| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ParamAttrsList.h" |
| using namespace llvm; |
| |
| X86TargetLowering::X86TargetLowering(TargetMachine &TM) |
| : TargetLowering(TM) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| |
| bool Fast = false; |
| |
| RegInfo = TM.getRegisterInfo(); |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setSetCCResultType(MVT::i8); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| setStackPointerRegisterToSaveRestore(X86StackPtr); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(false); |
| setUseUnderscoreLongJmp(false); |
| } else if (Subtarget->isTargetMingw()) { |
| // MS runtime is weird: it exports _setjmp, but longjmp! |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(false); |
| } else { |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| } |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, X86::GR8RegisterClass); |
| addRegisterClass(MVT::i16, X86::GR16RegisterClass); |
| addRegisterClass(MVT::i32, X86::GR32RegisterClass); |
| if (Subtarget->is64Bit()) |
| addRegisterClass(MVT::i64, X86::GR64RegisterClass); |
| |
| setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // We don't accept any truncstore of integer registers. |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i32, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i32, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| } else { |
| if (X86ScalarSSEf64) |
| // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| else |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| } |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 |
| // are Legal, f80 is custom lowered. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } else { |
| if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } |
| |
| // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| if (!X86ScalarSSEf64) { |
| setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| } |
| |
| // Scalar integer divide and remainder are lowered to use operations that |
| // produce two results, to match the available instructions. This exposes |
| // the two-result form to trivial CSE, which is able to combine x/y and x%y |
| // into a single instruction. |
| // |
| // Scalar integer multiply-high is also lowered to use two-result |
| // operations, to match the available instructions. However, plain multiply |
| // (low) operations are left as Legal, as there are single-result |
| // instructions for this in x86. Using the two-result multiply instructions |
| // when both high and low results are needed must be arranged by dagcombine. |
| setOperationAction(ISD::MULHS , MVT::i8 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i8 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i8 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i8 , Expand); |
| setOperationAction(ISD::SREM , MVT::i8 , Expand); |
| setOperationAction(ISD::UREM , MVT::i8 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i16 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i16 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i16 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i16 , Expand); |
| setOperationAction(ISD::SREM , MVT::i16 , Expand); |
| setOperationAction(ISD::UREM , MVT::i16 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i32 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i32 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i32 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i32 , Expand); |
| setOperationAction(ISD::SREM , MVT::i32 , Expand); |
| setOperationAction(ISD::UREM , MVT::i32 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i64 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i64 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i64 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i64 , Expand); |
| setOperationAction(ISD::SREM , MVT::i64 , Expand); |
| setOperationAction(ISD::UREM , MVT::i64 , Expand); |
| |
| setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::FREM , MVT::f80 , Expand); |
| setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); |
| |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i64 , Custom); |
| } |
| |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f80 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f80 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SELECT , MVT::i64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i64 , Custom); |
| } |
| // X86 ret instruction may pop stack. |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| if (!Subtarget->is64Bit()) |
| setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); |
| |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); |
| setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i64 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); |
| setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); |
| } |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); |
| } |
| // X86 wants to expand memset / memcpy itself. |
| setOperationAction(ISD::MEMSET , MVT::Other, Custom); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| |
| if (!Subtarget->hasSSE2()) |
| setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); |
| |
| setOperationAction(ISD::ATOMIC_LCS , MVT::i8, Custom); |
| setOperationAction(ISD::ATOMIC_LCS , MVT::i16, Custom); |
| setOperationAction(ISD::ATOMIC_LCS , MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LCS , MVT::i64, Custom); |
| |
| // Use the default ISD::LOCATION, ISD::DECLARE expansion. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| // FIXME - use subtarget debug flags |
| if (!Subtarget->isTargetDarwin() && |
| !Subtarget->isTargetELF() && |
| !Subtarget->isTargetCygMing()) |
| setOperationAction(ISD::LABEL, MVT::Other, Expand); |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| if (Subtarget->is64Bit()) { |
| // FIXME: Verify |
| setExceptionPointerRegister(X86::RAX); |
| setExceptionSelectorRegister(X86::RDX); |
| } else { |
| setExceptionPointerRegister(X86::EAX); |
| setExceptionSelectorRegister(X86::EDX); |
| } |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); |
| |
| setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::VACOPY , MVT::Other, Custom); |
| else |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| if (Subtarget->isTargetCygMing()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| else |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| |
| if (X86ScalarSSEf64) { |
| // f32 and f64 use SSE. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // Use ANDPD and ORPD to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| addLegalFPImmediate(APFloat(+0.0)); // xorpd |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| |
| // Floating truncations from f80 and extensions to f80 go through memory. |
| // If optimizing, we lie about this though and handle it in |
| // InstructionSelectPreprocess so that dagcombine2 can hack on these. |
| if (Fast) { |
| setConvertAction(MVT::f32, MVT::f80, Expand); |
| setConvertAction(MVT::f64, MVT::f80, Expand); |
| setConvertAction(MVT::f80, MVT::f32, Expand); |
| setConvertAction(MVT::f80, MVT::f64, Expand); |
| } |
| } else if (X86ScalarSSEf32) { |
| // Use SSE for f32, x87 for f64. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::RFP64RegisterClass); |
| |
| // Use ANDPS to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| // Use ANDPS and ORPS to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| |
| // Special cases we handle for FP constants. |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| |
| // SSE <-> X87 conversions go through memory. If optimizing, we lie about |
| // this though and handle it in InstructionSelectPreprocess so that |
| // dagcombine2 can hack on these. |
| if (Fast) { |
| setConvertAction(MVT::f32, MVT::f64, Expand); |
| setConvertAction(MVT::f32, MVT::f80, Expand); |
| setConvertAction(MVT::f80, MVT::f32, Expand); |
| setConvertAction(MVT::f64, MVT::f32, Expand); |
| // And x87->x87 truncations also. |
| setConvertAction(MVT::f80, MVT::f64, Expand); |
| } |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| } else { |
| // f32 and f64 in x87. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFP64RegisterClass); |
| addRegisterClass(MVT::f32, X86::RFP32RegisterClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| setOperationAction(ISD::UNDEF, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| // Floating truncations go through memory. If optimizing, we lie about |
| // this though and handle it in InstructionSelectPreprocess so that |
| // dagcombine2 can hack on these. |
| if (Fast) { |
| setConvertAction(MVT::f80, MVT::f32, Expand); |
| setConvertAction(MVT::f64, MVT::f32, Expand); |
| setConvertAction(MVT::f80, MVT::f64, Expand); |
| } |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| addLegalFPImmediate(APFloat(+0.0f)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0f)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS |
| } |
| |
| // Long double always uses X87. |
| addRegisterClass(MVT::f80, X86::RFP80RegisterClass); |
| setOperationAction(ISD::UNDEF, MVT::f80, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); |
| { |
| APFloat TmpFlt(+0.0); |
| TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); |
| addLegalFPImmediate(TmpFlt); // FLD0 |
| TmpFlt.changeSign(); |
| addLegalFPImmediate(TmpFlt); // FLD0/FCHS |
| APFloat TmpFlt2(+1.0); |
| TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); |
| addLegalFPImmediate(TmpFlt2); // FLD1 |
| TmpFlt2.changeSign(); |
| addLegalFPImmediate(TmpFlt2); // FLD1/FCHS |
| } |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f80 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f80 , Expand); |
| } |
| |
| // Always use a library call for pow. |
| setOperationAction(ISD::FPOW , MVT::f32 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f64 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f80 , Expand); |
| |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand); |
| } |
| |
| if (Subtarget->hasMMX()) { |
| addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); |
| |
| // FIXME: add MMX packed arithmetics |
| |
| setOperationAction(ISD::ADD, MVT::v8i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v2i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::SUB, MVT::v8i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::MULHS, MVT::v4i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v4i16, Legal); |
| |
| setOperationAction(ISD::AND, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::OR, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::XOR, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::LOAD, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); |
| } |
| |
| if (Subtarget->hasSSE1()) { |
| addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| } |
| |
| if (Subtarget->hasSSE2()) { |
| addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i64, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| // Do not attempt to custom lower non-power-of-2 vectors |
| if (!isPowerOf2_32(MVT::getVectorNumElements(VT))) |
| continue; |
| setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| } |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); |
| } |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| } |
| |
| if (Subtarget->hasSSE41()) { |
| // FIXME: Do we need to handle scalar-to-vector here? |
| setOperationAction(ISD::MUL, MVT::v4i32, Legal); |
| |
| // i8 and i16 vectors are custom , because the source register and source |
| // source memory operand types are not the same width. f32 vectors are |
| // custom since the immediate controlling the insert encodes additional |
| // information. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); |
| } |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::STORE); |
| |
| computeRegisterProperties(); |
| |
| // FIXME: These should be based on subtarget info. Plus, the values should |
| // be smaller when we are in optimizing for size mode. |
| maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores |
| maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores |
| maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores |
| allowUnalignedMemoryAccesses = true; // x86 supports it! |
| setPrefLoopAlignment(16); |
| } |
| |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine |
| /// the desired ByVal argument alignment. |
| static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { |
| if (MaxAlign == 16) |
| return; |
| if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| if (VTy->getBitWidth() == 128) |
| MaxAlign = 16; |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(ATy->getElementType(), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(STy->getElementType(i), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| if (MaxAlign == 16) |
| break; |
| } |
| } |
| return; |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest |
| /// are at 4-byte boundaries. |
| unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { |
| if (Subtarget->is64Bit()) |
| return getTargetData()->getABITypeAlignment(Ty); |
| unsigned Align = 4; |
| if (Subtarget->hasSSE1()) |
| getMaxByValAlign(Ty, Align); |
| return Align; |
| } |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table, |
| SelectionDAG &DAG) const { |
| if (usesGlobalOffsetTable()) |
| return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); |
| if (!Subtarget->isPICStyleRIPRel()) |
| return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()); |
| return Table; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86GenCallingConv.inc" |
| |
| /// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it |
| /// exists skip possible ISD:TokenFactor. |
| static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) { |
| if (Chain.getOpcode() == X86ISD::TAILCALL) { |
| return Chain; |
| } else if (Chain.getOpcode() == ISD::TokenFactor) { |
| if (Chain.getNumOperands() && |
| Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL) |
| return Chain.getOperand(0); |
| } |
| return Chain; |
| } |
| |
| /// LowerRET - Lower an ISD::RET node. |
| SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { |
| assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); |
| CCInfo.AnalyzeReturn(Op.Val, RetCC_X86); |
| |
| // If this is the first return lowered for this function, add the regs to the |
| // liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| SDOperand Chain = Op.getOperand(0); |
| |
| // Handle tail call return. |
| Chain = GetPossiblePreceedingTailCall(Chain); |
| if (Chain.getOpcode() == X86ISD::TAILCALL) { |
| SDOperand TailCall = Chain; |
| SDOperand TargetAddress = TailCall.getOperand(1); |
| SDOperand StackAdjustment = TailCall.getOperand(2); |
| assert(((TargetAddress.getOpcode() == ISD::Register && |
| (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX || |
| cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) || |
| TargetAddress.getOpcode() == ISD::TargetExternalSymbol || |
| TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && |
| "Expecting an global address, external symbol, or register"); |
| assert(StackAdjustment.getOpcode() == ISD::Constant && |
| "Expecting a const value"); |
| |
| SmallVector<SDOperand,8> Operands; |
| Operands.push_back(Chain.getOperand(0)); |
| Operands.push_back(TargetAddress); |
| Operands.push_back(StackAdjustment); |
| // Copy registers used by the call. Last operand is a flag so it is not |
| // copied. |
| for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { |
| Operands.push_back(Chain.getOperand(i)); |
| } |
| return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], |
| Operands.size()); |
| } |
| |
| // Regular return. |
| SDOperand Flag; |
| |
| // Copy the result values into the output registers. |
| if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() || |
| RVLocs[0].getLocReg() != X86::ST0) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), |
| Flag); |
| Flag = Chain.getValue(1); |
| } |
| } else { |
| // We need to handle a destination of ST0 specially, because it isn't really |
| // a register. |
| SDOperand Value = Op.getOperand(1); |
| |
| // an XMM register onto the fp-stack. Do this with an FP_EXTEND to f80. |
| // This will get legalized into a load/store if it can't get optimized away. |
| if (isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) |
| Value = DAG.getNode(ISD::FP_EXTEND, MVT::f80, Value); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Ops[] = { Chain, Value }; |
| Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2); |
| Flag = Chain.getValue(1); |
| } |
| |
| SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16); |
| if (Flag.Val) |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag); |
| else |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop); |
| } |
| |
| |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| /// appropriate copies out of appropriate physical registers. This assumes that |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call |
| /// being lowered. The returns a SDNode with the same number of values as the |
| /// ISD::CALL. |
| SDNode *X86TargetLowering:: |
| LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, |
| unsigned CallingConv, SelectionDAG &DAG) { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0; |
| CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); |
| CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); |
| |
| SmallVector<SDOperand, 8> ResultVals; |
| |
| // Copy all of the result registers out of their specified physreg. |
| if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), |
| RVLocs[i].getValVT(), InFlag).getValue(1); |
| InFlag = Chain.getValue(2); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| } else { |
| // Copies from the FP stack are special, as ST0 isn't a valid register |
| // before the fp stackifier runs. |
| |
| // Copy ST0 into an RFP register with FP_GET_RESULT. If this will end up |
| // in an SSE register, copy it out as F80 and do a truncate, otherwise use |
| // the specified value type. |
| MVT::ValueType GetResultTy = RVLocs[0].getValVT(); |
| if (isScalarFPTypeInSSEReg(GetResultTy)) |
| GetResultTy = MVT::f80; |
| SDVTList Tys = DAG.getVTList(GetResultTy, MVT::Other, MVT::Flag); |
| |
| SDOperand GROps[] = { Chain, InFlag }; |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| |
| // If we want the result in an SSE register, use an FP_TRUNCATE to get it |
| // there. |
| if (GetResultTy != RVLocs[0].getValVT()) |
| RetVal = DAG.getNode(ISD::FP_ROUND, RVLocs[0].getValVT(), RetVal, |
| // This truncation won't change the value. |
| DAG.getIntPtrConstant(1)); |
| |
| ResultVals.push_back(RetVal); |
| } |
| |
| // Merge everything together with a MERGE_VALUES node. |
| ResultVals.push_back(Chain); |
| return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), |
| &ResultVals[0], ResultVals.size()).Val; |
| } |
| |
| /// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64 |
| /// ISD::CALL where the results are known to be in two 64-bit registers, |
| /// e.g. XMM0 and XMM1. This simplify store the two values back to the |
| /// fixed stack slot allocated for StructRet. |
| SDNode *X86TargetLowering:: |
| LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag, |
| SDNode *TheCall, unsigned Reg1, unsigned Reg2, |
| MVT::ValueType VT, SelectionDAG &DAG) { |
| SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag); |
| Chain = RetVal1.getValue(1); |
| InFlag = RetVal1.getValue(2); |
| SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag); |
| Chain = RetVal2.getValue(1); |
