| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| char LoopInfo::ID = 0; |
| static RegisterPass<LoopInfo> |
| X("loops", "Natural Loop Information", true, true); |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| |
| /// isLoopInvariant - Return true if the specified value is loop invariant |
| /// |
| bool Loop::isLoopInvariant(Value *V) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return isLoopInvariant(I); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| /// isLoopInvariant - Return true if the specified instruction is |
| /// loop-invariant. |
| /// |
| bool Loop::isLoopInvariant(Instruction *I) const { |
| return !contains(I->getParent()); |
| } |
| |
| /// makeLoopInvariant - If the given value is an instruciton inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the value after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Value *V, Instruction *InsertPt) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return makeLoopInvariant(I); |
| return true; // All non-instructions are loop-invariant. |
| } |
| |
| /// makeLoopInvariant - If the given instruction is inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the instruction after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Instruction *I, Instruction *InsertPt) const { |
| // Test if the value is already loop-invariant. |
| if (isLoopInvariant(I)) |
| return true; |
| // Don't hoist instructions with side-effects. |
| if (I->isTrapping()) |
| return false; |
| // Don't hoist PHI nodes. |
| if (isa<PHINode>(I)) |
| return false; |
| // Don't hoist allocation instructions. |
| if (isa<AllocationInst>(I)) |
| return false; |
| // Determine the insertion point, unless one was given. |
| if (!InsertPt) { |
| BasicBlock *Preheader = getLoopPreheader(); |
| // Without a preheader, hoisting is not feasible. |
| if (!Preheader) |
| return false; |
| InsertPt = Preheader->getTerminator(); |
| } |
| // Don't hoist instructions with loop-variant operands. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (!makeLoopInvariant(I->getOperand(i), InsertPt)) |
| return false; |
| // Hoist. |
| I->moveBefore(InsertPt); |
| return true; |
| } |
| |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| /// induction variable: an integer recurrence that starts at 0 and increments |
| /// by one each time through the loop. If so, return the phi node that |
| /// corresponds to it. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a canonical induction |
| /// variable. |
| /// |
| PHINode *Loop::getCanonicalInductionVariable() const { |
| BasicBlock *H = getHeader(); |
| |
| BasicBlock *Incoming = 0, *Backedge = 0; |
| typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits; |
| InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H); |
| assert(PI != InvBlockTraits::child_end(H) && |
| "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop |
| Incoming = *PI++; |
| if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return 0; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) |
| if (CI->isNullValue()) |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && |
| Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) |
| return PN; |
| } |
| return 0; |
| } |
| |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds |
| /// the canonical induction variable value for the "next" iteration of the |
| /// loop. This always succeeds if getCanonicalInductionVariable succeeds. |
| /// |
| Instruction *Loop::getCanonicalInductionVariableIncrement() const { |
| if (PHINode *PN = getCanonicalInductionVariable()) { |
| bool P1InLoop = contains(PN->getIncomingBlock(1)); |
| return cast<Instruction>(PN->getIncomingValue(P1InLoop)); |
| } |
| return 0; |
| } |
| |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| /// times the loop will be executed. Note that this means that the backedge |
| /// of the loop executes N-1 times. If the trip-count cannot be determined, |
| /// this returns null. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a form that this |
| /// function easily understands. |
| /// |
| Value *Loop::getTripCount() const { |
| // Canonical loops will end with a 'cmp ne I, V', where I is the incremented |
| // canonical induction variable and V is the trip count of the loop. |
| Instruction *Inc = getCanonicalInductionVariableIncrement(); |
| if (Inc == 0) return 0; |
| PHINode *IV = cast<PHINode>(Inc->getOperand(0)); |
| |
| BasicBlock *BackedgeBlock = |
| IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| if (BI->isConditional()) { |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| if (ICI->getOperand(0) == Inc) { |
| if (BI->getSuccessor(0) == getHeader()) { |
| if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| return ICI->getOperand(1); |
| } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { |
| return ICI->getOperand(1); |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// getSmallConstantTripCount - Returns the trip count of this loop as a |
| /// normal unsigned value, if possible. Returns 0 if the trip count is unknown |
| /// of not constant. Will also return 0 if the trip count is very large |
| /// (>= 2^32) |
| unsigned Loop::getSmallConstantTripCount() const { |
| Value* TripCount = this->getTripCount(); |
| if (TripCount) { |
| if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { |
| // Guard against huge trip counts. |
| if (TripCountC->getValue().getActiveBits() <= 32) { |
| return (unsigned)TripCountC->getZExtValue(); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /// getSmallConstantTripMultiple - Returns the largest constant divisor of the |
| /// trip count of this loop as a normal unsigned value, if possible. This |
| /// means that the actual trip count is always a multiple of the returned |
| /// value (don't forget the trip count could very well be zero as well!). |
| /// |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the |
| /// multiple of a constant (which is also the case if the trip count is simply |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
| /// if the trip count is very large (>= 2^32). |
| unsigned Loop::getSmallConstantTripMultiple() const { |
| Value* TripCount = this->getTripCount(); |
| // This will hold the ConstantInt result, if any |
| ConstantInt *Result = NULL; |
| if (TripCount) { |
| // See if the trip count is constant itself |
| Result = dyn_cast<ConstantInt>(TripCount); |
| // if not, see if it is a multiplication |
| if (!Result) |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { |
| switch (BO->getOpcode()) { |
| case BinaryOperator::Mul: |
| Result = dyn_cast<ConstantInt>(BO->getOperand(1)); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| // Guard against huge trip counts. |
| if (Result && Result->getValue().getActiveBits() <= 32) { |
| return (unsigned)Result->getZExtValue(); |
| } else { |
| return 1; |
| } |
| } |
| |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form |
| bool Loop::isLCSSAForm() const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); |
| |
| for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { |
| BasicBlock *BB = *BI; |
| for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(*UI)) { |
| UserBB = P->getIncomingBlock(UI); |
| } |
| |
| // Check the current block, as a fast-path. Most values are used in |
| // the same block they are defined in. |
| if (UserBB != BB && !LoopBBs.count(UserBB)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| bool LoopInfo::runOnFunction(Function &) { |
| releaseMemory(); |
| LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update |
| return false; |
| } |
| |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorTree>(); |
| } |