| //===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a simple two pass scheduler. The first pass attempts to push |
| // backward any lengthy instructions and critical paths. The second pass packs |
| // instructions into semi-optimal time slots. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| // Style of scheduling to use. |
| enum ScheduleChoices { |
| noScheduling, |
| simpleScheduling, |
| }; |
| } // namespace |
| |
| cl::opt<ScheduleChoices> ScheduleStyle("sched", |
| cl::desc("Choose scheduling style"), |
| cl::init(noScheduling), |
| cl::values( |
| clEnumValN(noScheduling, "none", |
| "Trivial emission with no analysis"), |
| clEnumValN(simpleScheduling, "simple", |
| "Minimize critical path and maximize processor utilization"), |
| clEnumValEnd)); |
| |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| #else |
| static const bool ViewDAGs = 0; |
| #endif |
| |
| namespace { |
| //===----------------------------------------------------------------------===// |
| /// |
| /// BitsIterator - Provides iteration through individual bits in a bit vector. |
| /// |
| template<class T> |
| class BitsIterator { |
| private: |
| T Bits; // Bits left to iterate through |
| |
| public: |
| /// Ctor. |
| BitsIterator(T Initial) : Bits(Initial) {} |
| |
| /// Next - Returns the next bit set or zero if exhausted. |
| inline T Next() { |
| // Get the rightmost bit set |
| T Result = Bits & -Bits; |
| // Remove from rest |
| Bits &= ~Result; |
| // Return single bit or zero |
| return Result; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// ResourceTally - Manages the use of resources over time intervals. Each |
| /// item (slot) in the tally vector represents the resources used at a given |
| /// moment. A bit set to 1 indicates that a resource is in use, otherwise |
| /// available. An assumption is made that the tally is large enough to schedule |
| /// all current instructions (asserts otherwise.) |
| /// |
| template<class T> |
| class ResourceTally { |
| private: |
| std::vector<T> Tally; // Resources used per slot |
| typedef typename std::vector<T>::iterator Iter; |
| // Tally iterator |
| |
| /// AllInUse - Test to see if all of the resources in the slot are busy (set.) |
| inline bool AllInUse(Iter Cursor, unsigned ResourceSet) { |
| return (*Cursor & ResourceSet) == ResourceSet; |
| } |
| |
| /// Skip - Skip over slots that use all of the specified resource (all are |
| /// set.) |
| Iter Skip(Iter Cursor, unsigned ResourceSet) { |
| assert(ResourceSet && "At least one resource bit needs to bet set"); |
| |
| // Continue to the end |
| while (true) { |
| // Break out if one of the resource bits is not set |
| if (!AllInUse(Cursor, ResourceSet)) return Cursor; |
| // Try next slot |
| Cursor++; |
| assert(Cursor < Tally.end() && "Tally is not large enough for schedule"); |
| } |
| } |
| |
| /// FindSlots - Starting from Begin, locate N consecutive slots where at least |
| /// one of the resource bits is available. Returns the address of first slot. |
| Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet, |
| unsigned &Resource) { |
| // Track position |
| Iter Cursor = Begin; |
| |
| // Try all possible slots forward |
| while (true) { |
| // Skip full slots |
| Cursor = Skip(Cursor, ResourceSet); |
| // Determine end of interval |
| Iter End = Cursor + N; |
| assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| |
| // Iterate thru each resource |
| BitsIterator<T> Resources(ResourceSet & ~*Cursor); |
| while (unsigned Res = Resources.Next()) { |
| // Check if resource is available for next N slots |
| // Break out if resource is busy |
| Iter Interval = Cursor; |
| for (; Interval < End && !(*Interval & Res); Interval++) {} |
| |
| // If available for interval, return where and which resource |
| if (Interval == End) { |
| Resource = Res; |
| return Cursor; |
| } |
| // Otherwise, check if worth checking other resources |
| if (AllInUse(Interval, ResourceSet)) { |
| // Start looking beyond interval |
| Cursor = Interval; |
| break; |
| } |
| } |
| Cursor++; |
| } |
| } |
| |
| /// Reserve - Mark busy (set) the specified N slots. |
| void Reserve(Iter Begin, unsigned N, unsigned Resource) { |
| // Determine end of interval |
| Iter End = Begin + N; |
| assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| |
| // Set resource bit in each slot |
| for (; Begin < End; Begin++) |
| *Begin |= Resource; |
| } |
| |
| public: |
| /// Initialize - Resize and zero the tally to the specified number of time |
| /// slots. |
| inline void Initialize(unsigned N) { |
| Tally.assign(N, 0); // Initialize tally to all zeros. |
| } |
| |
| // FindAndReserve - Locate and mark busy (set) N bits started at slot I, using |
| // ResourceSet for choices. |
| unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) { |
| // Which resource used |
| unsigned Resource; |
| // Find slots for instruction. |
| Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource); |
| // Reserve the slots |
| Reserve(Where, N, Resource); |
| // Return time slot (index) |
| return Where - Tally.begin(); |
| } |
| |