| InFlag = RetVal2.getValue(2); |
| SDOperand FIN = TheCall->getOperand(5); |
| Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); |
| Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0); |
| return Chain.Val; |
| } |
| |
| /// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL |
| /// where the results are known to be in ST0 and ST1. |
| SDNode *X86TargetLowering:: |
| LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag, |
| SDNode *TheCall, SelectionDAG &DAG) { |
| SmallVector<SDOperand, 8> ResultVals; |
| const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag }; |
| SDVTList Tys = DAG.getVTList(VTs, 4); |
| SDOperand Ops[] = { Chain, InFlag }; |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT2, Tys, Ops, 2); |
| Chain = RetVal.getValue(2); |
| SDOperand FIN = TheCall->getOperand(5); |
| Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16)); |
| Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0); |
| return Chain.Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C & StdCall & Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // StdCall calling convention seems to be standard for many Windows' API |
| // routines and around. It differs from C calling convention just a little: |
| // callee should clean up the stack, not caller. Symbols should be also |
| // decorated in some fancy way :) It doesn't support any vector arguments. |
| // For info on fast calling convention see Fast Calling Convention (tail call) |
| // implementation LowerX86_32FastCCCallTo. |
| |
| /// AddLiveIn - This helper function adds the specified physical register to the |
| /// MachineFunction as a live in value. It also creates a corresponding virtual |
| /// register for it. |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| const TargetRegisterClass *RC) { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); |
| MF.getRegInfo().addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| /// CallIsStructReturn - Determines whether a CALL node uses struct return |
| /// semantics. |
| static bool CallIsStructReturn(SDOperand Op) { |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| if (!NumOps) |
| return false; |
| |
| ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6)); |
| return Flags->getValue() & ISD::ParamFlags::StructReturn; |
| } |
| |
| /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct |
| /// return semantics. |
| static bool ArgsAreStructReturn(SDOperand Op) { |
| unsigned NumArgs = Op.Val->getNumValues() - 1; |
| if (!NumArgs) |
| return false; |
| |
| ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3)); |
| return Flags->getValue() & ISD::ParamFlags::StructReturn; |
| } |
| |
| /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires the |
| /// callee to pop its own arguments. Callee pop is necessary to support tail |
| /// calls. |
| bool X86TargetLowering::IsCalleePop(SDOperand Op) { |
| bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (IsVarArg) |
| return false; |
| |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { |
| default: |
| return false; |
| case CallingConv::X86_StdCall: |
| return !Subtarget->is64Bit(); |
| case CallingConv::X86_FastCall: |
| return !Subtarget->is64Bit(); |
| case CallingConv::Fast: |
| return PerformTailCallOpt; |
| } |
| } |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or |
| /// FORMAL_ARGUMENTS node. |
| CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const { |
| unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| |
| if (Subtarget->is64Bit()) { |
| if (CC == CallingConv::Fast && PerformTailCallOpt) |
| return CC_X86_64_TailCall; |
| else |
| return CC_X86_64_C; |
| } |
| |
| if (CC == CallingConv::X86_FastCall) |
| return CC_X86_32_FastCall; |
| else if (CC == CallingConv::Fast && PerformTailCallOpt) |
| return CC_X86_32_TailCall; |
| else |
| return CC_X86_32_C; |
| } |
| |
| /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to |
| /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. |
| NameDecorationStyle |
| X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) { |
| unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (CC == CallingConv::X86_FastCall) |
| return FastCall; |
| else if (CC == CallingConv::X86_StdCall) |
| return StdCall; |
| return None; |
| } |
| |
| /// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could |
| /// possibly be overwritten when lowering the outgoing arguments in a tail |
| /// call. Currently the implementation of this call is very conservative and |
| /// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with |
| /// virtual registers would be overwritten by direct lowering. |
| static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op, |
| MachineFrameInfo * MFI) { |
| RegisterSDNode * OpReg = NULL; |
| FrameIndexSDNode * FrameIdxNode = NULL; |
| int FrameIdx = 0; |
| if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS || |
| (Op.getOpcode()== ISD::CopyFromReg && |
| (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) && |
| (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) || |
| (Op.getOpcode() == ISD::LOAD && |
| (FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op.getOperand(1))) && |
| (MFI->isFixedObjectIndex((FrameIdx = FrameIdxNode->getIndex()))) && |
| (MFI->getObjectOffset(FrameIdx) >= 0))) |
| return true; |
| return false; |
| } |
| |
| /// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer |
| /// in a register before calling. |
| bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) { |
| return !IsTailCall && !Is64Bit && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT(); |
| } |
| |
| |
| /// CallRequiresFnAddressInReg - Check whether the call requires the function |
| /// address to be loaded in a register. |
| bool |
| X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) { |
| return !Is64Bit && IsTailCall && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT(); |
| } |
| |
| /// CopyTailCallClobberedArgumentsToVRegs - Create virtual registers for all |
| /// arguments to force loading and guarantee that arguments sourcing from |
| /// incomming parameters are not overwriting each other. |
| static SDOperand |
| CopyTailCallClobberedArgumentsToVRegs(SDOperand Chain, |
| SmallVector<std::pair<unsigned, SDOperand>, 8> &TailCallClobberedVRegs, |
| SelectionDAG &DAG, |
| MachineFunction &MF, |
| const TargetLowering * TL) { |
| |
| SDOperand InFlag; |
| for (unsigned i = 0, e = TailCallClobberedVRegs.size(); i != e; i++) { |
| SDOperand Arg = TailCallClobberedVRegs[i].second; |
| unsigned Idx = TailCallClobberedVRegs[i].first; |
| unsigned VReg = |
| MF.getRegInfo(). |
| createVirtualRegister(TL->getRegClassFor(Arg.getValueType())); |
| Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag); |
| InFlag = Chain.getValue(1); |
| Arg = DAG.getCopyFromReg(Chain, VReg, Arg.getValueType(), InFlag); |
| TailCallClobberedVRegs[i] = std::make_pair(Idx, Arg); |
| Chain = Arg.getValue(1); |
| InFlag = Arg.getValue(2); |
| } |
| return Chain; |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" with size and alignment information specified by |
| /// the specific parameter attribute. The copy will be passed as a byval function |
| /// parameter. |
| static SDOperand |
| CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain, |
| unsigned Flags, SelectionDAG &DAG) { |
| unsigned Align = 1 << |
| ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs); |
| unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >> |
| ISD::ParamFlags::ByValSizeOffs; |
| SDOperand AlignNode = DAG.getConstant(Align, MVT::i32); |
| SDOperand SizeNode = DAG.getConstant(Size, MVT::i32); |
| SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32); |
| return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline); |
| } |
| |
| SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| MachineFrameInfo *MFI, |
| unsigned CC, |
| SDOperand Root, unsigned i) { |
| // Create the nodes corresponding to a load from this parameter slot. |
| unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue(); |
| bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; |
| bool isByVal = Flags & ISD::ParamFlags::ByVal; |
| bool isImmutable = !AlwaysUseMutable && !isByVal; |
| |
| // FIXME: For now, all byval parameter objects are marked mutable. This can be |
| // changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. Since they |
| // could be overwritten by lowering of arguments in case of a tail call. |
| int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, |
| VA.getLocMemOffset(), isImmutable); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| if (isByVal) |
| return FIN; |
| return DAG.getLoad(VA.getValVT(), Root, FIN, |
| PseudoSourceValue::getFixedStack(), FI); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| const Function* Fn = MF.getFunction(); |
| if (Fn->hasExternalLinkage() && |
| Subtarget->isTargetCygMing() && |
| Fn->getName() == "main") |
| FuncInfo->setForceFramePointer(true); |
| |
| // Decorate the function name. |
| FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); |
| |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| unsigned CC = MF.getFunction()->getCallingConv(); |
| bool Is64Bit = Subtarget->is64Bit(); |
| |
| assert(!(isVarArg && CC == CallingConv::Fast) && |
| "Var args not supported with calling convention fastcc"); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op)); |
| |
| SmallVector<SDOperand, 8> ArgValues; |
| unsigned LastVal = ~0U; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| // places. |
| assert(VA.getValNo() != LastVal && |
| "Don't support value assigned to multiple locs yet"); |
| LastVal = VA.getValNo(); |
| |
| if (VA.isRegLoc()) { |
| MVT::ValueType RegVT = VA.getLocVT(); |
| TargetRegisterClass *RC; |
| if (RegVT == MVT::i32) |
| RC = X86::GR32RegisterClass; |
| else if (Is64Bit && RegVT == MVT::i64) |
| RC = X86::GR64RegisterClass; |
| else if (RegVT == MVT::f32) |
| RC = X86::FR32RegisterClass; |
| else if (RegVT == MVT::f64) |
| RC = X86::FR64RegisterClass; |
| else { |
| assert(MVT::isVector(RegVT)); |
| if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) { |
| RC = X86::GR64RegisterClass; // MMX values are passed in GPRs. |
| RegVT = MVT::i64; |
| } else |
| RC = X86::VR128RegisterClass; |
| } |
| |
| unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); |
| SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| // right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| |
| if (VA.getLocInfo() != CCValAssign::Full) |
| ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); |
| |
| // Handle MMX values passed in GPRs. |
| if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass && |
| MVT::getSizeInBits(RegVT) == 64) |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); |
| |
| ArgValues.push_back(ArgValue); |
| } else { |
| assert(VA.isMemLoc()); |
| ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); |
| } |
| } |
| |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| // align stack specially for tail calls |
| if (CC == CallingConv::Fast) |
| StackSize = GetAlignedArgumentStackSize(StackSize, DAG); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| if (Is64Bit || CC != CallingConv::X86_FastCall) { |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); |
| } |
| if (Is64Bit) { |
| static const unsigned GPR64ArgRegs[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| |
| unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6); |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| |
| // For X86-64, if there are vararg parameters that are passed via |
| // registers, then we must store them to their spots on the stack so they |
| // may be loaded by deferencing the result of va_next. |
| VarArgsGPOffset = NumIntRegs * 8; |
| VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16; |
| RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16); |
| |
| // Store the integer parameter registers. |
| SmallVector<SDOperand, 8> MemOps; |
| SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| DAG.getIntPtrConstant(VarArgsGPOffset)); |
| for (; NumIntRegs != 6; ++NumIntRegs) { |
| unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], |
| X86::GR64RegisterClass); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); |
| SDOperand Store = |
| DAG.getStore(Val.getValue(1), Val, FIN, |
| PseudoSourceValue::getFixedStack(), |
| RegSaveFrameIndex); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getIntPtrConstant(8)); |
| } |
| |
| // Now store the XMM (fp + vector) parameter registers. |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| DAG.getIntPtrConstant(VarArgsFPOffset)); |
| for (; NumXMMRegs != 8; ++NumXMMRegs) { |
| unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], |
| X86::VR128RegisterClass); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); |
| SDOperand Store = |
| DAG.getStore(Val.getValue(1), Val, FIN, |
| PseudoSourceValue::getFixedStack(), |
| RegSaveFrameIndex); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getIntPtrConstant(16)); |
| } |
| if (!MemOps.empty()) |
| Root = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are |
| // aligned. |
| if (!Is64Bit && CC == CallingConv::X86_FastCall && |
| !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && |
| (StackSize & 7) == 0) |
| StackSize += 4; |
| |
| ArgValues.push_back(Root); |
| |
| // Some CCs need callee pop. |
| if (IsCalleePop(Op)) { |
| BytesToPopOnReturn = StackSize; // Callee pops everything. |
| BytesCallerReserves = 0; |
| } else { |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| // If this is an sret function, the return should pop the hidden pointer. |
| if (!Is64Bit && ArgsAreStructReturn(Op)) |
| BytesToPopOnReturn = 4; |
| BytesCallerReserves = StackSize; |
| } |
| |
| if (!Is64Bit) { |
| RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. |
| if (CC == CallingConv::X86_FastCall) |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| } |
| |
| FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); |
| |
| // Return the new list of results. |
| return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), |
| &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG, |
| const SDOperand &StackPtr, |
| const CCValAssign &VA, |
| SDOperand Chain, |
| SDOperand Arg) { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); |
| unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue(); |
| if (Flags & ISD::ParamFlags::ByVal) { |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); |
| } |
| return DAG.getStore(Chain, Arg, PtrOff, |
| PseudoSourceValue::getStack(), LocMemOffset); |
| } |
| |
| /// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64 |
| /// struct return call to the specified function. X86-64 ABI specifies |
| /// some SRet calls are actually returned in registers. Since current |
| /// LLVM cannot represent multi-value calls, they are represent as |
| /// calls where the results are passed in a hidden struct provided by |
| /// the caller. This function examines the type of the struct to |
| /// determine the correct way to implement the call. |
| X86::X86_64SRet |
| X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) { |
| // FIXME: Disabled for now. |
| return X86::InMemory; |
| |
| const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType()); |
| const Type *RTy = PTy->getElementType(); |
| unsigned Size = getTargetData()->getABITypeSize(RTy); |
| if (Size != 16 && Size != 32) |
| return X86::InMemory; |
| |
| if (Size == 32) { |
| const StructType *STy = dyn_cast<StructType>(RTy); |
| if (!STy) return X86::InMemory; |
| if (STy->getNumElements() == 2 && |
| STy->getElementType(0) == Type::X86_FP80Ty && |
| STy->getElementType(1) == Type::X86_FP80Ty) |
| return X86::InX87; |
| } |
| |
| bool AllFP = true; |
| for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end(); |
| I != E; ++I) { |
| const Type *STy = I->get(); |
| if (!STy->isFPOrFPVector()) { |
| AllFP = false; |
| break; |
| } |
| } |
| |
| if (AllFP) |
| return X86::InSSE; |
| return X86::InGPR64; |
| } |
| |
| void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall, |
| CCAssignFn *Fn, |
| CCState &CCInfo) { |
| unsigned NumOps = (TheCall->getNumOperands() - 5) / 2; |
| for (unsigned i = 1; i != NumOps; ++i) { |
| MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType(); |
| SDOperand FlagOp = TheCall->getOperand(5+2*i+1); |
| unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue(); |
| if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) { |
| cerr << "Call operand #" << i << " has unhandled type " |
| << MVT::getValueTypeString(ArgVT) << "\n"; |
| abort(); |
| } |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo * MFI = MF.getFrameInfo(); |
| SDOperand Chain = Op.getOperand(0); |
| unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| bool IsTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 |
| && CC == CallingConv::Fast && PerformTailCallOpt; |
| SDOperand Callee = Op.getOperand(4); |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsStructRet = CallIsStructReturn(Op); |
| |
| assert(!(isVarArg && CC == CallingConv::Fast) && |
| "Var args not supported with calling convention fastcc"); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| CCAssignFn *CCFn = CCAssignFnForNode(Op); |
| |
| X86::X86_64SRet SRetMethod = X86::InMemory; |
| if (Is64Bit && IsStructRet) |
| // FIXME: We can't figure out type of the sret structure for indirect |
| // calls. We need to copy more information from CallSite to the ISD::CALL |
| // node. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| SRetMethod = |
| ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal())); |
| |
| // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of |
| // registers. Unfortunately, llvm does not support i128 yet so we pretend it's |
| // a sret call. |
| if (SRetMethod != X86::InMemory) |
| X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo); |
| else |
| CCInfo.AnalyzeCallOperands(Op.Val, CCFn); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| if (CC == CallingConv::Fast) |
| NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if (!Is64Bit && CC == CallingConv::X86_FastCall && |
| !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && |
| (NumBytes & 7) == 0) |
| NumBytes += 4; |
| |
| int FPDiff = 0; |
| if (IsTailCall) { |
| // Lower arguments at fp - stackoffset + fpdiff. |
| unsigned NumBytesCallerPushed = |
| MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); |
| FPDiff = NumBytesCallerPushed - NumBytes; |
| |
| // Set the delta of movement of the returnaddr stackslot. |
| // But only set if delta is greater than previous delta. |
| if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) |
| MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes)); |
| |
| SDOperand RetAddrFrIdx; |
| if (IsTailCall) { |
| // Adjust the Return address stack slot. |
| if (FPDiff) { |
| MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32; |
| RetAddrFrIdx = getReturnAddressFrameIndex(DAG); |
| // Load the "old" Return address. |
| RetAddrFrIdx = |
| DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0); |
| Chain = SDOperand(RetAddrFrIdx.Val, 1); |
| } |
| } |
| |
| SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; |
| SmallVector<std::pair<unsigned, SDOperand>, 8> TailCallClobberedVRegs; |
| SmallVector<SDOperand, 8> MemOpChains; |
| |
| SDOperand StackPtr; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. For tail |
| // calls, remember all arguments for later special lowering. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| if (!IsTailCall) { |
