopy && "Can't copy address registers!"); |
| InsertedCopy = InsertedCopy; |
| |
| // Cast the register to the type of the selector. |
| if (SrcVT.bitsGT(MVT::i32)) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE, |
| ResultReg); |
| else if (SrcVT.bitsLT(MVT::i32)) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, |
| ISD::SIGN_EXTEND, ResultReg); |
| if (ResultReg == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| |
| return true; |
| } |
| } |
| break; |
| } |
| } |
| |
| // An arbitrary call. Bail. |
| return false; |
| } |
| |
| bool FastISel::SelectCast(const User *I, unsigned Opcode) { |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| |
| if (SrcVT == MVT::Other || !SrcVT.isSimple() || |
| DstVT == MVT::Other || !DstVT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // Check if the destination type is legal. Or as a special case, |
| // it may be i1 if we're doing a truncate because that's |
| // easy and somewhat common. |
| if (!TLI.isTypeLegal(DstVT)) |
| if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // Check if the source operand is legal. Or as a special case, |
| // it may be i1 if we're doing zero-extension because that's |
| // easy and somewhat common. |
| if (!TLI.isTypeLegal(SrcVT)) |
| if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| unsigned InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // If the operand is i1, arrange for the high bits in the register to be zero. |
| if (SrcVT == MVT::i1) { |
| SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT); |
| InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg); |
| if (!InputReg) |
| return false; |
| } |
| // If the result is i1, truncate to the target's type for i1 first. |
| if (DstVT == MVT::i1) |
| DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT); |
| |
| unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), |
| DstVT.getSimpleVT(), |
| Opcode, |
| InputReg); |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool FastISel::SelectBitCast(const User *I) { |
| // If the bitcast doesn't change the type, just use the operand value. |
| if (I->getType() == I->getOperand(0)->getType()) { |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) |
| return false; |
| UpdateValueMap(I, Reg); |
| return true; |
| } |
| |
| // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators. |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| |
| if (SrcVT == MVT::Other || !SrcVT.isSimple() || |
| DstVT == MVT::Other || !DstVT.isSimple() || |
| !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| unsigned Op0 = getRegForValue(I->getOperand(0)); |
| if (Op0 == 0) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // First, try to perform the bitcast by inserting a reg-reg copy. |
| unsigned ResultReg = 0; |
| if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { |
| TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); |
| TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); |
| ResultReg = createResultReg(DstClass); |
| |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| Op0, DstClass, SrcClass); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| |
| // If the reg-reg copy failed, select a BIT_CONVERT opcode. |
| if (!ResultReg) |
| ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), |
| ISD::BIT_CONVERT, Op0); |
| |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool |
| FastISel::SelectInstruction(const Instruction *I) { |
| DL = I->getDebugLoc(); |
| |
| // First, try doing target-independent selection. |
| if (SelectOperator(I, I->getOpcode())) { |
| DL = DebugLoc(); |
| return true; |
| } |
| |
| // Next, try calling the target to attempt to handle the instruction. |
| if (TargetSelectInstruction(I)) { |
| DL = DebugLoc(); |
| return true; |
| } |
| |
| DL = DebugLoc(); |
| return false; |
| } |
| |
| /// FastEmitBranch - Emit an unconditional branch to the given block, |
| /// unless it is the immediate (fall-through) successor, and update |
| /// the CFG. |
| void |
| FastISel::FastEmitBranch(MachineBasicBlock *MSucc) { |
| if (MBB->isLayoutSuccessor(MSucc)) { |
| // The unconditional fall-through case, which needs no instructions. |
| } else { |
| // The unconditional branch case. |
| TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>()); |
| } |
| MBB->addSuccessor(MSucc); |
| } |
| |
| /// SelectFNeg - Emit an FNeg operation. |
| /// |
| bool |
| FastISel::SelectFNeg(const User *I) { |
| unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); |
| if (OpReg == 0) return false; |
| |
| // If the target has ISD::FNEG, use it. |
| EVT VT = TLI.getValueType(I->getType()); |
| unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), |
| ISD::FNEG, OpReg); |