| }; |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// Node group - This struct is used to manage flagged node groups. |
| /// |
| class NodeInfo; |
| class NodeGroup : public std::vector<NodeInfo *> { |
| private: |
| int Pending; // Number of visits pending before |
| // adding to order |
| |
| public: |
| // Ctor. |
| NodeGroup() : Pending(0) {} |
| |
| // Accessors |
| inline NodeInfo *getLeader() { return empty() ? NULL : front(); } |
| inline int getPending() const { return Pending; } |
| inline void setPending(int P) { Pending = P; } |
| inline int addPending(int I) { return Pending += I; } |
| |
| static void Add(NodeInfo *D, NodeInfo *U); |
| static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U); |
| }; |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// NodeInfo - This struct tracks information used to schedule the a node. |
| /// |
| class NodeInfo { |
| private: |
| int Pending; // Number of visits pending before |
| // adding to order |
| public: |
| SDNode *Node; // DAG node |
| unsigned Latency; // Cycles to complete instruction |
| unsigned ResourceSet; // Bit vector of usable resources |
| unsigned Slot; // Node's time slot |
| NodeGroup *Group; // Grouping information |
| unsigned VRBase; // Virtual register base |
| |
| // Ctor. |
| NodeInfo(SDNode *N = NULL) |
| : Pending(0) |
| , Node(N) |
| , Latency(0) |
| , ResourceSet(0) |
| , Slot(0) |
| , Group(NULL) |
| , VRBase(0) |
| {} |
| |
| // Accessors |
| inline bool isInGroup() const { |
| assert(!Group || !Group->empty() && "Group with no members"); |
| return Group != NULL; |
| } |
| inline bool isGroupLeader() const { |
| return isInGroup() && Group->getLeader() == this; |
| } |
| inline int getPending() const { |
| return Group ? Group->getPending() : Pending; |
| } |
| inline void setPending(int P) { |
| if (Group) Group->setPending(P); |
| else Pending = P; |
| } |
| inline int addPending(int I) { |
| if (Group) return Group->addPending(I); |
| else return Pending += I; |
| } |
| }; |
| typedef std::vector<NodeInfo *>::iterator NIIterator; |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// NodeGroupIterator - Iterates over all the nodes indicated by the node info. |
| /// If the node is in a group then iterate over the members of the group, |
| /// otherwise just the node info. |
| /// |
| class NodeGroupIterator { |
| private: |
| NodeInfo *NI; // Node info |
| NIIterator NGI; // Node group iterator |
| NIIterator NGE; // Node group iterator end |
| |
| public: |
| // Ctor. |
| NodeGroupIterator(NodeInfo *N) : NI(N) { |
| // If the node is in a group then set up the group iterator. Otherwise |
| // the group iterators will trip first time out. |
| if (N->isInGroup()) { |
| // get Group |
| NodeGroup *Group = NI->Group; |
| NGI = Group->begin(); |
| NGE = Group->end(); |
| // Prevent this node from being used (will be in members list |
| NI = NULL; |
| } |
| } |
| |
| /// next - Return the next node info, otherwise NULL. |
| /// |
| NodeInfo *next() { |
| // If members list |
| if (NGI != NGE) return *NGI++; |
| // Use node as the result (may be NULL) |
| NodeInfo *Result = NI; |
| // Only use once |
| NI = NULL; |
| // Return node or NULL |
| return Result; |
| } |
| }; |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// NodeGroupOpIterator - Iterates over all the operands of a node. If the node |
| /// is a member of a group, this iterates over all the operands of all the |
| /// members of the group. |
| /// |
| class NodeGroupOpIterator { |
| private: |
| NodeInfo *NI; // Node containing operands |
| NodeGroupIterator GI; // Node group iterator |
| SDNode::op_iterator OI; // Operand iterator |
| SDNode::op_iterator OE; // Operand iterator end |
| |
| /// CheckNode - Test if node has more operands. If not get the next node |
| /// skipping over nodes that have no operands. |
| void CheckNode() { |
| // Only if operands are exhausted first |
| while (OI == OE) { |
| // Get next node info |
| NodeInfo *NI = GI.next(); |
| // Exit if nodes are exhausted |
| if (!NI) return; |
| // Get node itself |
| SDNode *Node = NI->Node; |
| // Set up the operand iterators |
| OI = Node->op_begin(); |
| OE = Node->op_end(); |
| } |
| } |
| |
| public: |
| // Ctor. |
| NodeGroupOpIterator(NodeInfo *N) : NI(N), GI(N) {} |
| |
| /// isEnd - Returns true when not more operands are available. |
| /// |
| inline bool isEnd() { CheckNode(); return OI == OE; } |
| |
| /// next - Returns the next available operand. |
| /// |
| inline SDOperand next() { |
| assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly"); |
| return *OI++; |
| } |
| }; |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// SimpleSched - Simple two pass scheduler. |
| /// |
| class SimpleSched { |
| private: |
| // TODO - get ResourceSet from TII |
| enum { |
| RSInteger = 0x3, // Two integer units |
| RSFloat = 0xC, // Two float units |
| RSLoadStore = 0x30, // Two load store units |
| RSOther = 0 // Processing unit independent |
| }; |
| |
| MachineBasicBlock *BB; // Current basic block |
| SelectionDAG &DAG; // DAG of the current basic block |
| const TargetMachine &TM; // Target processor |
| const TargetInstrInfo &TII; // Target instruction information |