| assert(VA.isMemLoc()); |
| if (StackPtr.Val == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain, |
| Arg)); |
| } else if (IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) { |
| TailCallClobberedVRegs.push_back(std::make_pair(i,Arg)); |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) { |
| Chain = DAG.getCopyToReg(Chain, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| // If we are tail calling and generating PIC/GOT style code load the address |
| // of the callee into ecx. The value in ecx is used as target of the tail |
| // jump. This is done to circumvent the ebx/callee-saved problem for tail |
| // calls on PIC/GOT architectures. Normally we would just put the address of |
| // GOT into ebx and then call target@PLT. But for tail callss ebx would be |
| // restored (since ebx is callee saved) before jumping to the target@PLT. |
| if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) { |
| // Note: The actual moving to ecx is done further down. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (G && !G->getGlobal()->hasHiddenVisibility() && |
| !G->getGlobal()->hasProtectedVisibility()) |
| Callee = LowerGlobalAddress(Callee, DAG); |
| else if (isa<ExternalSymbolSDNode>(Callee)) |
| Callee = LowerExternalSymbol(Callee,DAG); |
| } |
| |
| if (Is64Bit && isVarArg) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| |
| // Count the number of XMM registers allocated. |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| |
| Chain = DAG.getCopyToReg(Chain, X86::AL, |
| DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (IsTailCall) { |
| SmallVector<SDOperand, 8> MemOpChains2; |
| SDOperand FIN; |
| int FI = 0; |
| // Do not flag preceeding copytoreg stuff together with the following stuff. |
| InFlag = SDOperand(); |
| |
| Chain = CopyTailCallClobberedArgumentsToVRegs(Chain, TailCallClobberedVRegs, |
| DAG, MF, this); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (!VA.isRegLoc()) { |
| assert(VA.isMemLoc()); |
| SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); |
| SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); |
| unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue(); |
| // Create frame index. |
| int32_t Offset = VA.getLocMemOffset()+FPDiff; |
| uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8; |
| FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); |
| FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| // Find virtual register for this argument. |
| bool Found=false; |
| for (unsigned idx=0, e= TailCallClobberedVRegs.size(); idx < e; idx++) |
| if (TailCallClobberedVRegs[idx].first==i) { |
| Arg = TailCallClobberedVRegs[idx].second; |
| Found=true; |
| break; |
| } |
| assert(IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)==false || |
| (Found==true && "No corresponding Argument was found")); |
| |
| if (Flags & ISD::ParamFlags::ByVal) { |
| // Copy relative to framepointer. |
| MemOpChains2.push_back(CreateCopyOfByValArgument(Arg, FIN, Chain, |
| Flags, DAG)); |
| } else { |
| // Store relative to framepointer. |
| MemOpChains2.push_back( |
| DAG.getStore(Chain, Arg, FIN, |
| PseudoSourceValue::getFixedStack(), FI)); |
| } |
| } |
| } |
| |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains2[0], MemOpChains2.size()); |
| |
| // Store the return address to the appropriate stack slot. |
| if (FPDiff) { |
| // Calculate the new stack slot for the return address. |
| int SlotSize = Is64Bit ? 8 : 4; |
| int NewReturnAddrFI = |
| MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); |
| MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32; |
| SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); |
| Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, |
| PseudoSourceValue::getFixedStack(), NewReturnAddrFI); |
| } |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| if ((IsTailCall || !Is64Bit || |
| getTargetMachine().getCodeModel() != CodeModel::Large) |
| && !Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| getTargetMachine(), true)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| if (IsTailCall || !Is64Bit || |
| getTargetMachine().getCodeModel() != CodeModel::Large) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| } else if (IsTailCall) { |
| unsigned Opc = Is64Bit ? X86::R9 : X86::ECX; |
| |
| Chain = DAG.getCopyToReg(Chain, |
| DAG.getRegister(Opc, getPointerTy()), |
| Callee,InFlag); |
| Callee = DAG.getRegister(Opc, getPointerTy()); |
| // Add register as live out. |
| DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SmallVector<SDOperand, 8> Ops; |
| |
| if (IsTailCall) { |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getIntPtrConstant(NumBytes)); |
| Ops.push_back(DAG.getIntPtrConstant(0)); |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Returns a chain & a flag for retval copy to use. |
| NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| Ops.clear(); |
| } |
| |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (IsTailCall) |
| Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); |
| |
| // Add an implicit use GOT pointer in EBX. |
| if (!IsTailCall && !Is64Bit && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()) |
| Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| if (IsTailCall) { |
| assert(InFlag.Val && |
| "Flag must be set. Depend on flag being set in LowerRET"); |
| Chain = DAG.getNode(X86ISD::TAILCALL, |
| Op.Val->getVTList(), &Ops[0], Ops.size()); |
| |
| return SDOperand(Chain.Val, Op.ResNo); |
| } |
| |
| Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush; |
| if (IsCalleePop(Op)) |
| NumBytesForCalleeToPush = NumBytes; // Callee pops everything |
| else if (!Is64Bit && IsStructRet) |
| // If this is is a call to a struct-return function, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| // This is common for Darwin/X86, Linux & Mingw32 targets. |
| NumBytesForCalleeToPush = 4; |
| else |
| NumBytesForCalleeToPush = 0; // Callee pops nothing. |
| |
| // Returns a flag for retval copy to use. |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NumBytes), |
| DAG.getIntPtrConstant(NumBytesForCalleeToPush), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| switch (SRetMethod) { |
| default: |
| return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); |
| case X86::InGPR64: |
| return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val, |
| X86::RAX, X86::RDX, |
| MVT::i64, DAG), Op.ResNo); |
| case X86::InSSE: |
| return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val, |
| X86::XMM0, X86::XMM1, |
| MVT::f64, DAG), Op.ResNo); |
| case X86::InX87: |
| return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG), |
| Op.ResNo); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention (tail call) implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Like std call, callee cleans arguments, convention except that ECX is |
| // reserved for storing the tail called function address. Only 2 registers are |
| // free for argument passing (inreg). Tail call optimization is performed |
| // provided: |
| // * tailcallopt is enabled |
| // * caller/callee are fastcc |
| // On X86_64 architecture with GOT-style position independent code only local |
| // (within module) calls are supported at the moment. |
| // To keep the stack aligned according to platform abi the function |
| // GetAlignedArgumentStackSize ensures that argument delta is always multiples |
| // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) |
| // If a tail called function callee has more arguments than the caller the |
| // caller needs to make sure that there is room to move the RETADDR to. This is |
| // achieved by reserving an area the size of the argument delta right after the |
| // original REtADDR, but before the saved framepointer or the spilled registers |
| // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) |
| // stack layout: |
| // arg1 |
| // arg2 |
| // RETADDR |
| // [ new RETADDR |
| // move area ] |
| // (possible EBP) |
| // ESI |
| // EDI |
| // local1 .. |
| |
| /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned |
| /// for a 16 byte align requirement. |
| unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, |
| SelectionDAG& DAG) { |
| if (PerformTailCallOpt) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameInfo &TFI = *TM.getFrameInfo(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| uint64_t AlignMask = StackAlignment - 1; |
| int64_t Offset = StackSize; |
| unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4; |
| if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { |
| // Number smaller than 12 so just add the difference. |
| Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); |
| } else { |
| // Mask out lower bits, add stackalignment once plus the 12 bytes. |
| Offset = ((~AlignMask) & Offset) + StackAlignment + |
| (StackAlignment-SlotSize); |
| } |
| StackSize = Offset; |
| } |
| return StackSize; |
| } |
| |
| /// IsEligibleForTailCallElimination - Check to see whether the next instruction |
| /// following the call is a return. A function is eligible if caller/callee |
| /// calling conventions match, currently only fastcc supports tail calls, and |
| /// the function CALL is immediatly followed by a RET. |
| bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call, |
| SDOperand Ret, |
| SelectionDAG& DAG) const { |
| if (!PerformTailCallOpt) |
| return false; |
| |
| // Check whether CALL node immediatly preceeds the RET node and whether the |
| // return uses the result of the node or is a void return. |
| unsigned NumOps = Ret.getNumOperands(); |
| if ((NumOps == 1 && |
| (Ret.getOperand(0) == SDOperand(Call.Val,1) || |
| Ret.getOperand(0) == SDOperand(Call.Val,0))) || |
| (NumOps > 1 && |
| Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) && |
| Ret.getOperand(1) == SDOperand(Call.Val,0))) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned CallerCC = MF.getFunction()->getCallingConv(); |
| unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue(); |
| if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { |
| SDOperand Callee = Call.getOperand(4); |
| // On x86/32Bit PIC/GOT tail calls are supported. |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_ || |
| !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit()) |
| return true; |
| |
| // Can only do local tail calls (in same module, hidden or protected) on |
| // x86_64 PIC/GOT at the moment. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| return G->getGlobal()->hasHiddenVisibility() |
| || G->getGlobal()->hasProtectedVisibility(); |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| int ReturnAddrIndex = FuncInfo->getRAIndex(); |
| |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| if (Subtarget->is64Bit()) |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); |
| else |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
| |
| FuncInfo->setRAIndex(ReturnAddrIndex); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); |
| } |
| |
| |
| |
| /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code. It returns a false if it cannot do a direct |
| /// translation. X86CC is the translated CondCode. LHS/RHS are modified as |
| /// needed. |
| static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, |
| SelectionDAG &DAG) { |
| X86CC = X86::COND_INVALID; |
| if (!isFP) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| // X > -1 -> X == 0, jump !sign. |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| X86CC = X86::COND_NS; |
| return true; |
| } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| // X < 0 -> X == 0, jump on sign. |
| X86CC = X86::COND_S; |
| return true; |
| } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) { |
| // X < 1 -> X <= 0 |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| X86CC = X86::COND_LE; |
| return true; |
| } |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETEQ: X86CC = X86::COND_E; break; |
| case ISD::SETGT: X86CC = X86::COND_G; break; |
| case ISD::SETGE: X86CC = X86::COND_GE; break; |
| case ISD::SETLT: X86CC = X86::COND_L; break; |
| case ISD::SETLE: X86CC = X86::COND_LE; break; |
| case ISD::SETNE: X86CC = X86::COND_NE; break; |
| case ISD::SETULT: X86CC = X86::COND_B; break; |
| case ISD::SETUGT: X86CC = X86::COND_A; break; |
| case ISD::SETULE: X86CC = X86::COND_BE; break; |
| case ISD::SETUGE: X86CC = X86::COND_AE; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| bool Flip = false; |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETUEQ: |
| case ISD::SETEQ: X86CC = X86::COND_E; break; |
| case ISD::SETOLT: Flip = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: X86CC = X86::COND_A; break; |
| case ISD::SETOLE: Flip = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: X86CC = X86::COND_AE; break; |
| case ISD::SETUGT: Flip = true; // Fallthrough |
| case ISD::SETULT: |
| case ISD::SETLT: X86CC = X86::COND_B; break; |
| case ISD::SETUGE: Flip = true; // Fallthrough |
| case ISD::SETULE: |
| case ISD::SETLE: X86CC = X86::COND_BE; break; |
| case ISD::SETONE: |
| case ISD::SETNE: X86CC = X86::COND_NE; break; |
| case ISD::SETUO: X86CC = X86::COND_P; break; |
| case ISD::SETO: X86CC = X86::COND_NP; break; |
| } |
| if (Flip) |
| std::swap(LHS, RHS); |
| } |
| |
| return X86CC != X86::COND_INVALID; |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86::COND_B: |
| case X86::COND_BE: |
| case X86::COND_E: |
| case X86::COND_P: |
| case X86::COND_A: |
| case X86::COND_AE: |
| case X86::COND_NE: |
| case X86::COND_NP: |
| return true; |
| } |
| } |
| |
| /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value falls within the specified range (L, H]. |
| static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| |
| unsigned Val = cast<ConstantSDNode>(Op)->getValue(); |
| return (Val >= Low && Val < Hi); |
| } |
| |
| /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value equal to the specified value. |
| static bool isUndefOrEqual(SDOperand Op, unsigned Val) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| return cast<ConstantSDNode>(Op)->getValue() == Val; |
| } |
| |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool X86::isPSHUFDMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 2 && N->getNumOperands() != 4) |
| return false; |
| |
| // Check if the value doesn't reference the second vector. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() >= e) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFHW. |
| bool X86::isPSHUFHWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword copied in order. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() != i) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFLW. |
| bool X86::isPSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Upper quadword copied in order. |
| for (unsigned i = 4; i != 8; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) |
| if (!isUndefOrInRange(N->getOperand(i), 0, 4)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) { |
| if (NumElems != 2 && NumElems != 4) return false; |
| |
| unsigned Half = NumElems / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Elems[i], 0, NumElems)) |
| return false; |
| for (unsigned i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isSHUFPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); |
| } |
| |
| /// isCommutedSHUFP - Returns true if the shuffle mask is exactly |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower |
| /// half elements to come from vector 1 (which would equal the dest.) and |
| /// the upper half to come from vector 2. |
| static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) { |
| if (NumOps != 2 && NumOps != 4) return false; |
| |
| unsigned Half = NumOps / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) |
| return false; |
| for (unsigned i = Half; i < NumOps; ++i) |
| if (!isUndefOrInRange(Ops[i], 0, NumOps)) |
| return false; |
| return true; |
| } |
| |
| static bool isCommutedSHUFP(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); |
| } |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool X86::isMOVHLPSMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getOperand(0), 6) && |
| isUndefOrEqual(N->getOperand(1), 7) && |
| isUndefOrEqual(N->getOperand(2), 2) && |
| isUndefOrEqual(N->getOperand(3), 3); |
| } |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getOperand(0), 2) && |
| isUndefOrEqual(N->getOperand(1), 3) && |
| isUndefOrEqual(N->getOperand(2), 2) && |
| isUndefOrEqual(N->getOperand(3), 3); |
| } |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| bool X86::isMOVLPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) |
| return false; |
| |
| for (unsigned i = NumElems/2; i < NumElems; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} |
| /// and MOVLHPS. |
| bool X86::isMOVHPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) { |
| SDOperand Arg = N->getOperand(i + NumElems/2); |
| if (!isUndefOrEqual(Arg, i + NumElems)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts, |
| bool V2IsSplat = false) { |
| if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| SDOperand BitI = Elts[i]; |
| SDOperand BitI1 = Elts[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElts)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); |
| } |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts, |
| bool V2IsSplat = false) { |
| if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| SDOperand BitI = Elts[i]; |
| SDOperand BitI1 = Elts[i+1]; |
| if (!isUndefOrEqual(BitI, j + NumElts/2)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); |
| } |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N->getOperand(i); |
| SDOperand BitI1 = N->getOperand(i+1); |
| |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| /// <2, 2, 3, 3> |
| bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N->getOperand(i); |
| SDOperand BitI1 = N->getOperand(i + 1); |
| |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) { |
| if (NumElts != 2 && NumElts != 4) |
| return false; |
| |
| if (!isUndefOrEqual(Elts[0], NumElts)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElts; ++i) { |
| if (!isUndefOrEqual(Elts[i], i)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86::isMOVLMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return ::isMOVLMask(N->op_begin(), N->getNumOperands()); |
| } |
| |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse |
| /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| /// element of vector 2 and the other elements to come from vector 1 in order. |
| static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps, |
| bool V2IsSplat = false, |
| bool V2IsUndef = false) { |
| if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) |
| return false; |
| |
| if (!isUndefOrEqual(Ops[0], 0)) |
| return false; |
| |
| for (unsigned i = 1; i < NumOps; ++i) { |
| SDOperand Arg = Ops[i]; |
| if (!(isUndefOrEqual(Arg, i+NumOps) || |
| (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || |
| (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, |
| bool V2IsUndef = false) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| return isCommutedMOVL(N->op_begin(), N->getNumOperands(), |
| V2IsSplat, V2IsUndef); |
| } |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool X86::isMOVSHDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 1, 1, 3, 3 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 1) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 3) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool X86::isMOVSLDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 0, 0, 2, 2 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 0) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 2) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a identity operation on the LHS or RHS. |