| if (ResultReg != 0) { |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| // Bitcast the value to integer, twiddle the sign bit with xor, |
| // and then bitcast it back to floating-point. |
| if (VT.getSizeInBits() > 64) return false; |
| EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); |
| if (!TLI.isTypeLegal(IntVT)) |
| return false; |
| |
| unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), |
| ISD::BIT_CONVERT, OpReg); |
| if (IntReg == 0) |
| return false; |
| |
| unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg, |
| UINT64_C(1) << (VT.getSizeInBits()-1), |
| IntVT.getSimpleVT()); |
| if (IntResultReg == 0) |
| return false; |
| |
| ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), |
| ISD::BIT_CONVERT, IntResultReg); |
| if (ResultReg == 0) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool |
| FastISel::SelectOperator(const User *I, unsigned Opcode) { |
| switch (Opcode) { |
| case Instruction::Add: |
| return SelectBinaryOp(I, ISD::ADD); |
| case Instruction::FAdd: |
| return SelectBinaryOp(I, ISD::FADD); |
| case Instruction::Sub: |
| return SelectBinaryOp(I, ISD::SUB); |
| case Instruction::FSub: |
| // FNeg is currently represented in LLVM IR as a special case of FSub. |
| if (BinaryOperator::isFNeg(I)) |
| return SelectFNeg(I); |
| return SelectBinaryOp(I, ISD::FSUB); |
| case Instruction::Mul: |
| return SelectBinaryOp(I, ISD::MUL); |
| case Instruction::FMul: |
| return SelectBinaryOp(I, ISD::FMUL); |
| case Instruction::SDiv: |
| return SelectBinaryOp(I, ISD::SDIV); |
| case Instruction::UDiv: |
| return SelectBinaryOp(I, ISD::UDIV); |
| case Instruction::FDiv: |
| return SelectBinaryOp(I, ISD::FDIV); |
| case Instruction::SRem: |
| return SelectBinaryOp(I, ISD::SREM); |
| case Instruction::URem: |
| return SelectBinaryOp(I, ISD::UREM); |
| case Instruction::FRem: |
| return SelectBinaryOp(I, ISD::FREM); |
| case Instruction::Shl: |
| return SelectBinaryOp(I, ISD::SHL); |
| case Instruction::LShr: |
| return SelectBinaryOp(I, ISD::SRL); |
| case Instruction::AShr: |
| return SelectBinaryOp(I, ISD::SRA); |
| case Instruction::And: |
| return SelectBinaryOp(I, ISD::AND); |
| case Instruction::Or: |
| return SelectBinaryOp(I, ISD::OR); |
| case Instruction::Xor: |
| return SelectBinaryOp(I, ISD::XOR); |
| |
| case Instruction::GetElementPtr: |
| return SelectGetElementPtr(I); |
| |
| case Instruction::Br: { |
| const BranchInst *BI = cast<BranchInst>(I); |
| |
| if (BI->isUnconditional()) { |
| const BasicBlock *LLVMSucc = BI->getSuccessor(0); |
| MachineBasicBlock *MSucc = MBBMap[LLVMSucc]; |
| FastEmitBranch(MSucc); |
| return true; |
| } |
| |
| // Conditional branches are not handed yet. |
| // Halt "fast" selection and bail. |
| return false; |
| } |
| |
| case Instruction::Unreachable: |
| // Nothing to emit. |
| return true; |
| |
| case Instruction::Alloca: |
| // FunctionLowering has the static-sized case covered. |
| if (StaticAllocaMap.count(cast<AllocaInst>(I))) |
| return true; |
| |
| // Dynamic-sized alloca is not handled yet. |
| return false; |
| |
| case Instruction::Call: |
| return SelectCall(I); |
| |
| case Instruction::BitCast: |
| return SelectBitCast(I); |
| |
| case Instruction::FPToSI: |
| return SelectCast(I, ISD::FP_TO_SINT); |
| case Instruction::ZExt: |
| return SelectCast(I, ISD::ZERO_EXTEND); |
| case Instruction::SExt: |
| return SelectCast(I, ISD::SIGN_EXTEND); |
| case Instruction::Trunc: |
| return SelectCast(I, ISD::TRUNCATE); |
| case Instruction::SIToFP: |
| return SelectCast(I, ISD::SINT_TO_FP); |
| |
| case Instruction::IntToPtr: // Deliberate fall-through. |
| case Instruction::PtrToInt: { |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| if (DstVT.bitsGT(SrcVT)) |
| return SelectCast(I, ISD::ZERO_EXTEND); |
| if (DstVT.bitsLT(SrcVT)) |
| return SelectCast(I, ISD::TRUNCATE); |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) return false; |
| UpdateValueMap(I, Reg); |
| return true; |
| } |
| |
| case Instruction::PHI: |
| llvm_unreachable("FastISel shouldn't visit PHI nodes!"); |
| |
| default: |
| // Unhandled instruction. Halt "fast" selection and bail. |
| return false; |
| } |
| } |
| |
| FastISel::FastISel(MachineFunction &mf, |
| DenseMap<const Value *, unsigned> &vm, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, |
| DenseMap<const AllocaInst *, int> &am |
| #ifndef NDEBUG |
| , SmallSet<const Instruction *, 8> &cil |
| #endif |
| ) |
| : MBB(0), |
| ValueMap(vm), |
| MBBMap(bm), |
| StaticAllocaMap(am), |
| #ifndef NDEBUG |
| CatchInfoLost(cil), |
| #endif |
| MF(mf), |
| MRI(MF.getRegInfo()), |
| MFI(*MF.getFrameInfo()), |
| MCP(*MF.getConstantPool()), |
| TM(MF.getTarget()), |
| TD(*TM.getTargetData()), |
| TII(*TM.getInstrInfo()), |
| TLI(*TM.getTargetLowering()) { |
| } |
| |
| FastISel::~FastISel() {} |
| |