| const MRegisterInfo &MRI; // Target processor register information |
| SSARegMap *RegMap; // Virtual/real register map |
| MachineConstantPool *ConstPool; // Target constant pool |
| unsigned NodeCount; // Number of nodes in DAG |
| NodeInfo *Info; // Info for nodes being scheduled |
| std::map<SDNode *, NodeInfo *> Map; // Map nodes to info |
| std::vector<NodeInfo*> Ordering; // Emit ordering of nodes |
| ResourceTally<unsigned> Tally; // Resource usage tally |
| unsigned NSlots; // Total latency |
| std::map<SDNode *, unsigned> VRMap; // Node to VR map |
| static const unsigned NotFound = ~0U; // Search marker |
| |
| public: |
| |
| // Ctor. |
| SimpleSched(SelectionDAG &D, MachineBasicBlock *bb) |
| : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()), |
| MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()), |
| ConstPool(BB->getParent()->getConstantPool()), |
| NSlots(0) { |
| assert(&TII && "Target doesn't provide instr info?"); |
| assert(&MRI && "Target doesn't provide register info?"); |
| } |
| |
| // Run - perform scheduling. |
| MachineBasicBlock *Run() { |
| Schedule(); |
| return BB; |
| } |
| |
| private: |
| /// getNI - Returns the node info for the specified node. |
| /// |
| inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; } |
| |
| /// getVR - Returns the virtual register number of the node. |
| /// |
| inline unsigned getVR(SDOperand Op) { |
| NodeInfo *NI = getNI(Op.Val); |
| assert(NI->VRBase != 0 && "Node emitted out of order - late"); |
| return NI->VRBase + Op.ResNo; |
| } |
| |
| static bool isFlagDefiner(SDNode *A); |
| static bool isFlagUser(SDNode *A); |
| static bool isDefiner(NodeInfo *A, NodeInfo *B); |
| static bool isPassiveNode(SDNode *Node); |
| void IncludeNode(NodeInfo *NI); |
| void VisitAll(); |
| void Schedule(); |
| void GatherNodeInfo(); |
| bool isStrongDependency(NodeInfo *A, NodeInfo *B); |
| bool isWeakDependency(NodeInfo *A, NodeInfo *B); |
| void ScheduleBackward(); |
| void ScheduleForward(); |
| void EmitAll(); |
| void EmitNode(NodeInfo *NI); |
| static unsigned CountResults(SDNode *Node); |
| static unsigned CountOperands(SDNode *Node); |
| unsigned CreateVirtualRegisters(MachineInstr *MI, |
| unsigned NumResults, |
| const TargetInstrDescriptor &II); |
| unsigned EmitDAG(SDOperand A); |
| |
| void printSI(std::ostream &O, NodeInfo *NI) const; |
| void print(std::ostream &O) const; |
| inline void dump(const char *tag) const { std::cerr << tag; dump(); } |
| void dump() const; |
| }; |
| //===----------------------------------------------------------------------===// |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// Add - Adds a definer and user pair to a node group. |
| /// |
| void NodeGroup::Add(NodeInfo *D, NodeInfo *U) { |
| // Get current groups |
| NodeGroup *DGroup = D->Group; |
| NodeGroup *UGroup = U->Group; |
| // If both are members of groups |
| if (DGroup && UGroup) { |
| // There may have been another edge connecting |
| if (DGroup == UGroup) return; |
| // Add the pending users count |
| DGroup->addPending(UGroup->getPending()); |
| // For each member of the users group |
| NodeGroupIterator UNGI(U); |
| while (NodeInfo *UNI = UNGI.next() ) { |
| // Change the group |
| UNI->Group = DGroup; |
| // For each member of the definers group |
| NodeGroupIterator DNGI(D); |
| while (NodeInfo *DNI = DNGI.next() ) { |
| // Remove internal edges |
| DGroup->addPending(-CountInternalUses(DNI, UNI)); |
| } |
| } |
| // Merge the two lists |
| DGroup->insert(DGroup->end(), UGroup->begin(), UGroup->end()); |
| } else if (DGroup) { |
| // Make user member of definers group |
| U->Group = DGroup; |
| // Add users uses to definers group pending |
| DGroup->addPending(U->Node->use_size()); |
| // For each member of the definers group |
| NodeGroupIterator DNGI(D); |
| while (NodeInfo *DNI = DNGI.next() ) { |
| // Remove internal edges |
| DGroup->addPending(-CountInternalUses(DNI, U)); |
| } |
| DGroup->push_back(U); |
| } else if (UGroup) { |
| // Make definer member of users group |
| D->Group = UGroup; |
| // Add definers uses to users group pending |
| UGroup->addPending(D->Node->use_size()); |
| // For each member of the users group |
| NodeGroupIterator UNGI(U); |
| while (NodeInfo *UNI = UNGI.next() ) { |
| // Remove internal edges |
| UGroup->addPending(-CountInternalUses(D, UNI)); |
| } |
| UGroup->insert(UGroup->begin(), D); |
| } else { |
| D->Group = U->Group = DGroup = new NodeGroup(); |
| DGroup->addPending(D->Node->use_size() + U->Node->use_size() - |
| CountInternalUses(D, U)); |
| DGroup->push_back(D); |
| DGroup->push_back(U); |
| } |
| } |
| |
| /// CountInternalUses - Returns the number of edges between the two nodes. |
| /// |
| unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) { |
| unsigned N = 0; |
| for (SDNode:: use_iterator UI = D->Node->use_begin(), |
| E = D->Node->use_end(); UI != E; UI++) { |
| if (*UI == U->Node) N++; |
| } |
| return N; |
| } |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// isFlagDefiner - Returns true if the node defines a flag result. |
| bool SimpleSched::isFlagDefiner(SDNode *A) { |