| static bool isIdentityMask(SDNode *N, bool RHS = false) { |
| unsigned NumElems = N->getNumOperands(); |
| for (unsigned i = 0; i < NumElems; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) |
| return false; |
| return true; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element. |
| static bool isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned NumElems = N->getNumOperands(); |
| SDOperand ElementBase; |
| unsigned i = 0; |
| for (; i != NumElems; ++i) { |
| SDOperand Elt = N->getOperand(i); |
| if (isa<ConstantSDNode>(Elt)) { |
| ElementBase = Elt; |
| break; |
| } |
| } |
| |
| if (!ElementBase.Val) |
| return false; |
| |
| for (; i != NumElems; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (Arg != ElementBase) return false; |
| } |
| |
| // Make sure it is a splat of the first vector operand. |
| return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element and it's a 2 or 4 element mask. |
| bool X86::isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // We can only splat 64-bit, and 32-bit quantities with a single instruction. |
| if (N->getNumOperands() != 4 && N->getNumOperands() != 2) |
| return false; |
| return ::isSplatMask(N); |
| } |
| |
| /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of zero element. |
| bool X86::isSplatLoMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), 0)) |
| return false; |
| return true; |
| } |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| /// instructions. |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) { |
| unsigned NumOperands = N->getNumOperands(); |
| unsigned Shift = (NumOperands == 4) ? 2 : 1; |
| unsigned Mask = 0; |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(NumOperands-i-1); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val >= NumOperands) Val -= NumOperands; |
| Mask |= Val; |
| if (i != NumOperands - 1) |
| Mask <<= Shift; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW |
| /// instructions. |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the last 4. |
| for (unsigned i = 7; i >= 4; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= (Val - 4); |
| if (i != 4) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW |
| /// instructions. |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the first 4. |
| for (int i = 3; i >= 0; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= Val; |
| if (i != 0) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand |
| /// specifies a 8 element shuffle that can be broken into a pair of |
| /// PSHUFHW and PSHUFLW. |
| static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val >= 4) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// CommuteVectorShuffle - Swap vector_shuffle operands as well as |
| /// values in ther permute mask. |
| static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, |
| SDOperand &V2, SDOperand &Mask, |
| SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType MaskVT = Mask.getValueType(); |
| MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT); |
| unsigned NumElems = Mask.getNumOperands(); |
| SmallVector<SDOperand, 8> MaskVec; |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| continue; |
| } |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems) |
| MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); |
| } |
| |
| std::swap(V1, V2); |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| |
| /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming |
| /// the two vector operands have swapped position. |
| static |
| SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = Mask.getValueType(); |
| MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT); |
| unsigned NumElems = Mask.getNumOperands(); |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| continue; |
| } |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems) |
| MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); |
| } |
| |
| |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| /// match movhlps. The lower half elements should come from upper half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). |
| static bool ShouldXformToMOVHLPS(SDNode *Mask) { |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = 2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+2)) |
| return false; |
| for (unsigned i = 2; i != 4; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+4)) |
| return false; |
| return true; |
| } |
| |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| /// is promoted to a vector. |
| static inline bool isScalarLoadToVector(SDNode *N) { |
| if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| N = N->getOperand(0).Val; |
| return ISD::isNON_EXTLoad(N); |
| } |
| return false; |
| } |
| |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| /// match movlp{s|d}. The lower half elements should come from lower half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). And since V1 will become the source of the |
| /// MOVLP, it must be either a vector load or a scalar load to vector. |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { |
| if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) |
| return false; |
| // Is V2 is a vector load, don't do this transformation. We will try to use |
| // load folding shufps op. |
| if (ISD::isNON_EXTLoad(V2)) |
| return false; |
| |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i)) |
| return false; |
| for (unsigned i = NumElems/2; i != NumElems; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) |
| return false; |
| return true; |
| } |
| |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| /// all the same. |
| static bool isSplatVector(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDOperand SplatValue = N->getOperand(0); |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i) != SplatValue) |
| return false; |
| return true; |
| } |
| |
| /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| /// to an undef. |
| static bool isUndefShuffle(SDNode *N) { |
| if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| return false; |
| |
| SDOperand V1 = N->getOperand(0); |
| SDOperand V2 = N->getOperand(1); |
| SDOperand Mask = N->getOperand(2); |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) { |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) |
| return false; |
| else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| static inline bool isZeroNode(SDOperand Elt) { |
| return ((isa<ConstantSDNode>(Elt) && |
| cast<ConstantSDNode>(Elt)->getValue() == 0) || |
| (isa<ConstantFPSDNode>(Elt) && |
| cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); |
| } |
| |
| /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| /// to an zero vector. |
| static bool isZeroShuffle(SDNode *N) { |
| if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| return false; |
| |
| SDOperand V1 = N->getOperand(0); |
| SDOperand V2 = N->getOperand(1); |
| SDOperand Mask = N->getOperand(2); |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) |
| continue; |
| |
| unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Idx < NumElems) { |
| unsigned Opc = V1.Val->getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val)) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !isZeroNode(V1.Val->getOperand(Idx))) |
| return false; |
| } else if (Idx >= NumElems) { |
| unsigned Opc = V2.Val->getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val)) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !isZeroNode(V2.Val->getOperand(Idx - NumElems))) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { |
| assert(MVT::isVector(VT) && "Expected a vector type"); |
| |
| // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest |
| // type. This ensures they get CSE'd. |
| SDOperand Cst = DAG.getTargetConstant(0, MVT::i32); |
| SDOperand Vec; |
| if (MVT::getSizeInBits(VT) == 64) // MMX |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); |
| else // SSE |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); |
| } |
| |
| /// getOnesVector - Returns a vector of specified type with all bits set. |
| /// |
| static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) { |
| assert(MVT::isVector(VT) && "Expected a vector type"); |
| |
| // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest |
| // type. This ensures they get CSE'd. |
| SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32); |
| SDOperand Vec; |
| if (MVT::getSizeInBits(VT) == 64) // MMX |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); |
| else // SSE |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); |
| } |
| |
| |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| /// that point to V2 points to its first element. |
| static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { |
| assert(Mask.getOpcode() == ISD::BUILD_VECTOR); |
| |
| bool Changed = false; |
| SmallVector<SDOperand, 8> MaskVec; |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) { |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val > NumElems) { |
| Arg = DAG.getConstant(NumElems, Arg.getValueType()); |
| Changed = true; |
| } |
| } |
| MaskVec.push_back(Arg); |
| } |
| |
| if (Changed) |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), |
| &MaskVec[0], MaskVec.size()); |
| return Mask; |
| } |
| |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| |
| SmallVector<SDOperand, 8> MaskVec; |
| MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); |
| for (unsigned i = 1; i != NumElems; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation |
| /// of specified width. |
| static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation |
| /// of specified width. |
| static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| unsigned Half = NumElems/2; |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0; i != Half; ++i) { |
| MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. |
| /// |
| static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand Mask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = Mask.getNumOperands(); |
| Mask = getUnpacklMask(NumElems, DAG); |
| while (NumElems != 4) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); |
| NumElems >>= 1; |
| } |
| V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); |
| |
| Mask = getZeroVector(MVT::v4i32, DAG); |
| SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, |
| DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); |
| } |
| |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| /// vector of zero or undef vector. This produces a shuffle where the low |
| /// element of V2 is swizzled into the zero/undef vector, landing at element |
| /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). |
| static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, |
| unsigned NumElems, unsigned Idx, |
| bool isZero, SelectionDAG &DAG) { |
| SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); |
| SmallVector<SDOperand, 16> MaskVec; |
| for (unsigned i = 0; i != NumElems; ++i) |
| if (i == Idx) // If this is the insertion idx, put the low elt of V2 here. |
| MaskVec.push_back(DAG.getConstant(NumElems, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i, EVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| /// |
| static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 8) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| SDOperand ThisElt(0, 0), LastElt(0, 0); |
| bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, MVT::i16, |
| ThisElt, DAG.getConstant(8, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt.Val) |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, |
| DAG.getIntPtrConstant(i/2)); |
| } |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); |
| } |
| |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. |
| /// |
| static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 4) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 8; ++i) { |
| bool isNonZero = (NonZeros & (1 << i)) != 0; |
| if (isNonZero) { |
| if (First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), |
| DAG.getIntPtrConstant(i)); |
| } |
| } |
| |
| return V; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| // All zero's are handled with pxor, all one's are handled with pcmpeqd. |
| if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) { |
| // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to |
| // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are |
| // eliminated on x86-32 hosts. |
| if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) |
| return Op; |
| |
| if (ISD::isBuildVectorAllOnes(Op.Val)) |
| return getOnesVector(Op.getValueType(), DAG); |
| return getZeroVector(Op.getValueType(), DAG); |
| } |
| |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| unsigned NumElems = Op.getNumOperands(); |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| bool HasNonImms = false; |
| SmallSet<SDOperand, 8> Values; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDOperand Elt = Op.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| Values.insert(Elt); |
| if (Elt.getOpcode() != ISD::Constant && |
| Elt.getOpcode() != ISD::ConstantFP) |
| HasNonImms = true; |
| if (isZeroNode(Elt)) |
| NumZero++; |
| else { |
| NonZeros |= (1 << i); |
| NumNonZero++; |
| } |
| } |
| |
| if (NumNonZero == 0) { |
| // All undef vector. Return an UNDEF. All zero vectors were handled above. |
| return DAG.getNode(ISD::UNDEF, VT); |
| } |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) |
| return SDOperand(); |
| |
| // Special case for single non-zero element. |
| if (NumNonZero == 1 && NumElems <= 4) { |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDOperand Item = Op.getOperand(Idx); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); |
| if (Idx == 0) |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, |
| NumZero > 0, DAG); |
| else if (!HasNonImms) // Otherwise, it's better to do a constpool load. |
| return SDOperand(); |
| |
| if (EVTBits == 32) { |
| // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, |
| DAG); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0; i < NumElems; i++) |
| MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, |
| DAG.getNode(ISD::UNDEF, VT), Mask); |
| } |
| } |
| |
| // A vector full of immediates; various special cases are already |
| // handled, so this is best done with a single constant-pool load. |
| if (!HasNonImms) |
| return SDOperand(); |
| |
| // Let legalizer expand 2-wide build_vectors. |
| if (EVTBits == 64) |
| return SDOperand(); |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8 && NumElems == 16) { |
| SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.Val) return V; |
| } |
| |
| if (EVTBits == 16 && NumElems == 8) { |
| SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.Val) return V; |
| } |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| SmallVector<SDOperand, 8> V; |
| V.resize(NumElems); |
| if (NumElems == 4 && NumZero > 0) { |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1 << i)); |
| if (isZero) |
| V[i] = getZeroVector(VT, DAG); |
| else |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| default: break; |
| case 0: |
| V[i] = V[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 2: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 3: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getUnpacklMask(NumElems, DAG)); |
| break; |
| } |
| } |
| |
| // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) |
| // clears the upper bits. |
| // FIXME: we can do the same for v4f32 case when we know both parts of |
| // the lower half come from scalar_to_vector (loadf32). We should do |
| // that in post legalizer dag combiner with target specific hooks. |
| if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) |
| return V[0]; |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); |
| SmallVector<SDOperand, 8> MaskVec; |
| bool Reverse = (NonZeros & 0x3) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i, EVT)); |
| Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); |
| SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); |
| } |
| |
| if (Values.size() > 2) { |
| // Expand into a number of unpckl*. |
| // e.g. for v4f32 |
| // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| NumElems >>= 1; |
| while (NumElems != 0) { |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], |
| UnpckMask); |
| NumElems >>= 1; |
| } |
| return V[0]; |
| } |
| |
| return SDOperand(); |
| } |
| |
| static |
| SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2, |
| SDOperand PermMask, SelectionDAG &DAG, |
| TargetLowering &TLI) { |
| SDOperand NewV; |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8); |
| MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); |
| MVT::ValueType PtrVT = TLI.getPointerTy(); |
| SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(), |
| PermMask.Val->op_end()); |
| |
| // First record which half of which vector the low elements come from. |
| SmallVector<unsigned, 4> LowQuad(4); |
| for (unsigned i = 0; i < 4; ++i) { |
| SDOperand Elt = MaskElts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| int QuadIdx = EltIdx / 4; |
| ++LowQuad[QuadIdx]; |
| } |
| int BestLowQuad = -1; |
| unsigned MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (LowQuad[i] > MaxQuad) { |
| BestLowQuad = i; |
| MaxQuad = LowQuad[i]; |
| } |
| } |
| |
| // Record which half of which vector the high elements come from. |
| SmallVector<unsigned, 4> HighQuad(4); |
| for (unsigned i = 4; i < 8; ++i) { |
| SDOperand Elt = MaskElts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| int QuadIdx = EltIdx / 4; |
| ++HighQuad[QuadIdx]; |
| } |
| int BestHighQuad = -1; |
| MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (HighQuad[i] > MaxQuad) { |
| BestHighQuad = i; |
| MaxQuad = HighQuad[i]; |
| } |
| } |
| |
| // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it. |
| if (BestLowQuad != -1 || BestHighQuad != -1) { |
| // First sort the 4 chunks in order using shufpd. |
| SmallVector<SDOperand, 8> MaskVec; |
| if (BestLowQuad != -1) |
| MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32)); |
| else |
| MaskVec.push_back(DAG.getConstant(0, MVT::i32)); |
| if (BestHighQuad != -1) |
| MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32)); |
| else |
| MaskVec.push_back(DAG.getConstant(1, MVT::i32)); |
| SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2); |
| NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, |
| DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1), |
| DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask); |
| NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV); |
| |
| // Now sort high and low parts separately. |
| BitVector InOrder(8); |
| if (BestLowQuad != -1) { |
| // Sort lower half in order using PSHUFLW. |
| MaskVec.clear(); |
| bool AnyOutOrder = false; |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Elt = MaskElts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(Elt); |
| InOrder.set(i); |
| } else { |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx != i) |
| AnyOutOrder = true; |
| MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT)); |
| // If this element is in the right place after this shuffle, then |
| // remember it. |
| if ((int)(EltIdx / 4) == BestLowQuad) |
| InOrder.set(i); |
| } |
| } |
| if (AnyOutOrder) { |
