| //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAG class, which is a base class used by |
| // scheduling implementation classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "SDNodeDbgValue.h" |
| #include "ScheduleDAGSDNodes.h" |
| #include "InstrEmitter.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtarget.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(LoadsClustered, "Number of loads clustered together"); |
| |
| ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) |
| : ScheduleDAG(mf) { |
| } |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, |
| MachineBasicBlock::iterator insertPos) { |
| DAG = dag; |
| ScheduleDAG::Run(bb, insertPos); |
| } |
| |
| SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { |
| SUnit *SU = NewSUnit(Old->getNode()); |
| SU->OrigNode = Old->OrigNode; |
| SU->Latency = Old->Latency; |
| SU->isTwoAddress = Old->isTwoAddress; |
| SU->isCommutable = Old->isCommutable; |
| SU->hasPhysRegDefs = Old->hasPhysRegDefs; |
| SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; |
| Old->isCloned = true; |
| return SU; |
| } |
| |
| /// CheckForPhysRegDependency - Check if the dependency between def and use of |
| /// a specified operand is a physical register dependency. If so, returns the |
| /// register and the cost of copying the register. |
| static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, |
| const TargetRegisterInfo *TRI, |
| const TargetInstrInfo *TII, |
| unsigned &PhysReg, int &Cost) { |
| if (Op != 2 || User->getOpcode() != ISD::CopyToReg) |
| return; |
| |
| unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| return; |
| |
| unsigned ResNo = User->getOperand(2).getResNo(); |
| if (Def->isMachineOpcode()) { |
| const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); |
| if (ResNo >= II.getNumDefs() && |
| II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { |
| PhysReg = Reg; |
| const TargetRegisterClass *RC = |
| TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); |
| Cost = RC->getCopyCost(); |
| } |
| } |
| } |
| |
| static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag, |
| SelectionDAG *DAG) { |
| SmallVector<EVT, 4> VTs; |
| for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) |
| VTs.push_back(N->getValueType(i)); |
| if (AddFlag) |
| VTs.push_back(MVT::Flag); |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| Ops.push_back(N->getOperand(i)); |
| if (Flag.getNode()) |
| Ops.push_back(Flag); |
| SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); |
| DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); |
| } |
| |
| /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them. |
| /// This function finds loads of the same base and different offsets. If the |
| /// offsets are not far apart (target specific), it add MVT::Flag inputs and |
| /// outputs to ensure they are scheduled together and in order. This |
| /// optimization may benefit some targets by improving cache locality. |
| void ScheduleDAGSDNodes::ClusterNeighboringLoads() { |
| SmallPtrSet<SDNode*, 16> Visited; |
| SmallVector<int64_t, 4> Offsets; |
| DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) { |
| SDNode *Node = &*NI; |
| if (!Node || !Node->isMachineOpcode()) |
| continue; |
| |
| unsigned Opc = Node->getMachineOpcode(); |
| const TargetInstrDesc &TID = TII->get(Opc); |
| if (!TID.mayLoad()) |
| continue; |
| |
| SDNode *Chain = 0; |
| unsigned NumOps = Node->getNumOperands(); |
| if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) |
| Chain = Node->getOperand(NumOps-1).getNode(); |
| if (!Chain) |
| continue; |
| |
| // Look for other loads of the same chain. Find loads that are loading from |
| // the same base pointer and different offsets. |
| Visited.clear(); |
| Offsets.clear(); |
| O2SMap.clear(); |
| bool Cluster = false; |
| SDNode *Base = Node; |
| int64_t BaseOffset; |
| for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); |
| I != E; ++I) { |
| SDNode *User = *I; |
| if (User == Node || !Visited.insert(User)) |
| continue; |
| int64_t Offset1, Offset2; |
| if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || |
| Offset1 == Offset2) |
| // FIXME: Should be ok if they addresses are identical. But earlier |
| // optimizations really should have eliminated one of the loads. |
| continue; |
| if (O2SMap.insert(std::make_pair(Offset1, Base)).second) |
| Offsets.push_back(Offset1); |
| O2SMap.insert(std::make_pair(Offset2, User)); |
| Offsets.push_back(Offset2); |
| if (Offset2 < Offset1) { |
| Base = User; |
| BaseOffset = Offset2; |
| } else { |
| BaseOffset = Offset1; |
| } |