| unsigned FastISel::FastEmit_(MVT, MVT, |
| unsigned) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_r(MVT, MVT, |
| unsigned, unsigned /*Op0*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rr(MVT, MVT, |
| unsigned, unsigned /*Op0*/, |
| unsigned /*Op0*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_f(MVT, MVT, |
| unsigned, const ConstantFP * /*FPImm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_ri(MVT, MVT, |
| unsigned, unsigned /*Op0*/, |
| uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rf(MVT, MVT, |
| unsigned, unsigned /*Op0*/, |
| const ConstantFP * /*FPImm*/) { |
| return 0; |
| } |
| |
| unsigned FastISel::FastEmit_rri(MVT, MVT, |
| unsigned, |
| unsigned /*Op0*/, unsigned /*Op1*/, |
| uint64_t /*Imm*/) { |
| return 0; |
| } |
| |
| /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries |
| /// to emit an instruction with an immediate operand using FastEmit_ri. |
| /// If that fails, it materializes the immediate into a register and try |
| /// FastEmit_rr instead. |
| unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, |
| unsigned Op0, uint64_t Imm, |
| MVT ImmType) { |
| // First check if immediate type is legal. If not, we can't use the ri form. |
| unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm); |
| if (ResultReg != 0) |
| return ResultReg; |
| unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); |
| if (MaterialReg == 0) |
| return 0; |
| return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); |
| } |
| |
| /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries |
| /// to emit an instruction with a floating-point immediate operand using |
| /// FastEmit_rf. If that fails, it materializes the immediate into a register |
| /// and try FastEmit_rr instead. |
| unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode, |
| unsigned Op0, const ConstantFP *FPImm, |
| MVT ImmType) { |
| // First check if immediate type is legal. If not, we can't use the rf form. |
| unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm); |
| if (ResultReg != 0) |
| return ResultReg; |
| |
| // Materialize the constant in a register. |
| unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); |
| if (MaterialReg == 0) { |
| // If the target doesn't have a way to directly enter a floating-point |
| // value into a register, use an alternate approach. |
| // TODO: The current approach only supports floating-point constants |
| // that can be constructed by conversion from integer values. This should |
| // be replaced by code that creates a load from a constant-pool entry, |
| // which will require some target-specific work. |
| const APFloat &Flt = FPImm->getValueAPF(); |
| EVT IntVT = TLI.getPointerTy(); |
| |
| uint64_t x[2]; |
| uint32_t IntBitWidth = IntVT.getSizeInBits(); |
| bool isExact; |
| (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, |
| APFloat::rmTowardZero, &isExact); |
| if (!isExact) |
| return 0; |
| APInt IntVal(IntBitWidth, 2, x); |
| |
| unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), |
| ISD::Constant, IntVal.getZExtValue()); |
| if (IntegerReg == 0) |
| return 0; |
| MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, |
| ISD::SINT_TO_FP, IntegerReg); |
| if (MaterialReg == 0) |
| return 0; |
| } |
| return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); |
| } |
| |
| unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { |
| return MRI.createVirtualRegister(RC); |
| } |
| |
| unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, |
| const TargetRegisterClass* RC) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| BuildMI(MBB, DL, II, ResultReg); |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, unsigned Op1) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, const ConstantFP *FPImm) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, unsigned Op1, uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const TargetInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addImm(Imm); |
| else { |
| BuildMI(MBB, DL, II).addImm(Imm); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, |
| unsigned Op0, uint32_t Idx) { |
| const TargetRegisterClass* RC = MRI.getRegClass(Op0); |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); |
| const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx); |
| else { |
| BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx); |
| bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, |
| II.ImplicitDefs[0], RC, RC); |
| if (!InsertedCopy) |
| ResultReg = 0; |
| } |
| return ResultReg; |
| } |
| |
| /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op |
| /// with all but the least significant bit set to zero. |
| unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) { |
| return FastEmit_ri(VT, VT, ISD::AND, Op, 1); |
| } |