| unsigned N = A->getNumValues(); |
| return N && A->getValueType(N - 1) == MVT::Flag; |
| } |
| |
| /// isFlagUser - Returns true if the node uses a flag result. |
| /// |
| bool SimpleSched::isFlagUser(SDNode *A) { |
| unsigned N = A->getNumOperands(); |
| return N && A->getOperand(N - 1).getValueType() == MVT::Flag; |
| } |
| |
| /// isDefiner - Return true if node A is a definer for B. |
| /// |
| bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) { |
| // While there are A nodes |
| NodeGroupIterator NII(A); |
| while (NodeInfo *NI = NII.next()) { |
| // Extract node |
| SDNode *Node = NI->Node; |
| // While there operands in nodes of B |
| NodeGroupOpIterator NGOI(B); |
| while (!NGOI.isEnd()) { |
| SDOperand Op = NGOI.next(); |
| // If node from A defines a node in B |
| if (Node == Op.Val) return true; |
| } |
| } |
| return false; |
| } |
| |
| /// isPassiveNode - Return true if the node is a non-scheduled leaf. |
| /// |
| bool SimpleSched::isPassiveNode(SDNode *Node) { |
| if (isa<ConstantSDNode>(Node)) return true; |
| if (isa<RegisterSDNode>(Node)) return true; |
| if (isa<GlobalAddressSDNode>(Node)) return true; |
| if (isa<BasicBlockSDNode>(Node)) return true; |
| if (isa<FrameIndexSDNode>(Node)) return true; |
| if (isa<ConstantPoolSDNode>(Node)) return true; |
| if (isa<ExternalSymbolSDNode>(Node)) return true; |
| return false; |
| } |
| |
| /// IncludeNode - Add node to NodeInfo vector. |
| /// |
| void SimpleSched::IncludeNode(NodeInfo *NI) { |
| // Get node |
| SDNode *Node = NI->Node; |
| // Ignore entry node |
| if (Node->getOpcode() == ISD::EntryToken) return; |
| // Check current count for node |
| int Count = NI->getPending(); |
| // If the node is already in list |
| if (Count < 0) return; |
| // Decrement count to indicate a visit |
| Count--; |
| // If count has gone to zero then add node to list |
| if (!Count) { |
| // Add node |
| if (NI->isInGroup()) { |
| Ordering.push_back(NI->Group->getLeader()); |
| } else { |
| Ordering.push_back(NI); |
| } |
| // indicate node has been added |
| Count--; |
| } |
| // Mark as visited with new count |
| NI->setPending(Count); |
| } |
| |
| /// VisitAll - Visit each node breadth-wise to produce an initial ordering. |
| /// Note that the ordering in the Nodes vector is reversed. |
| void SimpleSched::VisitAll() { |
| // Add first element to list |
| Ordering.push_back(getNI(DAG.getRoot().Val)); |
| |
| // Iterate through all nodes that have been added |
| for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies |
| // Visit all operands |
| NodeGroupOpIterator NGI(Ordering[i]); |
| while (!NGI.isEnd()) { |
| // Get next operand |
| SDOperand Op = NGI.next(); |
| // Get node |
| SDNode *Node = Op.Val; |
| // Ignore passive nodes |
| if (isPassiveNode(Node)) continue; |
| // Check out node |
| IncludeNode(getNI(Node)); |
| } |
| } |
| |
| // Add entry node last (IncludeNode filters entry nodes) |
| if (DAG.getEntryNode().Val != DAG.getRoot().Val) |
| Ordering.push_back(getNI(DAG.getEntryNode().Val)); |
| |
| // FIXME - Reverse the order |
| for (unsigned i = 0, N = Ordering.size(), Half = N >> 1; i < Half; i++) { |
| unsigned j = N - i - 1; |
| NodeInfo *tmp = Ordering[i]; |
| Ordering[i] = Ordering[j]; |
| Ordering[j] = tmp; |
| } |
| } |
| |
| /// GatherNodeInfo - Get latency and resource information about each node. |
| /// |
| void SimpleSched::GatherNodeInfo() { |
| // Allocate node information |
| Info = new NodeInfo[NodeCount]; |
| // Get base of all nodes table |
| SelectionDAG::allnodes_iterator AllNodes = DAG.allnodes_begin(); |
| |
| // For each node being scheduled |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| // Get next node from DAG all nodes table |
| SDNode *Node = AllNodes[i]; |
| // Fast reference to node schedule info |
| NodeInfo* NI = &Info[i]; |
| // Set up map |
| Map[Node] = NI; |
| // Set node |
| NI->Node = Node; |
| // Set pending visit count |
| NI->setPending(Node->use_size()); |
| |
| MVT::ValueType VT = Node->getValueType(0); |
| if (Node->isTargetOpcode()) { |
| MachineOpCode TOpc = Node->getTargetOpcode(); |
| // FIXME: This is an ugly (but temporary!) hack to test the scheduler |
| // before we have real target info. |
| // FIXME NI->Latency = std::max(1, TII.maxLatency(TOpc)); |
| // FIXME NI->ResourceSet = TII.resources(TOpc); |
| if (TII.isCall(TOpc)) { |
| NI->ResourceSet = RSInteger; |
| NI->Latency = 40; |
| } else if (TII.isLoad(TOpc)) { |
| NI->ResourceSet = RSLoadStore; |
| NI->Latency = 5; |
| } else if (TII.isStore(TOpc)) { |
| NI->ResourceSet = RSLoadStore; |
| NI->Latency = 2; |
| } else if (MVT::isInteger(VT)) { |
| NI->ResourceSet = RSInteger; |
| NI->Latency = 2; |
| } else if (MVT::isFloatingPoint(VT)) { |
| NI->ResourceSet = RSFloat; |
| NI->Latency = 3; |
| } else { |
| NI->ResourceSet = RSOther; |
| NI->Latency = 0; |
| } |
| } else { |
| if (MVT::isInteger(VT)) { |
| NI->ResourceSet = RSInteger; |
| NI->Latency = 2; |
| } else if (MVT::isFloatingPoint(VT)) { |
| NI->ResourceSet = RSFloat; |
| NI->Latency = 3; |
| } else { |
| NI->ResourceSet = RSOther; |
| NI->Latency = 0; |
| } |
| } |
| |
| // Add one slot for the instruction itself |