| Cluster = true; |
| } |
| |
| if (!Cluster) |
| continue; |
| |
| // Sort them in increasing order. |
| std::sort(Offsets.begin(), Offsets.end()); |
| |
| // Check if the loads are close enough. |
| SmallVector<SDNode*, 4> Loads; |
| unsigned NumLoads = 0; |
| int64_t BaseOff = Offsets[0]; |
| SDNode *BaseLoad = O2SMap[BaseOff]; |
| Loads.push_back(BaseLoad); |
| for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { |
| int64_t Offset = Offsets[i]; |
| SDNode *Load = O2SMap[Offset]; |
| if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset, |
| NumLoads)) |
| break; // Stop right here. Ignore loads that are further away. |
| Loads.push_back(Load); |
| ++NumLoads; |
| } |
| |
| if (NumLoads == 0) |
| continue; |
| |
| // Cluster loads by adding MVT::Flag outputs and inputs. This also |
| // ensure they are scheduled in order of increasing addresses. |
| SDNode *Lead = Loads[0]; |
| AddFlags(Lead, SDValue(0,0), true, DAG); |
| SDValue InFlag = SDValue(Lead, Lead->getNumValues()-1); |
| for (unsigned i = 1, e = Loads.size(); i != e; ++i) { |
| bool OutFlag = i < e-1; |
| SDNode *Load = Loads[i]; |
| AddFlags(Load, InFlag, OutFlag, DAG); |
| if (OutFlag) |
| InFlag = SDValue(Load, Load->getNumValues()-1); |
| ++LoadsClustered; |
| } |
| } |
| } |
| |
| void ScheduleDAGSDNodes::BuildSchedUnits() { |
| // During scheduling, the NodeId field of SDNode is used to map SDNodes |
| // to their associated SUnits by holding SUnits table indices. A value |
| // of -1 means the SDNode does not yet have an associated SUnit. |
| unsigned NumNodes = 0; |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) { |
| NI->setNodeId(-1); |
| ++NumNodes; |
| } |
| |
| // Reserve entries in the vector for each of the SUnits we are creating. This |
| // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| // invalidated. |
| // FIXME: Multiply by 2 because we may clone nodes during scheduling. |
| // This is a temporary workaround. |
| SUnits.reserve(NumNodes * 2); |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| // Add all nodes in depth first order. |
| SmallVector<SDNode*, 64> Worklist; |
| SmallPtrSet<SDNode*, 64> Visited; |
| Worklist.push_back(DAG->getRoot().getNode()); |
| Visited.insert(DAG->getRoot().getNode()); |
| |
| while (!Worklist.empty()) { |
| SDNode *NI = Worklist.pop_back_val(); |
| |
| // Add all operands to the worklist unless they've already been added. |
| for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) |
| if (Visited.insert(NI->getOperand(i).getNode())) |
| Worklist.push_back(NI->getOperand(i).getNode()); |
| |
| if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. |
| continue; |
| |
| // If this node has already been processed, stop now. |
| if (NI->getNodeId() != -1) continue; |
| |
| SUnit *NodeSUnit = NewSUnit(NI); |
| |
| // See if anything is flagged to this node, if so, add them to flagged |
| // nodes. Nodes can have at most one flag input and one flag output. Flags |
| // are required to be the last operand and result of a node. |
| |
| // Scan up to find flagged preds. |
| SDNode *N = NI; |
| while (N->getNumOperands() && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { |
| N = N->getOperand(N->getNumOperands()-1).getNode(); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| } |
| |
| // Scan down to find any flagged succs. |
| N = NI; |
| while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { |
| SDValue FlagVal(N, N->getNumValues()-1); |
| |
| // There are either zero or one users of the Flag result. |
| bool HasFlagUse = false; |
| for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); |
| UI != E; ++UI) |
| if (FlagVal.isOperandOf(*UI)) { |
| HasFlagUse = true; |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| N = *UI; |
| break; |
| } |
| if (!HasFlagUse) break; |
| } |
| |
| // If there are flag operands involved, N is now the bottom-most node |
| // of the sequence of nodes that are flagged together. |
| // Update the SUnit. |
| NodeSUnit->setNode(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| |
| // Assign the Latency field of NodeSUnit using target-provided information. |
| if (UnitLatencies) |
| NodeSUnit->Latency = 1; |
| else |
| ComputeLatency(NodeSUnit); |
| } |
| } |
| |
| void ScheduleDAGSDNodes::AddSchedEdges() { |
| const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| // Pass 2: add the preds, succs, etc. |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| SUnit *SU = &SUnits[su]; |
| SDNode *MainNode = SU->getNode(); |
| |
| if (MainNode->isMachineOpcode()) { |
| unsigned Opc = MainNode->getMachineOpcode(); |