| for (unsigned i = 4; i != 8; ++i) |
| MaskVec.push_back(DAG.getConstant(i, MaskEVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); |
| NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); |
| } |
| } |
| |
| if (BestHighQuad != -1) { |
| // Sort high half in order using PSHUFHW if possible. |
| MaskVec.clear(); |
| for (unsigned i = 0; i != 4; ++i) |
| MaskVec.push_back(DAG.getConstant(i, MaskEVT)); |
| bool AnyOutOrder = false; |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Elt = MaskElts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(Elt); |
| InOrder.set(i); |
| } else { |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx != i) |
| AnyOutOrder = true; |
| MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT)); |
| // If this element is in the right place after this shuffle, then |
| // remember it. |
| if ((int)(EltIdx / 4) == BestHighQuad) |
| InOrder.set(i); |
| } |
| } |
| if (AnyOutOrder) { |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); |
| NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); |
| } |
| } |
| |
| // The other elements are put in the right place using pextrw and pinsrw. |
| for (unsigned i = 0; i != 8; ++i) { |
| if (InOrder[i]) |
| continue; |
| SDOperand Elt = MaskElts[i]; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx == i) |
| continue; |
| SDOperand ExtOp = (EltIdx < 8) |
| ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, |
| DAG.getConstant(EltIdx, PtrVT)) |
| : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, |
| DAG.getConstant(EltIdx - 8, PtrVT)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, |
| DAG.getConstant(i, PtrVT)); |
| } |
| return NewV; |
| } |
| |
| // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use |
| ///as few as possible. |
| // First, let's find out how many elements are already in the right order. |
| unsigned V1InOrder = 0; |
| unsigned V1FromV1 = 0; |
| unsigned V2InOrder = 0; |
| unsigned V2FromV2 = 0; |
| SmallVector<SDOperand, 8> V1Elts; |
| SmallVector<SDOperand, 8> V2Elts; |
| for (unsigned i = 0; i < 8; ++i) { |
| SDOperand Elt = MaskElts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| V1Elts.push_back(Elt); |
| V2Elts.push_back(Elt); |
| ++V1InOrder; |
| ++V2InOrder; |
| continue; |
| } |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx == i) { |
| V1Elts.push_back(Elt); |
| V2Elts.push_back(DAG.getConstant(i+8, MaskEVT)); |
| ++V1InOrder; |
| } else if (EltIdx == i+8) { |
| V1Elts.push_back(Elt); |
| V2Elts.push_back(DAG.getConstant(i, MaskEVT)); |
| ++V2InOrder; |
| } else if (EltIdx < 8) { |
| V1Elts.push_back(Elt); |
| ++V1FromV1; |
| } else { |
| V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT)); |
| ++V2FromV2; |
| } |
| } |
| |
| if (V2InOrder > V1InOrder) { |
| PermMask = CommuteVectorShuffleMask(PermMask, DAG); |
| std::swap(V1, V2); |
| std::swap(V1Elts, V2Elts); |
| std::swap(V1FromV1, V2FromV2); |
| } |
| |
| if ((V1FromV1 + V1InOrder) != 8) { |
| // Some elements are from V2. |
| if (V1FromV1) { |
| // If there are elements that are from V1 but out of place, |
| // then first sort them in place |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0; i < 8; ++i) { |
| SDOperand Elt = V1Elts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| continue; |
| } |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx >= 8) |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT)); |
| } |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask); |
| } |
| |
| NewV = V1; |
| for (unsigned i = 0; i < 8; ++i) { |
| SDOperand Elt = V1Elts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (EltIdx < 8) |
| continue; |
| SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, |
| DAG.getConstant(EltIdx - 8, PtrVT)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, |
| DAG.getConstant(i, PtrVT)); |
| } |
| return NewV; |
| } else { |
| // All elements are from V1. |
| NewV = V1; |
| for (unsigned i = 0; i < 8; ++i) { |
| SDOperand Elt = V1Elts[i]; |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, |
| DAG.getConstant(EltIdx, PtrVT)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, |
| DAG.getConstant(i, PtrVT)); |
| } |
| return NewV; |
| } |
| } |
| |
| /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide |
| /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be |
| /// done when every pair / quad of shuffle mask elements point to elements in |
| /// the right sequence. e.g. |
| /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> |
| static |
| SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2, |
| MVT::ValueType VT, |
| SDOperand PermMask, SelectionDAG &DAG, |
| TargetLowering &TLI) { |
| unsigned NumElems = PermMask.getNumOperands(); |
| unsigned NewWidth = (NumElems == 4) ? 2 : 4; |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth); |
| MVT::ValueType NewVT = MaskVT; |
| switch (VT) { |
| case MVT::v4f32: NewVT = MVT::v2f64; break; |
| case MVT::v4i32: NewVT = MVT::v2i64; break; |
| case MVT::v8i16: NewVT = MVT::v4i32; break; |
| case MVT::v16i8: NewVT = MVT::v4i32; break; |
| default: assert(false && "Unexpected!"); |
| } |
| |
| if (NewWidth == 2) { |
| if (MVT::isInteger(VT)) |
| NewVT = MVT::v2i64; |
| else |
| NewVT = MVT::v2f64; |
| } |
| unsigned Scale = NumElems / NewWidth; |
| SmallVector<SDOperand, 8> MaskVec; |
| for (unsigned i = 0; i < NumElems; i += Scale) { |
| unsigned StartIdx = ~0U; |
| for (unsigned j = 0; j < Scale; ++j) { |
| SDOperand Elt = PermMask.getOperand(i+j); |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); |
| if (StartIdx == ~0U) |
| StartIdx = EltIdx - (EltIdx % Scale); |
| if (EltIdx != StartIdx + j) |
| return SDOperand(); |
| } |
| if (StartIdx == ~0U) |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| else |
| MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32)); |
| } |
| |
| V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1); |
| V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size())); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand PermMask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = PermMask.getNumOperands(); |
| bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| bool V1IsSplat = false; |
| bool V2IsSplat = false; |
| |
| if (isUndefShuffle(Op.Val)) |
| return DAG.getNode(ISD::UNDEF, VT); |
| |
| if (isZeroShuffle(Op.Val)) |
| return getZeroVector(VT, DAG); |
| |
| if (isIdentityMask(PermMask.Val)) |
| return V1; |
| else if (isIdentityMask(PermMask.Val, true)) |
| return V2; |
| |
| if (isSplatMask(PermMask.Val)) { |
| if (NumElems <= 4) return Op; |
| // Promote it to a v4i32 splat. |
| return PromoteSplat(Op, DAG); |
| } |
| |
| // If the shuffle can be profitably rewritten as a narrower shuffle, then |
| // do it! |
| if (VT == MVT::v8i16 || VT == MVT::v16i8) { |
| SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); |
| if (NewOp.Val) |
| return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); |
| } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { |
| // FIXME: Figure out a cleaner way to do this. |
| // Try to make use of movq to zero out the top part. |
| if (ISD::isBuildVectorAllZeros(V2.Val)) { |
| SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); |
| if (NewOp.Val) { |
| SDOperand NewV1 = NewOp.getOperand(0); |
| SDOperand NewV2 = NewOp.getOperand(1); |
| SDOperand NewMask = NewOp.getOperand(2); |
| if (isCommutedMOVL(NewMask.Val, true, false)) { |
| NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG); |
| NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(), |
| NewV1, NewV2, getMOVLMask(2, DAG)); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); |
| } |
| } |
| } else if (ISD::isBuildVectorAllZeros(V1.Val)) { |
| SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); |
| if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val)) |
| return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); |
| } |
| } |
| |
| if (X86::isMOVLMask(PermMask.Val)) |
| return (V1IsUndef) ? V2 : Op; |
| |
| if (X86::isMOVSHDUPMask(PermMask.Val) || |
| X86::isMOVSLDUPMask(PermMask.Val) || |
| X86::isMOVHLPSMask(PermMask.Val) || |
| X86::isMOVHPMask(PermMask.Val) || |
| X86::isMOVLPMask(PermMask.Val)) |
| return Op; |
| |
| if (ShouldXformToMOVHLPS(PermMask.Val) || |
| ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) |
| return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| |
| bool Commuted = false; |
| // FIXME: This should also accept a bitcast of a splat? Be careful, not |
| // 1,1,1,1 -> v8i16 though. |
| V1IsSplat = isSplatVector(V1.Val); |
| V2IsSplat = isSplatVector(V2.Val); |
| |
| // Canonicalize the splat or undef, if present, to be on the RHS. |
| if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| std::swap(V1IsSplat, V2IsSplat); |
| std::swap(V1IsUndef, V2IsUndef); |
| Commuted = true; |
| } |
| |
| // FIXME: Figure out a cleaner way to do this. |
| if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { |
| if (V2IsUndef) return V1; |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| if (V2IsSplat) { |
| // V2 is a splat, so the mask may be malformed. That is, it may point |
| // to any V2 element. The instruction selectior won't like this. Get |
| // a corrected mask and commute to form a proper MOVS{S|D}. |
| SDOperand NewMask = getMOVLMask(NumElems, DAG); |
| if (NewMask.Val != PermMask.Val) |
| Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| return Op; |
| } |
| |
| if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKH_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKLMask(PermMask.Val) || |
| X86::isUNPCKHMask(PermMask.Val)) |
| return Op; |
| |
| if (V2IsSplat) { |
| // Normalize mask so all entries that point to V2 points to its first |
| // element then try to match unpck{h|l} again. If match, return a |
| // new vector_shuffle with the corrected mask. |
| SDOperand NewMask = NormalizeMask(PermMask, DAG); |
| if (NewMask.Val != PermMask.Val) { |
| if (X86::isUNPCKLMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpacklMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } else if (X86::isUNPCKHMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpackhMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| } |
| } |
| |
| // Normalize the node to match x86 shuffle ops if needed |
| if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| |
| if (Commuted) { |
| // Commute is back and try unpck* again. |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKH_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKLMask(PermMask.Val) || |
| X86::isUNPCKHMask(PermMask.Val)) |
| return Op; |
| } |
| |
| // If VT is integer, try PSHUF* first, then SHUFP*. |
| if (MVT::isInteger(VT)) { |
| // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically |
| // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. |
| if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) && |
| X86::isPSHUFDMask(PermMask.Val)) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| |
| if (X86::isSHUFPMask(PermMask.Val) && |
| MVT::getSizeInBits(VT) != 64) // Don't do this for MMX. |
| return Op; |
| } else { |
| // Floating point cases in the other order. |
| if (X86::isSHUFPMask(PermMask.Val)) |
| return Op; |
| if (X86::isPSHUFDMask(PermMask.Val) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| } |
| |
| // Handle v8i16 specifically since SSE can do byte extraction and insertion. |
| if (VT == MVT::v8i16) { |
| SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this); |
| if (NewOp.Val) |
| return NewOp; |
| } |
| |
| // Handle all 4 wide cases with a number of shuffles. |
| if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) { |
| // Don't do this for MMX. |
| MVT::ValueType MaskVT = PermMask.getValueType(); |
| MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); |
| SmallVector<std::pair<int, int>, 8> Locs; |
| Locs.reserve(NumElems); |
| SmallVector<SDOperand, 8> Mask1(NumElems, |
| DAG.getNode(ISD::UNDEF, MaskEVT)); |
| SmallVector<SDOperand, 8> Mask2(NumElems, |
| DAG.getNode(ISD::UNDEF, MaskEVT)); |
| unsigned NumHi = 0; |
| unsigned NumLo = 0; |
| // If no more than two elements come from either vector. This can be |
| // implemented with two shuffles. First shuffle gather the elements. |
| // The second shuffle, which takes the first shuffle as both of its |
| // vector operands, put the elements into the right order. |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else { |
| unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); |
| if (Val < NumElems) { |
| Locs[i] = std::make_pair(0, NumLo); |
| Mask1[NumLo] = Elt; |
| NumLo++; |
| } else { |
| Locs[i] = std::make_pair(1, NumHi); |
| if (2+NumHi < NumElems) |
| Mask1[2+NumHi] = Elt; |
| NumHi++; |
| } |
| } |
| } |
| if (NumLo <= 2 && NumHi <= 2) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &Mask1[0], Mask1.size())); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) |
| continue; |
| else { |
| unsigned Idx = (i < NumElems/2) ? 0 : NumElems; |
| Idx += Locs[i].first * (NumElems/2) + Locs[i].second; |
| Mask2[i] = DAG.getConstant(Idx, MaskEVT); |
| } |
| } |
| |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &Mask2[0], Mask2.size())); |
| } |
| |
| // Break it into (shuffle shuffle_hi, shuffle_lo). |
| Locs.clear(); |
| SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| SmallVector<SDOperand,8> *MaskPtr = &LoMask; |
| unsigned MaskIdx = 0; |
| unsigned LoIdx = 0; |
| unsigned HiIdx = NumElems/2; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (i == NumElems/2) { |
| MaskPtr = &HiMask; |
| MaskIdx = 1; |
| LoIdx = 0; |
| HiIdx = NumElems/2; |
| } |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { |
| Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| (*MaskPtr)[LoIdx] = Elt; |
| LoIdx++; |
| } else { |
| Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| (*MaskPtr)[HiIdx] = Elt; |
| HiIdx++; |
| } |
| } |
| |
| SDOperand LoShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &LoMask[0], LoMask.size())); |
| SDOperand HiShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &HiMask[0], HiMask.size())); |
| SmallVector<SDOperand, 8> MaskOps; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) { |
| MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| } else { |
| unsigned Idx = Locs[i].first * NumElems + Locs[i].second; |
| MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); |
| } |
| } |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskOps[0], MaskOps.size())); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op, |
| SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| if (MVT::getSizeInBits(VT) == 8) { |
| SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| } else if (MVT::getSizeInBits(VT) == 16) { |
| SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| } |
| return SDOperand(); |
| } |
| |
| |
| SDOperand |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDOperand(); |
| |
| if (Subtarget->hasSSE41()) |
| return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); |
| |
| MVT::ValueType VT = Op.getValueType(); |
| // TODO: handle v16i8. |
| if (MVT::getSizeInBits(VT) == 16) { |
| SDOperand Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return DAG.getNode(ISD::TRUNCATE, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, |
| DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec), |
| Op.getOperand(1))); |
| // Transform it so it match pextrw which produces a 32-bit result. |
| MVT::ValueType EVT = (MVT::ValueType)(VT+1); |
| SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| } else if (MVT::getSizeInBits(VT) == 32) { |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| // SHUFPS the element to the lowest double word, then movss. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| SmallVector<SDOperand, 8> IdxVec; |
| IdxVec. |
| push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT))); |
| IdxVec. |
| push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| IdxVec. |
| push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| IdxVec. |
| push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &IdxVec[0], IdxVec.size()); |
| SDOperand Vec = Op.getOperand(0); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } else if (MVT::getSizeInBits(VT) == 64) { |
| // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b |
| // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught |
| // to match extract_elt for f64. |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| SmallVector<SDOperand, 8> IdxVec; |
| IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT))); |
| IdxVec. |
| push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &IdxVec[0], IdxVec.size()); |
| SDOperand Vec = Op.getOperand(0); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){ |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| |
| SDOperand N0 = Op.getOperand(0); |
| SDOperand N1 = Op.getOperand(1); |
| SDOperand N2 = Op.getOperand(2); |
| |
| if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) { |
| unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB |
| : X86ISD::PINSRW; |
| // Transform it so it match pinsr{b,w} which expects a GR32 as its second |
| // argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); |
| return DAG.getNode(Opc, VT, N0, N1, N2); |
| } else if (EVT == MVT::f32) { |
| // Bits [7:6] of the constant are the source select. This will always be |
| // zero here. The DAG Combiner may combine an extract_elt index into these |
| // bits. For example (insert (extract, 3), 2) could be matched by putting |
| // the '3' into bits [7:6] of X86ISD::INSERTPS. |
| // Bits [5:4] of the constant are the destination select. This is the |
| // value of the incoming immediate. |
| // Bits [3:0] of the constant are the zero mask. The DAG Combiner may |
| // combine either bitwise AND or insert of float 0.0 to set these bits. |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4); |
| return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| |
| if (Subtarget->hasSSE41()) |
| return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); |
| |
| if (EVT == MVT::i8) |
| return SDOperand(); |
| |
| SDOperand N0 = Op.getOperand(0); |
| SDOperand N1 = Op.getOperand(1); |
| SDOperand N2 = Op.getOperand(2); |
| |
| if (MVT::getSizeInBits(EVT) == 16) { |
| // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| // as its second argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); |
| return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); |
| MVT::ValueType VT = MVT::v2i32; |
| switch (Op.getValueType()) { |
| default: break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| VT = MVT::v4i32; |
| break; |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt)); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDOperand |
| X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), |
| getPointerTy(), |
| CP->getAlignment()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->isPICStyleRIPRel()) { |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| // If it's a debug information descriptor, don't mess with it. |
| if (DAG.isVerifiedDebugInfoDesc(Op)) |
| return Result; |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->isPICStyleRIPRel()) { |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| // For Darwin & Mingw32, external and weak symbols are indirect, so we want to |
| // load the value at address GV, not the value of GV itself. This means that |
| // the GlobalAddress must be in the base or index register of the address, not |
| // the GV offset field. Platform check is inside GVRequiresExtraLoad() call |
| // The same applies for external symbols during PIC codegen |