| NI->Latency++; |
| |
| // Sum up all the latencies for max tally size |
| NSlots += NI->Latency; |
| } |
| |
| // Put flagged nodes into groups |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| NodeInfo* NI = &Info[i]; |
| SDNode *Node = NI->Node; |
| |
| // For each operand (in reverse to only look at flags) |
| for (unsigned N = Node->getNumOperands(); 0 < N--;) { |
| // Get operand |
| SDOperand Op = Node->getOperand(N); |
| // No more flags to walk |
| if (Op.getValueType() != MVT::Flag) break; |
| // Add to node group |
| NodeGroup::Add(getNI(Op.Val), NI); |
| } |
| } |
| } |
| |
| /// isStrongDependency - Return true if node A has results used by node B. |
| /// I.E., B must wait for latency of A. |
| bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) { |
| // If A defines for B then it's a strong dependency |
| return isDefiner(A, B); |
| } |
| |
| /// isWeakDependency Return true if node A produces a result that will |
| /// conflict with operands of B. |
| bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) { |
| // TODO check for conflicting real registers and aliases |
| #if 0 // FIXME - Since we are in SSA form and not checking register aliasing |
| return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); |
| #else |
| return A->Node->getOpcode() == ISD::EntryToken; |
| #endif |
| } |
| |
| /// ScheduleBackward - Schedule instructions so that any long latency |
| /// instructions and the critical path get pushed back in time. Time is run in |
| /// reverse to allow code reuse of the Tally and eliminate the overhead of |
| /// biasing every slot indices against NSlots. |
| void SimpleSched::ScheduleBackward() { |
| // Size and clear the resource tally |
| Tally.Initialize(NSlots); |
| // Get number of nodes to schedule |
| unsigned N = Ordering.size(); |
| |
| // For each node being scheduled |
| for (unsigned i = N; 0 < i--;) { |
| NodeInfo *NI = Ordering[i]; |
| // Track insertion |
| unsigned Slot = NotFound; |
| |
| // Compare against those previously scheduled nodes |
| unsigned j = i + 1; |
| for (; j < N; j++) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| |
| // Check dependency against previously inserted nodes |
| if (isStrongDependency(NI, Other)) { |
| Slot = Other->Slot + Other->Latency; |
| break; |
| } else if (isWeakDependency(NI, Other)) { |
| Slot = Other->Slot; |
| break; |
| } |
| } |
| |
| // If independent of others (or first entry) |
| if (Slot == NotFound) Slot = 0; |
| |
| // Find a slot where the needed resources are available |
| if (NI->ResourceSet) |
| Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet); |
| |
| // Set node slot |
| NI->Slot = Slot; |
| |
| // Insert sort based on slot |
| j = i + 1; |
| for (; j < N; j++) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| // Should we look further |
| if (Slot >= Other->Slot) break; |
| // Shuffle other into ordering |
| Ordering[j - 1] = Other; |
| } |
| // Insert node in proper slot |
| if (j != i + 1) Ordering[j - 1] = NI; |
| } |
| } |
| |
| /// ScheduleForward - Schedule instructions to maximize packing. |
| /// |
| void SimpleSched::ScheduleForward() { |
| // Size and clear the resource tally |
| Tally.Initialize(NSlots); |
| // Get number of nodes to schedule |
| unsigned N = Ordering.size(); |
| |
| // For each node being scheduled |
| for (unsigned i = 0; i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| // Track insertion |
| unsigned Slot = NotFound; |
| |
| // Compare against those previously scheduled nodes |
| unsigned j = i; |
| for (; 0 < j--;) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| |
| // Check dependency against previously inserted nodes |
| if (isStrongDependency(Other, NI)) { |
| Slot = Other->Slot + Other->Latency; |
| break; |
| } else if (isWeakDependency(Other, NI)) { |
| Slot = Other->Slot; |
| break; |
| } |
| } |
| |
| // If independent of others (or first entry) |
| if (Slot == NotFound) Slot = 0; |
| |
| // Find a slot where the needed resources are available |
| if (NI->ResourceSet) |
| Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet); |
| |
| // Set node slot |
| NI->Slot = Slot; |
| |
| // Insert sort based on slot |
| j = i; |
| for (; 0 < j--;) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| // Should we look further |
| if (Slot >= Other->Slot) break; |
| // Shuffle other into ordering |
| Ordering[j + 1] = Other; |
| } |
| // Insert node in proper slot |
| if (j != i) Ordering[j + 1] = NI; |
| } |
| } |
| |
| /// EmitAll - Emit all nodes in schedule sorted order. |
| /// |
| void SimpleSched::EmitAll() { |
| // For each node in the ordering |
| for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| // Get the scheduling info |
| NodeInfo *NI = Ordering[i]; |
| #if 0 |
| // Iterate through nodes |
| NodeGroupIterator NGI(Ordering[i]); |
| while (NodeInfo *NI = NGI.next()) EmitNode(NI); |
| #else |
| if (NI->isInGroup()) { |
| if (NI->isGroupLeader()) { |
| NodeGroupIterator NGI(Ordering[i]); |
| while (NodeInfo *NI = NGI.next()) EmitNode(NI); |
| } |
| } else { |
| EmitNode(NI); |
| } |
| #endif |
| } |
| } |
| |
