| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "JITDwarfEmitter.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/CodeGen/JITCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/CodeGen/MachineCodeInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/System/Disassembler.h" |
| #include "llvm/System/Memory.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| #ifndef NDEBUG |
| #include <iomanip> |
| #endif |
| using namespace llvm; |
| |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled"); |
| STATISTIC(NumRelos, "Number of relocations applied"); |
| static JIT *TheJIT = 0; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| class JITResolverState { |
| public: |
| typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy; |
| typedef std::map<void*, Function*> StubToFunctionMapTy; |
| typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; |
| private: |
| /// FunctionToStubMap - Keep track of the stub created for a particular |
| /// function so that we can reuse them if necessary. |
| FunctionToStubMapTy FunctionToStubMap; |
| |
| /// StubToFunctionMap - Keep track of the function that each stub |
| /// corresponds to. |
| StubToFunctionMapTy StubToFunctionMap; |
| |
| /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a |
| /// particular GlobalVariable so that we can reuse them if necessary. |
| GlobalToIndirectSymMapTy GlobalToIndirectSymMap; |
| |
| public: |
| FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return FunctionToStubMap; |
| } |
| |
| StubToFunctionMapTy& getStubToFunctionMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return StubToFunctionMap; |
| } |
| |
| GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return GlobalToIndirectSymMap; |
| } |
| }; |
| |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy; |
| typedef JITResolverState::StubToFunctionMapTy StubToFunctionMapTy; |
| typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; |
| |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| JITResolverState state; |
| |
| /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for |
| /// external functions. |
| std::map<void*, void*> ExternalFnToStubMap; |
| |
| /// revGOTMap - map addresses to indexes in the GOT |
| std::map<void*, unsigned> revGOTMap; |
| unsigned nextGOTIndex; |
| |
| static JITResolver *TheJITResolver; |
| public: |
| explicit JITResolver(JIT &jit) : nextGOTIndex(0) { |
| TheJIT = &jit; |
| |
| LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| assert(TheJITResolver == 0 && "Multiple JIT resolvers?"); |
| TheJITResolver = this; |
| } |
| |
| ~JITResolver() { |
| TheJITResolver = 0; |
| } |
| |
| /// getFunctionStubIfAvailable - This returns a pointer to a function stub |
| /// if it has already been created. |
| void *getFunctionStubIfAvailable(Function *F); |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. If empty is true, create a function stub |
| /// pointing at address 0, to be filled in later. |
| void *getFunctionStub(Function *F); |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *getExternalFunctionStub(void *FnAddr); |
| |
| /// getGlobalValueIndirectSym - Return an indirect symbol containing the |
| /// specified GV address. |
| void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); |
| |
| /// AddCallbackAtLocation - If the target is capable of rewriting an |
| /// instruction without the use of a stub, record the location of the use so |
| /// we know which function is being used at the location. |
| void *AddCallbackAtLocation(Function *F, void *Location) { |
| MutexGuard locked(TheJIT->lock); |
| /// Get the target-specific JIT resolver function. |
| state.getStubToFunctionMap(locked)[Location] = F; |
| return (void*)(intptr_t)LazyResolverFn; |
| } |
| |
| void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| SmallVectorImpl<void*> &Ptrs); |
| |
| GlobalValue *invalidateStub(void *Stub); |
| |
| /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| /// an address. This function only manages slots, it does not manage the |
| /// contents of the slots or the memory associated with the GOT. |
| unsigned getGOTIndexForAddr(void *addr); |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| } |
| |
| JITResolver *JITResolver::TheJITResolver = 0; |
| |
| /// getFunctionStubIfAvailable - This returns a pointer to a function stub |
| /// if it has already been created. |
| void *JITResolver::getFunctionStubIfAvailable(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = state.getFunctionToStubMap(locked)[F]; |
| return Stub; |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getFunctionStub(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = state.getFunctionToStubMap(locked)[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function unless we are JIT'ing non-lazily, in which |
| // case we must resolve the symbol now. |
| void *Actual = TheJIT->isLazyCompilationDisabled() |
| ? (void *)0 : (void *)(intptr_t)LazyResolverFn; |
| |
| // If this is an external declaration, attempt to resolve the address now |
| // to place in the stub. |
| if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) { |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // If we resolved the symbol to a null address (eg. a weak external) |