| if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) |
| Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, |
| PseudoSourceValue::getGOT(), 0); |
| |
| return Result; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| static SDOperand |
| LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const MVT::ValueType PtrVT) { |
| SDOperand InFlag; |
| SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| // emit leal symbol@TLSGD(,%ebx,1), %eax |
| SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); |
| SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), |
| GA->getValueType(0), |
| GA->getOffset()); |
| SDOperand Ops[] = { Chain, TGA, InFlag }; |
| SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); |
| InFlag = Result.getValue(2); |
| Chain = Result.getValue(1); |
| |
| // call ___tls_get_addr. This function receives its argument in |
| // the register EAX. |
| Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Ops1[] = { Chain, |
| DAG.getTargetExternalSymbol("___tls_get_addr", |
| PtrVT), |
| DAG.getRegister(X86::EAX, PtrVT), |
| DAG.getRegister(X86::EBX, PtrVT), |
| InFlag }; |
| Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); |
| InFlag = Chain.getValue(1); |
| |
| return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or |
| // "local exec" model. |
| static SDOperand |
| LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const MVT::ValueType PtrVT) { |
| // Get the Thread Pointer |
| SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); |
| // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial |
| // exec) |
| SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), |
| GA->getValueType(0), |
| GA->getOffset()); |
| SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); |
| |
| if (GA->getGlobal()->isDeclaration()) // initial exec TLS model |
| Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, |
| PseudoSourceValue::getGOT(), 0); |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { |
| // TODO: implement the "local dynamic" model |
| // TODO: implement the "initial exec"model for pic executables |
| assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF and 64-bit targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| // If the relocation model is PIC, use the "General Dynamic" TLS Model, |
| // otherwise use the "Local Exec"TLS Model |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy()); |
| else |
| return LowerToTLSExecModel(GA, DAG, getPointerTy()); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->isPICStyleRIPRel()) { |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->isPICStyleRIPRel()) { |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and |
| /// take a 2 x i32 value to shift plus a shift amount. |
| SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned VTBits = MVT::getSizeInBits(VT); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDOperand ShOpLo = Op.getOperand(0); |
| SDOperand ShOpHi = Op.getOperand(1); |
| SDOperand ShAmt = Op.getOperand(2); |
| SDOperand Tmp1 = isSRA ? |
| DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : |
| DAG.getConstant(0, VT); |
| |
| SDOperand Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt); |
| } |
| |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, |
| DAG.getConstant(VTBits, MVT::i8)); |
| SDOperand Cond = DAG.getNode(X86ISD::CMP, VT, |
| AndNode, DAG.getConstant(0, MVT::i8)); |
| |
| SDOperand Hi, Lo; |
| SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| VTs = DAG.getNodeValueTypes(VT, MVT::Flag); |
| SmallVector<SDOperand, 4> Ops; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); |
| } else { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size()); |
| } |
| |
| VTs = DAG.getNodeValueTypes(VT, VT); |
| Ops.clear(); |
| Ops.push_back(Lo); |
| Ops.push_back(Hi); |
| return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); |
| assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| // These are really Legal; caller falls through into that case. |
| if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) |
| return SDOperand(); |
| if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && |
| Subtarget->is64Bit()) |
| return SDOperand(); |
| |
| unsigned Size = MVT::getSizeInBits(SrcVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), |
| StackSlot, |
| PseudoSourceValue::getFixedStack(), |
| SSFI); |
| |
| // Build the FILD |
| SDVTList Tys; |
| bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); |
| if (useSSE) |
| Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); |
| else |
| Tys = DAG.getVTList(Op.getValueType(), MVT::Other); |
| SmallVector<SDOperand, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(SrcVT)); |
| SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, |
| Tys, &Ops[0], Ops.size()); |
| |
| if (useSSE) { |
| Chain = Result.getValue(1); |
| SDOperand InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys = DAG.getVTList(MVT::Other); |
| SmallVector<SDOperand, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Result); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getValueType())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, |
| PseudoSourceValue::getFixedStack(), SSFI); |
| } |
| |
| return Result; |
| } |
| |
| std::pair<SDOperand,SDOperand> X86TargetLowering:: |
| FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| "Unknown FP_TO_SINT to lower!"); |
| |
| // These are really Legal. |
| if (Op.getValueType() == MVT::i32 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDOperand(), SDOperand()); |
| if (Subtarget->is64Bit() && |
| Op.getValueType() == MVT::i64 && |
| Op.getOperand(0).getValueType() != MVT::f80) |
| return std::make_pair(SDOperand(), SDOperand()); |
| |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| unsigned Opc; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDOperand Chain = DAG.getEntryNode(); |
| SDOperand Value = Op.getOperand(0); |
| if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { |
| assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getStore(Chain, Value, StackSlot, |
| PseudoSourceValue::getFixedStack(), SSFI); |
| SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); |
| SDOperand Ops[] = { |
| Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) |
| }; |
| Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| SDOperand Ops[] = { Chain, Value, StackSlot }; |
| SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); |
| |
| return std::make_pair(FIST, StackSlot); |
| } |
| |
| SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { |
| std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG); |
| SDOperand FIST = Vals.first, StackSlot = Vals.second; |
| if (FIST.Val == 0) return SDOperand(); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); |
| } |
| |
| SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) { |
| std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG); |
| SDOperand FIST = Vals.first, StackSlot = Vals.second; |
| if (FIST.Val == 0) return 0; |
| |
| // Return an i64 load from the stack slot. |
| SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0); |
| |
| // Use a MERGE_VALUES node to drop the chain result value. |
| return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val; |
| } |
| |
| SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EltVT = VT; |
| if (MVT::isVector(VT)) |
| EltVT = MVT::getVectorElementType(VT); |
| const Type *OpNTy = MVT::getTypeForValueType(EltVT); |
| std::vector<Constant*> CV; |
| if (EltVT == MVT::f64) { |
| Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63)))); |
| CV.push_back(C); |
| CV.push_back(C); |
| } else { |
| Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31)))); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EltVT = VT; |
| unsigned EltNum = 1; |
| if (MVT::isVector(VT)) { |
| EltVT = MVT::getVectorElementType(VT); |
| EltNum = MVT::getVectorNumElements(VT); |
| } |
| const Type *OpNTy = MVT::getTypeForValueType(EltVT); |
| std::vector<Constant*> CV; |
| if (EltVT == MVT::f64) { |
| Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63))); |
| CV.push_back(C); |
| CV.push_back(C); |
| } else { |
| Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31))); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| if (MVT::isVector(VT)) { |
| return DAG.getNode(ISD::BIT_CONVERT, VT, |
| DAG.getNode(ISD::XOR, MVT::v2i64, |
| DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), |
| DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); |
| } else { |
| return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Op0 = Op.getOperand(0); |
| SDOperand Op1 = Op.getOperand(1); |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType SrcVT = Op1.getValueType(); |
| const Type *SrcTy = MVT::getTypeForValueType(SrcVT); |
| |
| // If second operand is smaller, extend it first. |
| if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) { |
| Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); |
| SrcVT = VT; |
| SrcTy = MVT::getTypeForValueType(SrcVT); |
| } |
| // And if it is bigger, shrink it first. |
| if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { |
| Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1)); |
| SrcVT = VT; |
| SrcTy = MVT::getTypeForValueType(SrcVT); |
| } |
| |
| // At this point the operands and the result should have the same |
| // type, and that won't be f80 since that is not custom lowered. |
| |
| // First get the sign bit of second operand. |
| std::vector<Constant*> CV; |
| if (SrcVT == MVT::f64) { |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0)))); |
| } else { |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); |
| |
| // Shift sign bit right or left if the two operands have different types. |
| if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { |
| // Op0 is MVT::f32, Op1 is MVT::f64. |
| SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); |
| SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, |
| DAG.getConstant(32, MVT::i32)); |
| SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); |
| SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // Clear first operand sign bit. |
| CV.clear(); |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63))))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0)))); |
| } else { |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31))))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0)))); |
| } |
| C = ConstantVector::get(CV); |
| CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); |
| |
| // Or the value with the sign bit. |
| return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); |
| } |
| |
| SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDOperand Cond; |
| SDOperand Op0 = Op.getOperand(0); |
| SDOperand Op1 = Op.getOperand(1); |
| SDOperand CC = Op.getOperand(2); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); |
| unsigned X86CC; |
| |
| if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, |
| Op0, Op1, DAG)) { |
| Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); |
| return DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| } |
| |
| assert(isFP && "Illegal integer SetCC!"); |
| |
| Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); |
| switch (SetCCOpcode) { |
| default: assert(false && "Illegal floating point SetCC!"); |
| case ISD::SETOEQ: { // !PF & ZF |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86::COND_NP, MVT::i8), Cond); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86::COND_E, MVT::i8), Cond); |
| return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); |
| } |
| case ISD::SETUNE: { // PF | !ZF |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86::COND_P, MVT::i8), Cond); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86::COND_NE, MVT::i8), Cond); |
| return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); |
| } |
| } |
| } |
| |
| |
| SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDOperand Cond = Op.getOperand(0); |
| SDOperand CC; |
| |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerSETCC(Cond, DAG); |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| CC = Cond.getOperand(0); |
| |
| SDOperand Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| MVT::ValueType VT = Op.getValueType(); |
| |
| bool IllegalFPCMov = false; |
| if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) && |
| !isScalarFPTypeInSSEReg(VT)) // FPStack? |
| IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); |
| |
| if ((Opc == X86ISD::CMP || |
| Opc == X86ISD::COMI || |
| Opc == X86ISD::UCOMI) && !IllegalFPCMov) { |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); |
| } |
| |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(), |
| MVT::Flag); |
| SmallVector<SDOperand, 4> Ops; |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| Ops.push_back(Op.getOperand(2)); |
| Ops.push_back(Op.getOperand(1)); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Cond = Op.getOperand(1); |
| SDOperand Dest = Op.getOperand(2); |
| SDOperand CC; |
| |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerSETCC(Cond, DAG); |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| CC = Cond.getOperand(0); |
| |
| SDOperand Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| if (Opc == X86ISD::CMP || |
| Opc == X86ISD::COMI || |
| Opc == X86ISD::UCOMI) { |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); |
| } |
| return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), |
| Chain, Op.getOperand(2), CC, Cond); |
| } |
| |
| |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure |
| // that the guard pages used by the OS virtual memory manager are allocated in |
| // correct sequence. |
| SDOperand |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, |
| SelectionDAG &DAG) { |
| assert(Subtarget->isTargetCygMing() && |
| "This should be used only on Cygwin/Mingw targets"); |
| |
| // Get the inputs. |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Size = Op.getOperand(1); |
| // FIXME: Ensure alignment here |
| |
| SDOperand Flag; |
| |
| MVT::ValueType IntPtr = getPointerTy(); |
| MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; |
| |
| Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); |
| Flag = Chain.getValue(1); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Ops[] = { Chain, |
| DAG.getTargetExternalSymbol("_alloca", IntPtr), |
| DAG.getRegister(X86::EAX, IntPtr), |
| Flag }; |
| Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4); |
| Flag = Chain.getValue(1); |
| |
| Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(SPTy); |
| Tys.push_back(MVT::Other); |
| SDOperand Ops1[2] = { Chain.getValue(0), Chain }; |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2); |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand InFlag(0, 0); |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned or size is more than the threshold, call memset. |
| // The libc version is likely to be faster for these cases. It can use the |
| // address value and run time information about the CPU. |
| if ((Align & 3) != 0 || |
| (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Op.getOperand(1); |
| Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| // Extend the unsigned i8 argument to be an int value for the call. |
| Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); |
| Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| Entry.Node = Op.getOperand(3); |
| Args.push_back(Entry); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C, |
| false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| unsigned BytesLeft = 0; |
| bool TwoRepStos = false; |
| if (ValC) { |
| unsigned ValReg; |
| uint64_t Val = ValC->getValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| ValReg = X86::AX; |
| Val = (Val << 8) | Val; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| ValReg = X86::EAX; |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned |
| AVT = MVT::i64; |
| ValReg = X86::RAX; |
| Val = (Val << 32) | Val; |
| } |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| ValReg = X86::AL; |
| Count = Op.getOperand(3); |
| break; |
| } |
| |
| if (AVT > MVT::i8) { |
| if (I) { |
| unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| Count = DAG.getIntPtrConstant(I->getValue() / UBytes); |
| BytesLeft = I->getValue() % UBytes; |
| } else { |
| assert(AVT >= MVT::i32 && |
| "Do not use rep;stos if not at least DWORD aligned"); |
| Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), |
| Op.getOperand(3), DAG.getConstant(2, MVT::i8)); |
| TwoRepStos = true; |
| } |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SmallVector<SDOperand, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| |
| if (TwoRepStos) { |
| InFlag = Chain.getValue(1); |
| Count = Op.getOperand(3); |
| MVT::ValueType CVT = Count.getValueType(); |
| SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, |
| Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(MVT::i8)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| } else if (BytesLeft) { |
| // Issue stores for the last 1 - 7 bytes. |
| SDOperand Value; |
| unsigned Val = ValC->getValue() & 255; |
| unsigned Offset = I->getValue() - BytesLeft; |
| SDOperand DstAddr = Op.getOperand(1); |
| MVT::ValueType AddrVT = DstAddr.getValueType(); |
| if (BytesLeft >= 4) { |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| Value = DAG.getConstant(Val, MVT::i32); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| BytesLeft -= 4; |
| Offset += 4; |
| } |
| if (BytesLeft >= 2) { |
| Value = DAG.getConstant((Val << 8) | Val, MVT::i16); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| if (BytesLeft == 1) { |
| Value = DAG.getConstant(Val, MVT::i8); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain, |
| SDOperand Dest, |
| SDOperand Source, |
| unsigned Size, |
| unsigned Align, |
| SelectionDAG &DAG) { |
| MVT::ValueType AVT; |
| unsigned BytesLeft = 0; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned |
| AVT = MVT::i64; |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| break; |
| } |
| |
| unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| SDOperand Count = DAG.getIntPtrConstant(Size / UBytes); |
| BytesLeft = Size % UBytes; |
| |
| SDOperand InFlag(0, 0); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| Dest, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, |
| Source, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SmallVector<SDOperand, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); |
| |
| if (BytesLeft) { |
| // Issue loads and stores for the last 1 - 7 bytes. |
| unsigned Offset = Size - BytesLeft; |
| SDOperand DstAddr = Dest; |
| MVT::ValueType DstVT = DstAddr.getValueType(); |
| SDOperand SrcAddr = Source; |
| MVT::ValueType SrcVT = SrcAddr.getValueType(); |
| SDOperand Value; |
| if (BytesLeft >= 4) { |
| Value = DAG.getLoad(MVT::i32, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| BytesLeft -= 4; |
| Offset += 4; |
| } |
| if (BytesLeft >= 2) { |
| Value = DAG.getLoad(MVT::i16, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| |
| if (BytesLeft == 1) { |
| Value = DAG.getLoad(MVT::i8, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| /// Expand the result of: i64,outchain = READCYCLECOUNTER inchain |
| SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){ |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand TheChain = N->getOperand(0); |
| SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1); |
| if (Subtarget->is64Bit()) { |
| SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); |
| SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, |