| /// CountResults - The results of target nodes have register or immediate |
| /// operands first, then an optional chain, and optional flag operands (which do |
| /// not go into the machine instrs.) |
| unsigned SimpleSched::CountResults(SDNode *Node) { |
| unsigned N = Node->getNumValues(); |
| while (N && Node->getValueType(N - 1) == MVT::Flag) |
| --N; |
| if (N && Node->getValueType(N - 1) == MVT::Other) |
| --N; // Skip over chain result. |
| return N; |
| } |
| |
| /// CountOperands The inputs to target nodes have any actual inputs first, |
| /// followed by an optional chain operand, then flag operands. Compute the |
| /// number of actual operands that will go into the machine instr. |
| unsigned SimpleSched::CountOperands(SDNode *Node) { |
| unsigned N = Node->getNumOperands(); |
| while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) |
| --N; |
| if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) |
| --N; // Ignore chain if it exists. |
| return N; |
| } |
| |
| /// CreateVirtualRegisters - Add result register values for things that are |
| /// defined by this instruction. |
| unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI, |
| unsigned NumResults, |
| const TargetInstrDescriptor &II) { |
| // Create the result registers for this node and add the result regs to |
| // the machine instruction. |
| const TargetOperandInfo *OpInfo = II.OpInfo; |
| unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); |
| MI->addRegOperand(ResultReg, MachineOperand::Def); |
| for (unsigned i = 1; i != NumResults; ++i) { |
| assert(OpInfo[i].RegClass && "Isn't a register operand!"); |
| MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass), |
| MachineOperand::Def); |
| } |
| return ResultReg; |
| } |
| |
| /// EmitNode - Generate machine code for an node and needed dependencies. |
| /// |
| void SimpleSched::EmitNode(NodeInfo *NI) { |
| unsigned VRBase = 0; // First virtual register for node |
| SDNode *Node = NI->Node; |
| |
| // If machine instruction |
| if (Node->isTargetOpcode()) { |
| unsigned Opc = Node->getTargetOpcode(); |
| const TargetInstrDescriptor &II = TII.get(Opc); |
| |
| unsigned NumResults = CountResults(Node); |
| unsigned NodeOperands = CountOperands(Node); |
| unsigned NumMIOperands = NodeOperands + NumResults; |
| #ifndef NDEBUG |
| assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& |
| "#operands for dag node doesn't match .td file!"); |
| #endif |
| |
| // Create the new machine instruction. |
| MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); |
| |
| // Add result register values for things that are defined by this |
| // instruction. |
| if (NumResults) VRBase = CreateVirtualRegisters(MI, NumResults, II); |
| |
| // Emit all of the actual operands of this instruction, adding them to the |
| // instruction as appropriate. |
| for (unsigned i = 0; i != NodeOperands; ++i) { |
| if (Node->getOperand(i).isTargetOpcode()) { |
| // Note that this case is redundant with the final else block, but we |
| // include it because it is the most common and it makes the logic |
| // simpler here. |
| assert(Node->getOperand(i).getValueType() != MVT::Other && |
| Node->getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| |
| // Get/emit the operand. |
| unsigned VReg = getVR(Node->getOperand(i)); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| assert(II.OpInfo[i+NumResults].RegClass && |
| "Don't have operand info for this instruction!"); |
| assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } else if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Node->getOperand(i))) { |
| MI->addZeroExtImm64Operand(C->getValue()); |
| } else if (RegisterSDNode*R = |
| dyn_cast<RegisterSDNode>(Node->getOperand(i))) { |
| MI->addRegOperand(R->getReg(), MachineOperand::Use); |
| } else if (GlobalAddressSDNode *TGA = |
| dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) { |
| MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0); |
| } else if (BasicBlockSDNode *BB = |
| dyn_cast<BasicBlockSDNode>(Node->getOperand(i))) { |
| MI->addMachineBasicBlockOperand(BB->getBasicBlock()); |
| } else if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(Node->getOperand(i))) { |
| MI->addFrameIndexOperand(FI->getIndex()); |
| } else if (ConstantPoolSDNode *CP = |
| dyn_cast<ConstantPoolSDNode>(Node->getOperand(i))) { |
| unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); |
| MI->addConstantPoolIndexOperand(Idx); |
| } else if (ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Node->getOperand(i))) { |
| MI->addExternalSymbolOperand(ES->getSymbol(), false); |
| } else { |
| assert(Node->getOperand(i).getValueType() != MVT::Other && |
| Node->getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| unsigned VReg = getVR(Node->getOperand(i)); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| assert(II.OpInfo[i+NumResults].RegClass && |
| "Don't have operand info for this instruction!"); |
| assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } |
| } |
| |
| // Now that we have emitted all operands, emit this instruction itself. |
| if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { |
| BB->insert(BB->end(), MI); |