| const TargetInstrDesc &TID = TII->get(Opc); |
| for (unsigned i = 0; i != TID.getNumOperands(); ++i) { |
| if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { |
| SU->isTwoAddress = true; |
| break; |
| } |
| } |
| if (TID.isCommutable()) |
| SU->isCommutable = true; |
| } |
| |
| // Find all predecessors and successors of the group. |
| for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) { |
| if (N->isMachineOpcode() && |
| TII->get(N->getMachineOpcode()).getImplicitDefs()) { |
| SU->hasPhysRegClobbers = true; |
| unsigned NumUsed = InstrEmitter::CountResults(N); |
| while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) |
| --NumUsed; // Skip over unused values at the end. |
| if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) |
| SU->hasPhysRegDefs = true; |
| } |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *OpN = N->getOperand(i).getNode(); |
| if (isPassiveNode(OpN)) continue; // Not scheduled. |
| SUnit *OpSU = &SUnits[OpN->getNodeId()]; |
| assert(OpSU && "Node has no SUnit!"); |
| if (OpSU == SU) continue; // In the same group. |
| |
| EVT OpVT = N->getOperand(i).getValueType(); |
| assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); |
| bool isChain = OpVT == MVT::Other; |
| |
| unsigned PhysReg = 0; |
| int Cost = 1; |
| // Determine if this is a physical register dependency. |
| CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); |
| assert((PhysReg == 0 || !isChain) && |
| "Chain dependence via physreg data?"); |
| // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler |
| // emits a copy from the physical register to a virtual register unless |
| // it requires a cross class copy (cost < 0). That means we are only |
| // treating "expensive to copy" register dependency as physical register |
| // dependency. This may change in the future though. |
| if (Cost >= 0) |
| PhysReg = 0; |
| |
| const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, |
| OpSU->Latency, PhysReg); |
| if (!isChain && !UnitLatencies) { |
| ComputeOperandLatency(OpSU, SU, const_cast<SDep &>(dep)); |
| ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep)); |
| } |
| |
| SU->addPred(dep); |
| } |
| } |
| } |
| } |
| |
| /// BuildSchedGraph - Build the SUnit graph from the selection dag that we |
| /// are input. This SUnit graph is similar to the SelectionDAG, but |
| /// excludes nodes that aren't interesting to scheduling, and represents |
| /// flagged together nodes with a single SUnit. |
| void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { |
| // Cluster loads from "near" addresses into combined SUnits. |
| ClusterNeighboringLoads(); |
| // Populate the SUnits array. |
| BuildSchedUnits(); |
| // Compute all the scheduling dependencies between nodes. |
| AddSchedEdges(); |
| } |
| |
| void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| // Compute the latency for the node. We use the sum of the latencies for |
| // all nodes flagged together into this SUnit. |
| SU->Latency = 0; |
| for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) |
| if (N->isMachineOpcode()) { |
| SU->Latency += InstrItins. |
| getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass()); |
| } |
| } |
| |
| void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { |
| if (!SU->getNode()) { |
| dbgs() << "PHYS REG COPY\n"; |
| return; |
| } |
| |
| SU->getNode()->dump(DAG); |
| dbgs() << "\n"; |
| SmallVector<SDNode *, 4> FlaggedNodes; |
| for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) |
| FlaggedNodes.push_back(N); |
| while (!FlaggedNodes.empty()) { |
| dbgs() << " "; |
| FlaggedNodes.back()->dump(DAG); |
| dbgs() << "\n"; |
| FlaggedNodes.pop_back(); |
| } |
| } |
| |
| namespace { |
| struct OrderSorter { |
| bool operator()(const std::pair<unsigned, MachineInstr*> &A, |
| const std::pair<unsigned, MachineInstr*> &B) { |
| return A.first < B.first; |
| } |
| }; |
| } |
| |
| // ProcessSourceNode - Process nodes with source order numbers. These are added |
| // to a vector which EmitSchedule use to determine how to insert dbg_value |
| // instructions in the right order. |
| static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, |
| InstrEmitter &Emitter, |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM, |
| DenseMap<SDValue, unsigned> &VRBaseMap, |
| SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, |
| SmallSet<unsigned, 8> &Seen) { |
| unsigned Order = DAG->GetOrdering(N); |
| if (!Order || !Seen.insert(Order)) |
| return; |
| |
| MachineBasicBlock *BB = Emitter.getBlock(); |
| if (BB->empty() || BB->back().isPHI()) { |
| // Did not insert any instruction. |
| Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); |
| return; |
| } |
| |
| Orders.push_back(std::make_pair(Order, &BB->back())); |
| if (!N->getHasDebugValue()) |
| return; |
| // Opportunistically insert immediate dbg_value uses, i.e. those with source |
| // order number right after the N. |
| MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); |
| SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N); |
| for (unsigned i = 0, e = DVs.size(); i != e; ++i) { |
| if (DVs[i]->isInvalidated()) |
| continue; |
| unsigned DVOrder = DVs[i]->getOrder(); |
| if (DVOrder == ++Order) { |
| MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], BB, VRBaseMap, EM); |
| Orders.push_back(std::make_pair(DVOrder, DbgMI)); |
| BB->insert(InsertPos, DbgMI); |
| DVs[i]->setIsInvalidated(); |
| } |
| } |
| } |
| |
| |
| /// EmitSchedule - Emit the machine code in scheduled order. |
| MachineBasicBlock *ScheduleDAGSDNodes:: |
| EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) { |
| InstrEmitter Emitter(BB, InsertPos); |
| DenseMap<SDValue, unsigned> VRBaseMap; |
| DenseMap<SUnit*, unsigned> CopyVRBaseMap; |
| SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; |
| SmallSet<unsigned, 8> Seen; |
| bool HasDbg = DAG->hasDebugValues(); |
| |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| SUnit *SU = Sequence[i]; |
| if (!SU) { |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| continue; |
| } |
| |
| // For pre-regalloc scheduling, create instructions corresponding to the |
| // SDNode and any flagged SDNodes and append them to the block. |
| if (!SU->getNode()) { |
| // Emit a copy. |
| EmitPhysRegCopy(SU, CopyVRBaseMap); |
| continue; |
| } |
| |
| SmallVector<SDNode *, 4> FlaggedNodes; |
| for (SDNode *N = SU->getNode()->getFlaggedNode(); N; |
| N = N->getFlaggedNode()) |
| FlaggedNodes.push_back(N); |
| while (!FlaggedNodes.empty()) { |
| SDNode *N = FlaggedNodes.back(); |
| Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned, |
| VRBaseMap, EM); |
| // Remember the the source order of the inserted instruction. |
| if (HasDbg) |
| ProcessSourceNode(N, DAG, Emitter, EM, VRBaseMap, Orders, Seen); |
| FlaggedNodes.pop_back(); |
| } |
| Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, |
| VRBaseMap, EM); |
| // Remember the the source order of the inserted instruction. |
| if (HasDbg) |
| ProcessSourceNode(SU->getNode(), DAG, Emitter, EM, VRBaseMap, Orders, |
| Seen); |
| } |
| |
| // Insert all the dbg_value which have not already been inserted in source |
| // order sequence. |
| if (HasDbg) { |
| MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin(); |
| while (BBBegin != BB->end() && BBBegin->isPHI()) |
| ++BBBegin; |
| |
| // Sort the source order instructions and use the order to insert debug |
| // values. |
| std::sort(Orders.begin(), Orders.end(), OrderSorter()); |
| |
| SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); |
| SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); |
| // Now emit the rest according to source order. |
| unsigned LastOrder = 0; |
| MachineInstr *LastMI = 0; |
| for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { |
| unsigned Order = Orders[i].first; |
| MachineInstr *MI = Orders[i].second; |
| // Insert all SDDbgValue's whose order(s) are before "Order". |
| if (!MI) |
| continue; |
| MachineBasicBlock *MIBB = MI->getParent(); |
| #ifndef NDEBUG |
| unsigned LastDIOrder = 0; |
| #endif |
| for (; DI != DE && |
| (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { |
| #ifndef NDEBUG |
| assert((*DI)->getOrder() >= LastDIOrder && |
| "SDDbgValue nodes must be in source order!"); |
| LastDIOrder = (*DI)->getOrder(); |
| #endif |
| if ((*DI)->isInvalidated()) |
| continue; |
| MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, MIBB, VRBaseMap, EM); |
| if (!LastOrder) |
| // Insert to start of the BB (after PHIs). |
| BB->insert(BBBegin, DbgMI); |
| else { |
| MachineBasicBlock::iterator Pos = MI; |
| MIBB->insert(llvm::next(Pos), DbgMI); |
| } |
| } |
| LastOrder = Order; |
| LastMI = MI; |
| } |
| // Add trailing DbgValue's before the terminator. FIXME: May want to add |
| // some of them before one or more conditional branches? |
| while (DI != DE) { |
| MachineBasicBlock *InsertBB = Emitter.getBlock(); |
| MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); |
| if (!(*DI)->isInvalidated()) { |
| MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, InsertBB, VRBaseMap, EM); |
| InsertBB->insert(Pos, DbgMI); |
| } |
| ++DI; |
| } |
| } |
| |
| BB = Emitter.getBlock(); |
| InsertPos = Emitter.getInsertPos(); |
| return BB; |
| } |