| MVT::i64, rax.getValue(2)); |
| SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx, |
| DAG.getConstant(32, MVT::i8)); |
| SDOperand Ops[] = { |
| DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1) |
| }; |
| |
| Tys = DAG.getVTList(MVT::i64, MVT::Other); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val; |
| } |
| |
| SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); |
| SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, |
| MVT::i32, eax.getValue(2)); |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDOperand Ops[] = { eax, edx }; |
| Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2); |
| |
| // Use a MERGE_VALUES to return the value and chain. |
| Ops[1] = edx.getValue(1); |
| Tys = DAG.getVTList(MVT::i64, MVT::Other); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val; |
| } |
| |
| SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| |
| if (!Subtarget->is64Bit()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0); |
| } |
| |
| // __va_list_tag: |
| // gp_offset (0 - 6 * 8) |
| // fp_offset (48 - 48 + 8 * 16) |
| // overflow_arg_area (point to parameters coming in memory). |
| // reg_save_area |
| SmallVector<SDOperand, 8> MemOps; |
| SDOperand FIN = Op.getOperand(1); |
| // Store gp_offset |
| SDOperand Store = DAG.getStore(Op.getOperand(0), |
| DAG.getConstant(VarArgsGPOffset, MVT::i32), |
| FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store fp_offset |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); |
| Store = DAG.getStore(Op.getOperand(0), |
| DAG.getConstant(VarArgsFPOffset, MVT::i32), |
| FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to overflow_arg_area |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); |
| SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to reg_save_area. |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); |
| SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0); |
| MemOps.push_back(Store); |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) { |
| // X86-64 va_list is a struct { i32, i32, i8*, i8* }. |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand DstPtr = Op.getOperand(1); |
| SDOperand SrcPtr = Op.getOperand(2); |
| const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| |
| SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0); |
| Chain = SrcPtr.getValue(1); |
| for (unsigned i = 0; i < 3; ++i) { |
| SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0); |
| Chain = Val.getValue(1); |
| Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0); |
| if (i == 2) |
| break; |
| SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr, |
| DAG.getIntPtrConstant(8)); |
| DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr, |
| DAG.getIntPtrConstant(8)); |
| } |
| return Chain; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); |
| switch (IntNo) { |
| default: return SDOperand(); // Don't custom lower most intrinsics. |
| // Comparison intrinsics. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| unsigned Opc = 0; |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| switch (IntNo) { |
| default: break; |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse2_comilt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse2_comile_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse2_comigt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse2_comige_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse2_comineq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETNE; |
| break; |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETNE; |
| break; |
| } |
| |
| unsigned X86CC; |
| SDOperand LHS = Op.getOperand(1); |
| SDOperand RHS = Op.getOperand(2); |
| translateX86CC(CC, true, X86CC, LHS, RHS, DAG); |
| |
| SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS); |
| SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); |
| } |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { |
| // Depths > 0 not supported yet! |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) |
| return SDOperand(); |
| |
| // Just load the return address |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); |
| } |
| |
| SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { |
| // Depths > 0 not supported yet! |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) |
| return SDOperand(); |
| |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, |
| DAG.getIntPtrConstant(4)); |
| } |
| |
| SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, |
| SelectionDAG &DAG) { |
| // Is not yet supported on x86-64 |
| if (Subtarget->is64Bit()) |
| return SDOperand(); |
| |
| return DAG.getIntPtrConstant(8); |
| } |
| |
| SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG) |
| { |
| assert(!Subtarget->is64Bit() && |
| "Lowering of eh_return builtin is not supported yet on x86-64"); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Offset = Op.getOperand(1); |
| SDOperand Handler = Op.getOperand(2); |
| |
| SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF), |
| getPointerTy()); |
| |
| SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, |
| DAG.getIntPtrConstant(-4UL)); |
| StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); |
| Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr); |
| MF.getRegInfo().addLiveOut(X86::ECX); |
| |
| return DAG.getNode(X86ISD::EH_RETURN, MVT::Other, |
| Chain, DAG.getRegister(X86::ECX, getPointerTy())); |
| } |
| |
| SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op, |
| SelectionDAG &DAG) { |
| SDOperand Root = Op.getOperand(0); |
| SDOperand Trmp = Op.getOperand(1); // trampoline |
| SDOperand FPtr = Op.getOperand(2); // nested function |
| SDOperand Nest = Op.getOperand(3); // 'nest' parameter value |
| |
| const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| |
| const X86InstrInfo *TII = |
| ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); |
| |
| if (Subtarget->is64Bit()) { |
| SDOperand OutChains[6]; |
| |
| // Large code-model. |
| |
| const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); |
| const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); |
| |
| const unsigned char N86R10 = |
| ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10); |
| const unsigned char N86R11 = |
| ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11); |
| |
| const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix |
| |
| // Load the pointer to the nested function into R11. |
| unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 |
| SDOperand Addr = Trmp; |
| OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, |
| TrmpAddr, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); |
| OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2); |
| |
| // Load the 'nest' parameter value into R10. |
| // R10 is specified in X86CallingConv.td |
| OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 |
| Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); |
| OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, |
| TrmpAddr, 10); |
| |
| Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); |
| OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2); |
| |
| // Jump to the nested function. |
| OpCode = (JMP64r << 8) | REX_WB; // jmpq *... |
| Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); |
| OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, |
| TrmpAddr, 20); |
| |
| unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 |
| Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); |
| OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr, |
| TrmpAddr, 22); |
| |
| SDOperand Ops[] = |
| { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) }; |
| return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2); |
| } else { |
| const Function *Func = |
| cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); |
| unsigned CC = Func->getCallingConv(); |
| unsigned NestReg; |
| |
| switch (CC) { |
| default: |
| assert(0 && "Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::X86_StdCall: { |
| // Pass 'nest' parameter in ECX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::ECX; |
| |
| // Check that ECX wasn't needed by an 'inreg' parameter. |
| const FunctionType *FTy = Func->getFunctionType(); |
| const ParamAttrsList *Attrs = Func->getParamAttrs(); |
| |
| if (Attrs && !Func->isVarArg()) { |
| unsigned InRegCount = 0; |
| unsigned Idx = 1; |
| |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I, ++Idx) |
| if (Attrs->paramHasAttr(Idx, ParamAttr::InReg)) |
| // FIXME: should only count parameters that are lowered to integers. |
| InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32; |
| |
| if (InRegCount > 2) { |
| cerr << "Nest register in use - reduce number of inreg parameters!\n"; |
| abort(); |
| } |
| } |
| break; |
| } |
| case CallingConv::X86_FastCall: |
| // Pass 'nest' parameter in EAX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::EAX; |
| break; |
| } |
| |
| SDOperand OutChains[4]; |
| SDOperand Addr, Disp; |
| |
| Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); |
| Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); |
| |
| const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); |
| const unsigned char N86Reg = |
| ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg); |
| OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), |
| Trmp, TrmpAddr, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); |
| OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1); |
| |
| const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); |
| Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); |
| OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, |
| TrmpAddr, 5, false, 1); |
| |
| Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); |
| OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1); |
| |
| SDOperand Ops[] = |
| { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) }; |
| return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2); |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) { |
| /* |
| The rounding mode is in bits 11:10 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to -inf |
| 10 Round to +inf |
| 11 Round to 0 |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameInfo &TFI = *TM.getFrameInfo(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| MVT::ValueType VT = Op.getValueType(); |
| |
| // Save FP Control Word to stack slot |
| int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other, |
| DAG.getEntryNode(), StackSlot); |
| |
| // Load FP Control Word from stack slot |
| SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0); |
| |
| // Transform as necessary |
| SDOperand CWD1 = |
| DAG.getNode(ISD::SRL, MVT::i16, |
| DAG.getNode(ISD::AND, MVT::i16, |
| CWD, DAG.getConstant(0x800, MVT::i16)), |
| DAG.getConstant(11, MVT::i8)); |
| SDOperand CWD2 = |
| DAG.getNode(ISD::SRL, MVT::i16, |
| DAG.getNode(ISD::AND, MVT::i16, |
| CWD, DAG.getConstant(0x400, MVT::i16)), |
| DAG.getConstant(9, MVT::i8)); |
| |
| SDOperand RetVal = |
| DAG.getNode(ISD::AND, MVT::i16, |
| DAG.getNode(ISD::ADD, MVT::i16, |
| DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2), |
| DAG.getConstant(1, MVT::i16)), |
| DAG.getConstant(3, MVT::i16)); |
| |
| |
| return DAG.getNode((MVT::getSizeInBits(VT) < 16 ? |
| ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); |
| } |
| |
| SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType OpVT = VT; |
| unsigned NumBits = MVT::getSizeInBits(VT); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| // Zero extend to i32 since there is not an i8 bsr. |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); |
| } |
| |
| // Issue a bsr (scan bits in reverse) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSR, VTs, Op); |
| |
| // If src is zero (i.e. bsr sets ZF), returns NumBits. |
| SmallVector<SDOperand, 4> Ops; |
| Ops.push_back(Op); |
| Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); |
| Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); |
| Ops.push_back(Op.getValue(1)); |
| Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); |
| |
| // Finally xor with NumBits-1. |
| Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); |
| return Op; |
| } |
| |
| SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType OpVT = VT; |
| unsigned NumBits = MVT::getSizeInBits(VT); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); |
| } |
| |
| // Issue a bsf (scan bits forward) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSF, VTs, Op); |
| |
| // If src is zero (i.e. bsf sets ZF), returns NumBits. |
| SmallVector<SDOperand, 4> Ops; |
| Ops.push_back(Op); |
| Ops.push_back(DAG.getConstant(NumBits, OpVT)); |
| Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); |
| Ops.push_back(Op.getValue(1)); |
| Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); |
| return Op; |
| } |
| |
| SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT(); |
| unsigned Reg = 0; |
| unsigned size = 0; |
| switch(T) { |
| case MVT::i8: Reg = X86::AL; size = 1; break; |
| case MVT::i16: Reg = X86::AX; size = 2; break; |
| case MVT::i32: Reg = X86::EAX; size = 4; break; |
| case MVT::i64: |
| if (Subtarget->is64Bit()) { |
| Reg = X86::RAX; size = 8; |
| } else //Should go away when LowerType stuff lands |
| return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0); |
| break; |
| }; |
| SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg, |
| Op.getOperand(3), SDOperand()); |
| SDOperand Ops[] = { cpIn.getValue(0), |
| Op.getOperand(1), |
| Op.getOperand(2), |
| DAG.getTargetConstant(size, MVT::i8), |
| cpIn.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5); |
| SDOperand cpOut = |
| DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1)); |
| return cpOut; |
| } |
| |
| SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) { |
| MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT(); |
| assert (T == MVT::i64 && "Only know how to expand i64 CAS"); |
| SDOperand cpInL, cpInH; |
| cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), |
| DAG.getConstant(0, MVT::i32)); |
| cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), |
| DAG.getConstant(1, MVT::i32)); |
| cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX, |
| cpInL, SDOperand()); |
| cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, |
| cpInH, cpInL.getValue(1)); |
| SDOperand swapInL, swapInH; |
| swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), |
| DAG.getConstant(0, MVT::i32)); |
| swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), |
| DAG.getConstant(1, MVT::i32)); |
| swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, |
| swapInL, cpInH.getValue(1)); |
| swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, |
| swapInH, swapInL.getValue(1)); |
| SDOperand Ops[] = { swapInH.getValue(0), |
| Op->getOperand(1), |
| swapInH.getValue(1)}; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3); |
| SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, |
| Result.getValue(1)); |
| SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, |
| cpOutL.getValue(2)); |
| SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; |
| SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2); |
| Tys = DAG.getVTList(MVT::i64, MVT::Other); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val; |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::ATOMIC_LCS: return LowerLCS(Op,DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShift(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FABS: return LowerFABS(Op, DAG); |
| case ISD::FNEG: return LowerFNEG(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::MEMSET: return LowerMEMSET(Op, DAG); |
| case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
| case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::CTLZ: return LowerCTLZ(Op, DAG); |
| case ISD::CTTZ: return LowerCTTZ(Op, DAG); |
| |
| // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands. |
| case ISD::READCYCLECOUNTER: |
| return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0); |
| } |
| } |
| |
| /// ExpandOperation - Provide custom lowering hooks for expanding operations. |
| SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) { |
| switch (N->getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG); |
| case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG); |
| case ISD::ATOMIC_LCS: return ExpandATOMIC_LCS(N, DAG); |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::BSF: return "X86ISD::BSF"; |
| case X86ISD::BSR: return "X86ISD::BSR"; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FOR: return "X86ISD::FOR"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FSRL: return "X86ISD::FSRL"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; |
| case X86ISD::FP_GET_RESULT2: return "X86ISD::FP_GET_RESULT2"; |
| case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; |
| case X86ISD::PINSRB: return "X86ISD::PINSRB"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| case X86ISD::FMAX: return "X86ISD::FMAX"; |
| case X86ISD::FMIN: return "X86ISD::FMIN"; |
| case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; |
| case X86ISD::FRCP: return "X86ISD::FRCP"; |
| case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; |
| case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; |
| case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; |
| case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; |
| case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; |
| case X86ISD::LCMPXCHG_DAG: return "x86ISD::LCMPXCHG_DAG"; |
| case X86ISD::LCMPXCHG8_DAG: return "x86ISD::LCMPXCHG8_DAG"; |
| } |
| } |
| |
| // isLegalAddressingMode - Return true if the addressing mode represented |
| // by AM is legal for this target, for a load/store of the specified type. |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| const Type *Ty) const { |
| // X86 supports extremely general addressing modes. |
| |
| // X86 allows a sign-extended 32-bit immediate field as a displacement. |
| if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) |
| return false; |
| |
| if (AM.BaseGV) { |
| // We can only fold this if we don't need an extra load. |
| if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) |
| return false; |
| |
| // X86-64 only supports addr of globals in small code model. |
| if (Subtarget->is64Bit()) { |
| if (getTargetMachine().getCodeModel() != CodeModel::Small) |
| return false; |
| // If lower 4G is not available, then we must use rip-relative addressing. |
| if (AM.BaseOffs || AM.Scale > 1) |
| return false; |
| } |
| } |
| |
| switch (AM.Scale) { |
| case 0: |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| // These scales always work. |
| break; |
| case 3: |
| case 5: |
| case 9: |
| // These scales are formed with basereg+scalereg. Only accept if there is |
| // no basereg yet. |
| if (AM.HasBaseReg) |
| return false; |
| break; |
| default: // Other stuff never works. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { |
| if (!Ty1->isInteger() || !Ty2->isInteger()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| if (NumBits1 <= NumBits2) |
| return false; |
| return Subtarget->is64Bit() || NumBits1 < 64; |
| } |
| |
| bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1, |
| MVT::ValueType VT2) const { |
| if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2)) |
| return false; |
| unsigned NumBits1 = MVT::getSizeInBits(VT1); |
| unsigned NumBits2 = MVT::getSizeInBits(VT2); |
| if (NumBits1 <= NumBits2) |
| return false; |
| return Subtarget->is64Bit() || NumBits1 < 64; |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(VT) == 64) return false; |