| } else { |
| // Insert this instruction into the end of the basic block, potentially |
| // taking some custom action. |
| BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); |
| } |
| } else { |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); |
| assert(0 && "This target-independent node should have been selected!"); |
| case ISD::EntryToken: // fall thru |
| case ISD::TokenFactor: |
| break; |
| case ISD::CopyToReg: { |
| unsigned Val = getVR(Node->getOperand(2)); |
| MRI.copyRegToReg(*BB, BB->end(), |
| cast<RegisterSDNode>(Node->getOperand(1))->getReg(), Val, |
| RegMap->getRegClass(Val)); |
| break; |
| } |
| case ISD::CopyFromReg: { |
| unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); |
| |
| // Figure out the register class to create for the destreg. |
| const TargetRegisterClass *TRC = 0; |
| if (MRegisterInfo::isVirtualRegister(SrcReg)) { |
| TRC = RegMap->getRegClass(SrcReg); |
| } else { |
| // Pick the register class of the right type that contains this physreg. |
| for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), |
| E = MRI.regclass_end(); I != E; ++I) |
| if ((*I)->getType() == Node->getValueType(0) && |
| (*I)->contains(SrcReg)) { |
| TRC = *I; |
| break; |
| } |
| assert(TRC && "Couldn't find register class for reg copy!"); |
| } |
| |
| // Create the reg, emit the copy. |
| VRBase = RegMap->createVirtualRegister(TRC); |
| MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); |
| break; |
| } |
| } |
| } |
| |
| assert(NI->VRBase == 0 && "Node emitted out of order - early"); |
| NI->VRBase = VRBase; |
| } |
| |
| /// EmitDag - Generate machine code for an operand and needed dependencies. |
| /// |
| unsigned SimpleSched::EmitDAG(SDOperand Op) { |
| std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val); |
| if (OpI != VRMap.end() && OpI->first == Op.Val) |
| return OpI->second + Op.ResNo; |
| unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second; |
| |
| unsigned ResultReg = 0; |
| if (Op.isTargetOpcode()) { |
| unsigned Opc = Op.getTargetOpcode(); |
| const TargetInstrDescriptor &II = TII.get(Opc); |
| |
| unsigned NumResults = CountResults(Op.Val); |
| unsigned NodeOperands = CountOperands(Op.Val); |
| unsigned NumMIOperands = NodeOperands + NumResults; |
| #ifndef NDEBUG |
| assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& |
| "#operands for dag node doesn't match .td file!"); |
| #endif |
| |
| // Create the new machine instruction. |
| MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); |
| |
| // Add result register values for things that are defined by this |
| // instruction. |
| if (NumResults) ResultReg = CreateVirtualRegisters(MI, NumResults, II); |
| |
| // If there is a token chain operand, emit it first, as a hack to get avoid |
| // really bad cases. |
| if (Op.getNumOperands() > NodeOperands && |
| Op.getOperand(NodeOperands).getValueType() == MVT::Other) { |
| EmitDAG(Op.getOperand(NodeOperands)); |
| } |
| |
| // Emit all of the actual operands of this instruction, adding them to the |
| // instruction as appropriate. |
| for (unsigned i = 0; i != NodeOperands; ++i) { |
| if (Op.getOperand(i).isTargetOpcode()) { |
| // Note that this case is redundant with the final else block, but we |
| // include it because it is the most common and it makes the logic |
| // simpler here. |
| assert(Op.getOperand(i).getValueType() != MVT::Other && |
| Op.getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| |
| unsigned VReg = EmitDAG(Op.getOperand(i)); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| assert(II.OpInfo[i+NumResults].RegClass && |
| "Don't have operand info for this instruction!"); |
| #ifndef NDEBUG |
| if (RegMap->getRegClass(VReg) != II.OpInfo[i+NumResults].RegClass) { |
| std::cerr << "OP: "; |
| Op.getOperand(i).Val->dump(&DAG); std::cerr << "\nUSE: "; |
| Op.Val->dump(&DAG); std::cerr << "\n"; |
| } |
| #endif |
| assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } else if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Op.getOperand(i))) { |
| MI->addZeroExtImm64Operand(C->getValue()); |
| } else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) { |
| MI->addRegOperand(R->getReg(), MachineOperand::Use); |
| } else if (GlobalAddressSDNode *TGA = |
| dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) { |
| MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0); |
| } else if (BasicBlockSDNode *BB = |
| dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) { |
| MI->addMachineBasicBlockOperand(BB->getBasicBlock()); |
| } else if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) { |
| MI->addFrameIndexOperand(FI->getIndex()); |
| } else if (ConstantPoolSDNode *CP = |
| dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) { |
| unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); |
| MI->addConstantPoolIndexOperand(Idx); |
| } else if (ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) { |
| MI->addExternalSymbolOperand(ES->getSymbol(), false); |
| } else { |
| assert(Op.getOperand(i).getValueType() != MVT::Other && |