| return (Mask.Val->getNumOperands() <= 4 || |
| isIdentityMask(Mask.Val) || |
| isIdentityMask(Mask.Val, true) || |
| isSplatMask(Mask.Val) || |
| isPSHUFHW_PSHUFLWMask(Mask.Val) || |
| X86::isUNPCKLMask(Mask.Val) || |
| X86::isUNPCKHMask(Mask.Val) || |
| X86::isUNPCKL_v_undef_Mask(Mask.Val) || |
| X86::isUNPCKH_v_undef_Mask(Mask.Val)); |
| } |
| |
| bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, |
| MVT::ValueType EVT, |
| SelectionDAG &DAG) const { |
| unsigned NumElts = BVOps.size(); |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; |
| if (NumElts == 2) return true; |
| if (NumElts == 4) { |
| return (isMOVLMask(&BVOps[0], 4) || |
| isCommutedMOVL(&BVOps[0], 4, true) || |
| isSHUFPMask(&BVOps[0], 4) || |
| isCommutedSHUFP(&BVOps[0], 4)); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| unsigned Opc = |
| X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); |
| BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case X86::FP32_TO_INT16_IN_MEM: |
| case X86::FP32_TO_INT32_IN_MEM: |
| case X86::FP32_TO_INT64_IN_MEM: |
| case X86::FP64_TO_INT16_IN_MEM: |
| case X86::FP64_TO_INT32_IN_MEM: |
| case X86::FP64_TO_INT64_IN_MEM: |
| case X86::FP80_TO_INT16_IN_MEM: |
| case X86::FP80_TO_INT32_IN_MEM: |
| case X86::FP80_TO_INT64_IN_MEM: { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) |
| .addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) |
| .addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "illegal opcode!"); |
| case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; |
| case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; |
| case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; |
| case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; |
| case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; |
| case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; |
| case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; |
| case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; |
| case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isRegister()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImmediate()) |
| AM.Scale = Op.getImm(); |
| Op = MI->getOperand(2); |
| if (Op.isImmediate()) |
| AM.IndexReg = Op.getImm(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobalAddress()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImm(); |
| } |
| addFullAddress(BuildMI(BB, TII->get(Opc)), AM) |
| .addReg(MI->getOperand(4).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. |
| switch (Opc) { |
| default: break; |
| case X86ISD::SETCC: |
| KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), |
| Mask.getBitWidth() - 1); |
| break; |
| } |
| } |
| |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith |
| /// element of the result of the vector shuffle. |
| static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) { |
| MVT::ValueType VT = N->getValueType(0); |
| SDOperand PermMask = N->getOperand(2); |
| unsigned NumElems = PermMask.getNumOperands(); |
| SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1); |
| i %= NumElems; |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| return (i == 0) |
| ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); |
| } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| SDOperand Idx = PermMask.getOperand(i); |
| if (Idx.getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); |
| return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG); |
| } |
| return SDOperand(); |
| } |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + an offset. |
| static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) { |
| unsigned Opc = N->getOpcode(); |
| if (Opc == X86ISD::Wrapper) { |
| if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) { |
| GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| return true; |
| } |
| } else if (Opc == ISD::ADD) { |
| SDOperand N1 = N->getOperand(0); |
| SDOperand N2 = N->getOperand(1); |
| if (isGAPlusOffset(N1.Val, GA, Offset)) { |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); |
| if (V) { |
| Offset += V->getSignExtended(); |
| return true; |
| } |
| } else if (isGAPlusOffset(N2.Val, GA, Offset)) { |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); |
| if (V) { |
| Offset += V->getSignExtended(); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// isConsecutiveLoad - Returns true if N is loading from an address of Base |
| /// + Dist * Size. |
| static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size, |
| MachineFrameInfo *MFI) { |
| if (N->getOperand(0).Val != Base->getOperand(0).Val) |
| return false; |
| |
| SDOperand Loc = N->getOperand(1); |
| SDOperand BaseLoc = Base->getOperand(1); |
| if (Loc.getOpcode() == ISD::FrameIndex) { |
| if (BaseLoc.getOpcode() != ISD::FrameIndex) |
| return false; |
| int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); |
| int FS = MFI->getObjectSize(FI); |
| int BFS = MFI->getObjectSize(BFI); |
| if (FS != BFS || FS != Size) return false; |
| return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size); |
| } else { |
| GlobalValue *GV1 = NULL; |
| GlobalValue *GV2 = NULL; |
| int64_t Offset1 = 0; |
| int64_t Offset2 = 0; |
| bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1); |
| bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2); |
| if (isGA1 && isGA2 && GV1 == GV2) |
| return Offset1 == (Offset2 + Dist*Size); |
| } |
| |
| return false; |
| } |
| |
| static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI, |
| const X86Subtarget *Subtarget) { |
| GlobalValue *GV; |
| int64_t Offset = 0; |
| if (isGAPlusOffset(Base, GV, Offset)) |
| return (GV->getAlignment() >= 16 && (Offset % 16) == 0); |
| // DAG combine handles the stack object case. |
| return false; |
| } |
| |
| |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load |
| /// if the load addresses are consecutive, non-overlapping, and in the right |
| /// order. |
| static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| SDOperand PermMask = N->getOperand(2); |
| int NumElems = (int)PermMask.getNumOperands(); |
| SDNode *Base = NULL; |
| for (int i = 0; i < NumElems; ++i) { |
| SDOperand Idx = PermMask.getOperand(i); |
| if (Idx.getOpcode() == ISD::UNDEF) { |
| if (!Base) return SDOperand(); |
| } else { |
| SDOperand Arg = |
| getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG); |
| if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val)) |
| return SDOperand(); |
| if (!Base) |
| Base = Arg.Val; |
| else if (!isConsecutiveLoad(Arg.Val, Base, |
| i, MVT::getSizeInBits(EVT)/8,MFI)) |
| return SDOperand(); |
| } |
| } |
| |
| bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget); |
| LoadSDNode *LD = cast<LoadSDNode>(Base); |
| if (isAlign16) { |
| return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), |
| LD->getSrcValueOffset(), LD->isVolatile()); |
| } else { |
| return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), |
| LD->getSrcValueOffset(), LD->isVolatile(), |
| LD->getAlignment()); |
| } |
| } |
| |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. |
| static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| SDOperand Cond = N->getOperand(0); |
| |
| // If we have SSE[12] support, try to form min/max nodes. |
| if (Subtarget->hasSSE2() && |
| (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { |
| if (Cond.getOpcode() == ISD::SETCC) { |
| // Get the LHS/RHS of the select. |
| SDOperand LHS = N->getOperand(1); |
| SDOperand RHS = N->getOperand(2); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| unsigned Opcode = 0; |
| if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOLE: // (X <= Y) ? X : Y -> min |
| case ISD::SETULE: |
| case ISD::SETLE: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min |
| case ISD::SETLT: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOGT: // (X > Y) ? X : Y -> max |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max |
| case ISD::SETGE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOGT: // (X > Y) ? Y : X -> min |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min |
| case ISD::SETGE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOLE: // (X <= Y) ? Y : X -> max |
| case ISD::SETULE: |
| case ISD::SETLE: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max |
| case ISD::SETLT: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } |
| |
| if (Opcode) |
| return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); |
| } |
| |
| } |
| |
| return SDOperand(); |
| } |
| |
| /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. |
| static SDOperand PerformSTORECombine(StoreSDNode *St, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| // Turn load->store of MMX types into GPR load/stores. This avoids clobbering |
| // the FP state in cases where an emms may be missing. |
| // A preferable solution to the general problem is to figure out the right |
| // places to insert EMMS. This qualifies as a quick hack. |
| if (MVT::isVector(St->getValue().getValueType()) && |
| MVT::getSizeInBits(St->getValue().getValueType()) == 64 && |
| isa<LoadSDNode>(St->getValue()) && |
| !cast<LoadSDNode>(St->getValue())->isVolatile() && |
| St->getChain().hasOneUse() && !St->isVolatile()) { |
| SDNode* LdVal = St->getValue().Val; |
| LoadSDNode *Ld = 0; |
| int TokenFactorIndex = -1; |
| SmallVector<SDOperand, 8> Ops; |
| SDNode* ChainVal = St->getChain().Val; |
| // Must be a store of a load. We currently handle two cases: the load |
| // is a direct child, and it's under an intervening TokenFactor. It is |
| // possible to dig deeper under nested TokenFactors. |
| if (ChainVal == LdVal) |
| Ld = cast<LoadSDNode>(St->getChain()); |
| else if (St->getValue().hasOneUse() && |
| ChainVal->getOpcode() == ISD::TokenFactor) { |
| for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { |
| if (ChainVal->getOperand(i).Val == LdVal) { |
| TokenFactorIndex = i; |
| Ld = cast<LoadSDNode>(St->getValue()); |
| } else |
| Ops.push_back(ChainVal->getOperand(i)); |
| } |
| } |
| if (Ld) { |
| // If we are a 64-bit capable x86, lower to a single movq load/store pair. |
| if (Subtarget->is64Bit()) { |
| SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), |
| Ld->getBasePtr(), Ld->getSrcValue(), |
| Ld->getSrcValueOffset(), Ld->isVolatile(), |
| Ld->getAlignment()); |
| SDOperand NewChain = NewLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(NewLd); |
| NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| return DAG.getStore(NewChain, NewLd, St->getBasePtr(), |
| St->getSrcValue(), St->getSrcValueOffset(), |
| St->isVolatile(), St->getAlignment()); |
| } |
| |
| // Otherwise, lower to two 32-bit copies. |
| SDOperand LoAddr = Ld->getBasePtr(); |
| SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, |
| DAG.getConstant(MVT::i32, 4)); |
| |
| SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr, |
| Ld->getSrcValue(), Ld->getSrcValueOffset(), |
| Ld->isVolatile(), Ld->getAlignment()); |
| SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr, |
| Ld->getSrcValue(), Ld->getSrcValueOffset()+4, |
| Ld->isVolatile(), |
| MinAlign(Ld->getAlignment(), 4)); |
| |
| SDOperand NewChain = LoLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(LoLd); |
| Ops.push_back(HiLd); |
| NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| |
| LoAddr = St->getBasePtr(); |
| HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, |
| DAG.getConstant(MVT::i32, 4)); |
| |
| SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr, |
| St->getSrcValue(), St->getSrcValueOffset(), |
| St->isVolatile(), St->getAlignment()); |
| SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr, |
| St->getSrcValue(), St->getSrcValueOffset()+4, |
| St->isVolatile(), |
| MinAlign(St->getAlignment(), 4)); |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and |
| /// X86ISD::FXOR nodes. |
| static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); |
| // F[X]OR(0.0, x) -> x |
| // F[X]OR(x, 0.0) -> x |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| return SDOperand(); |
| } |
| |
| /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. |
| static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { |
| // FAND(0.0, x) -> 0.0 |
| // FAND(x, 0.0) -> 0.0 |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| return SDOperand(); |
| } |
| |
| |
| SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget); |
| case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); |
| case ISD::STORE: |
| return PerformSTORECombine(cast<StoreSDNode>(N), DAG, Subtarget); |
| case X86ISD::FXOR: |
| case X86ISD::FOR: return PerformFORCombine(N, DAG); |
| case X86ISD::FAND: return PerformFANDCombine(N, DAG); |
| } |
| |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| X86TargetLowering::ConstraintType |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'A': |
| case 'r': |
| case 'R': |
| case 'l': |
| case 'q': |
| case 'Q': |
| case 'x': |
| case 'Y': |
| return C_RegisterClass; |
| default: |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// LowerXConstraint - try to replace an X constraint, which matches anything, |
| /// with another that has more specific requirements based on the type of the |
| /// corresponding operand. |
| void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT, |
| std::string& s) const { |
| if (MVT::isFloatingPoint(ConstraintVT)) { |
| if (Subtarget->hasSSE2()) |
| s = "Y"; |
| else if (Subtarget->hasSSE1()) |
| s = "x"; |
| else |
| s = "f"; |
| } else |
| return TargetLowering::lowerXConstraint(ConstraintVT, s); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, |
| char Constraint, |
| std::vector<SDOperand>&Ops, |
| SelectionDAG &DAG) { |
| SDOperand Result(0, 0); |
| |
| switch (Constraint) { |
| default: break; |
| case 'I': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getValue() <= 31) { |
| Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'N': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getValue() <= 255) { |
| Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'i': { |
| // Literal immediates are always ok. |
| if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { |
| Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType()); |
| break; |
| } |
| |
| // If we are in non-pic codegen mode, we allow the address of a global (with |
| // an optional displacement) to be used with 'i'. |
| GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); |
| int64_t Offset = 0; |
| |
| // Match either (GA) or (GA+C) |
| if (GA) { |
| Offset = GA->getOffset(); |
| } else if (Op.getOpcode() == ISD::ADD) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); |
| if (C && GA) { |
| Offset = GA->getOffset()+C->getValue(); |
| } else { |
| C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); |
| if (C && GA) |
| Offset = GA->getOffset()+C->getValue(); |
| else |
| C = 0, GA = 0; |
| } |
| } |
| |
| if (GA) { |
| // If addressing this global requires a load (e.g. in PIC mode), we can't |
| // match. |
| if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(), |
| false)) |
| return; |
| |
| Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), |
| Offset); |
| Result = Op; |
| break; |
| } |
| |
| // Otherwise, not valid for this mode. |
| return; |
| } |
| } |
| |
| if (Result.Val) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| std::vector<unsigned> X86TargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // FIXME: not handling fp-stack yet! |
| switch (Constraint[0]) { // GCC X86 Constraint Letters |
| default: break; // Unknown constraint letter |
| case 'A': // EAX/EDX |
| if (VT == MVT::i32 || VT == MVT::i64) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, 0); |
| break; |
| case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); |
| else if (VT == MVT::i64) |
| return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); |
| break; |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| // First, see if this is a constraint that directly corresponds to an LLVM |
| // register class. |
| if (Constraint.size() == 1) { |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| default: break; |
| case 'r': // GENERAL_REGS |
| case 'R': // LEGACY_REGS |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i64 && Subtarget->is64Bit()) |
| return std::make_pair(0U, X86::GR64RegisterClass); |
| if (VT == MVT::i32) |
| return std::make_pair(0U, X86::GR32RegisterClass); |
| else if (VT == MVT::i16) |
| return std::make_pair(0U, X86::GR16RegisterClass); |
| else if (VT == MVT::i8) |
| return std::make_pair(0U, X86::GR8RegisterClass); |
| break; |
| case 'y': // MMX_REGS if MMX allowed. |
| if (!Subtarget->hasMMX()) break; |
| return std::make_pair(0U, X86::VR64RegisterClass); |
| break; |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (!Subtarget->hasSSE2()) break; |
| // FALL THROUGH. |
| case 'x': // SSE_REGS if SSE1 allowed |
| if (!Subtarget->hasSSE1()) break; |
| |
| switch (VT) { |
| default: break; |
| // Scalar SSE types. |
| case MVT::f32: |
| case MVT::i32: |
| return std::make_pair(0U, X86::FR32RegisterClass); |
| case MVT::f64: |
| case MVT::i64: |
| return std::make_pair(0U, X86::FR64RegisterClass); |
| // Vector types. |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| return std::make_pair(0U, X86::VR128RegisterClass); |
| } |
| break; |
| } |
| } |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass*> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| |
| // Not found as a standard register? |
| if (Res.second == 0) { |
| // GCC calls "st(0)" just plain "st". |
| if (StringsEqualNoCase("{st}", Constraint)) { |
| Res.first = X86::ST0; |
| Res.second = X86::RFP80RegisterClass; |
| } |
| |
| return Res; |
| } |
| |
| // Otherwise, check to see if this is a register class of the wrong value |
| // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| // turn into {ax},{dx}. |
| if (Res.second->hasType(VT)) |
| return Res; // Correct type already, nothing to do. |
| |
| // All of the single-register GCC register classes map their values onto |
| // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we |
| // really want an 8-bit or 32-bit register, map to the appropriate register |
| // class and return the appropriate register. |
| if (Res.second != X86::GR16RegisterClass) |
| return Res; |
| |
| if (VT == MVT::i8) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::AL; break; |
| case X86::DX: DestReg = X86::DL; break; |
| case X86::CX: DestReg = X86::CL; break; |
| case X86::BX: DestReg = X86::BL; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR8RegisterClass; |
| } |
| } else if (VT == MVT::i32) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::EAX; break; |
| case X86::DX: DestReg = X86::EDX; break; |
| case X86::CX: DestReg = X86::ECX; break; |
| case X86::BX: DestReg = X86::EBX; break; |
| case X86::SI: DestReg = X86::ESI; break; |
| case X86::DI: DestReg = X86::EDI; break; |
| case X86::BP: DestReg = X86::EBP; break; |
| case X86::SP: DestReg = X86::ESP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR32RegisterClass; |
| } |
| } else if (VT == MVT::i64) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::RAX; break; |
| case X86::DX: DestReg = X86::RDX; break; |
| case X86::CX: DestReg = X86::RCX; break; |
| case X86::BX: DestReg = X86::RBX; break; |
| case X86::SI: DestReg = X86::RSI; break; |
| case X86::DI: DestReg = X86::RDI; break; |
| case X86::BP: DestReg = X86::RBP; break; |
| case X86::SP: DestReg = X86::RSP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR64RegisterClass; |
| } |
| } |
| |
| return Res; |
| } |