| Op.getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| unsigned VReg = EmitDAG(Op.getOperand(i)); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| assert(II.OpInfo[i+NumResults].RegClass && |
| "Don't have operand info for this instruction!"); |
| assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } |
| } |
| |
| // Finally, if this node has any flag operands, we *must* emit them last, to |
| // avoid emitting operations that might clobber the flags. |
| if (Op.getNumOperands() > NodeOperands) { |
| unsigned i = NodeOperands; |
| if (Op.getOperand(i).getValueType() == MVT::Other) |
| ++i; // the chain is already selected. |
| for (unsigned N = Op.getNumOperands(); i < N; i++) { |
| assert(Op.getOperand(i).getValueType() == MVT::Flag && |
| "Must be flag operands!"); |
| EmitDAG(Op.getOperand(i)); |
| } |
| } |
| |
| // Now that we have emitted all operands, emit this instruction itself. |
| if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { |
| BB->insert(BB->end(), MI); |
| } else { |
| // Insert this instruction into the end of the basic block, potentially |
| // taking some custom action. |
| BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); |
| } |
| } else { |
| switch (Op.getOpcode()) { |
| default: |
| Op.Val->dump(); |
| assert(0 && "This target-independent node should have been selected!"); |
| case ISD::EntryToken: break; |
| case ISD::TokenFactor: |
| for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) { |
| EmitDAG(Op.getOperand(i)); |
| } |
| break; |
| case ISD::CopyToReg: { |
| SDOperand FlagOp; |
| if (Op.getNumOperands() == 4) { |
| FlagOp = Op.getOperand(3); |
| } |
| if (Op.getOperand(0).Val != FlagOp.Val) { |
| EmitDAG(Op.getOperand(0)); // Emit the chain. |
| } |
| unsigned Val = EmitDAG(Op.getOperand(2)); |
| if (FlagOp.Val) { |
| EmitDAG(FlagOp); |
| } |
| MRI.copyRegToReg(*BB, BB->end(), |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val, |
| RegMap->getRegClass(Val)); |
| break; |
| } |
| case ISD::CopyFromReg: { |
| EmitDAG(Op.getOperand(0)); // Emit the chain. |
| unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); |
| |
| // Figure out the register class to create for the destreg. |
| const TargetRegisterClass *TRC = 0; |
| if (MRegisterInfo::isVirtualRegister(SrcReg)) { |
| TRC = RegMap->getRegClass(SrcReg); |
| } else { |
| // Pick the register class of the right type that contains this physreg. |
| for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), |
| E = MRI.regclass_end(); I != E; ++I) |
| if ((*I)->getType() == Op.Val->getValueType(0) && |
| (*I)->contains(SrcReg)) { |
| TRC = *I; |
| break; |
| } |
| assert(TRC && "Couldn't find register class for reg copy!"); |
| } |
| |
| // Create the reg, emit the copy. |
| ResultReg = RegMap->createVirtualRegister(TRC); |
| MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC); |
| break; |
| } |
| } |
| } |
| |
| OpSlot = ResultReg; |
| return ResultReg+Op.ResNo; |
| } |
| |
| /// Schedule - Order nodes according to selected style. |
| /// |
| void SimpleSched::Schedule() { |
| switch (ScheduleStyle) { |
| case simpleScheduling: |
| // Number the nodes |
| NodeCount = DAG.allnodes_size(); |
| // Don't waste time if is only entry and return |
| if (NodeCount > 3) { |
| // Get latency and resource requirements |
| GatherNodeInfo(); |
| // Breadth first walk of DAG |
| VisitAll(); |
| DEBUG(dump("Pre-")); |
| // Push back long instructions and critical path |
| ScheduleBackward(); |
| DEBUG(dump("Mid-")); |
| // Pack instructions to maximize resource utilization |
| ScheduleForward(); |
| DEBUG(dump("Post-")); |
| // Emit in scheduled order |
| EmitAll(); |
| break; |
| } // fall thru |
| case noScheduling: |
| // Emit instructions in using a DFS from the exit root |
| EmitDAG(DAG.getRoot()); |
| break; |
| } |
| } |
| |
| /// printSI - Print schedule info. |
| /// |
| void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const { |
| #ifndef NDEBUG |
| using namespace std; |
| SDNode *Node = NI->Node; |
| O << " " |
| << hex << Node |
| << ", RS=" << NI->ResourceSet |
| << ", Lat=" << NI->Latency |
| << ", Slot=" << NI->Slot |
| << ", ARITY=(" << Node->getNumOperands() << "," |
| << Node->getNumValues() << ")" |
| << " " << Node->getOperationName(&DAG); |
| if (isFlagDefiner(Node)) O << "<#"; |
| if (isFlagUser(Node)) O << ">#"; |
| #endif |
| } |
| |
| /// print - Print ordering to specified output stream. |
| /// |
| void SimpleSched::print(std::ostream &O) const { |
| #ifndef NDEBUG |
| using namespace std; |
| O << "Ordering\n"; |
| for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| printSI(O, NI); |
| O << "\n"; |
| if (NI->isGroupLeader()) { |
| NodeGroup *Group = NI->Group; |
| for (NIIterator NII = Group->begin(), E = Group->end(); |
| NII != E; NII++) { |
| O << " "; |
| printSI(O, *NII); |
| O << "\n"; |
| } |
| } |
| } |
| #endif |
| } |
| |
| /// dump - Print ordering to std::cerr. |
| /// |
| void SimpleSched::dump() const { |
| print(std::cerr); |
| } |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each |
| /// target node in the graph. |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) { |
| if (ViewDAGs) SD.viewGraph(); |
| BB = SimpleSched(SD, BB).Run(); |
| } |