| // don't emit a stub. Return a null pointer to the application. If dlsym |
| // stubs are enabled, not being able to resolve the address is not |
| // meaningful. |
| if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0; |
| } |
| |
| // Codegen a new stub, calling the lazy resolver or the actual address of the |
| // external function, if it was resolved. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, |
| *TheJIT->getCodeEmitter()); |
| |
| if (Actual != (void*)(intptr_t)LazyResolverFn) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| DOUT << "JIT: Stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"; |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| state.getStubToFunctionMap(locked)[Stub] = F; |
| |
| // If we are JIT'ing non-lazily but need to call a function that does not |
| // exist yet, add it to the JIT's work list so that we can fill in the stub |
| // address later. |
| if (!Actual && TheJIT->isLazyCompilationDisabled()) |
| if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode()) |
| TheJIT->addPendingFunction(F); |
| |
| return Stub; |
| } |
| |
| /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified |
| /// GV address. |
| void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this global variable, recycle it. |
| void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; |
| if (IndirectSym) return IndirectSym; |
| |
| // Otherwise, codegen a new indirect symbol. |
| IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, |
| *TheJIT->getCodeEmitter()); |
| |
| DOUT << "JIT: Indirect symbol emitted at [" << IndirectSym << "] for GV '" |
| << GV->getName() << "'\n"; |
| |
| return IndirectSym; |
| } |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = ExternalFnToStubMap[FnAddr]; |
| if (Stub) return Stub; |
| |
| Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, |
| *TheJIT->getCodeEmitter()); |
| |
| DOUT << "JIT: Stub emitted at [" << Stub |
| << "] for external function at '" << FnAddr << "'\n"; |
| return Stub; |
| } |
| |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| unsigned idx = revGOTMap[addr]; |
| if (!idx) { |
| idx = ++nextGOTIndex; |
| revGOTMap[addr] = idx; |
| DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n"; |
| } |
| return idx; |
| } |
| |
| void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| SmallVectorImpl<void*> &Ptrs) { |
| MutexGuard locked(TheJIT->lock); |
| |
| FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked); |
| GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| |
| for (FunctionToStubMapTy::iterator i = FM.begin(), e = FM.end(); i != e; ++i){ |
| Function *F = i->first; |
| if (F->isDeclaration() && F->hasExternalLinkage()) { |
| GVs.push_back(i->first); |
| Ptrs.push_back(i->second); |
| } |
| } |
| for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| i != e; ++i) { |
| GVs.push_back(i->first); |
| Ptrs.push_back(i->second); |
| } |
| } |
| |
| GlobalValue *JITResolver::invalidateStub(void *Stub) { |
| MutexGuard locked(TheJIT->lock); |
| |
| FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked); |
| StubToFunctionMapTy &SM = state.getStubToFunctionMap(locked); |
| GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| |
| // Look up the cheap way first, to see if it's a function stub we are |
| // invalidating. If so, remove it from both the forward and reverse maps. |
| if (SM.find(Stub) != SM.end()) { |
| Function *F = SM[Stub]; |
| SM.erase(Stub); |
| FM.erase(F); |
| return F; |
| } |
| |
| // Otherwise, it might be an indirect symbol stub. Find it and remove it. |
| for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| i != e; ++i) { |
| if (i->second != Stub) |
| continue; |
| GlobalValue *GV = i->first; |
| GM.erase(i); |
| return GV; |
| } |
| |
| // Lastly, check to see if it's in the ExternalFnToStubMap. |
| for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(), |
| e = ExternalFnToStubMap.end(); i != e; ++i) { |
| if (i->second != Stub) |
| continue; |
| ExternalFnToStubMap.erase(i); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = *TheJITResolver; |
| |
| Function* F = 0; |
| void* ActualPtr = 0; |
| |
| { |
| // Only lock for getting the Function. The call getPointerToFunction made |
| // in this function might trigger function materializing, which requires |
| // JIT lock to be unlocked. |
| MutexGuard locked(TheJIT->lock); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| StubToFunctionMapTy::iterator I = |
| JR.state.getStubToFunctionMap(locked).upper_bound(Stub); |
| assert(I != JR.state.getStubToFunctionMap(locked).begin() && |
| "This is not a known stub!"); |
| F = (--I)->second; |
| ActualPtr = I->first; |
| } |
| |
| // If we have already code generated the function, just return the address. |
| void *Result = TheJIT->getPointerToGlobalIfAvailable(F); |
| |
| if (!Result) { |
| // Otherwise we don't have it, do lazy compilation now. |
| |
| // If lazy compilation is disabled, emit a useful error message and abort. |
| if (TheJIT->isLazyCompilationDisabled()) { |
| cerr << "LLVM JIT requested to do lazy compilation of function '" |
| << F->getName() << "' when lazy compiles are disabled!\n"; |
| abort(); |
| } |
| |
| // We might like to remove the stub from the StubToFunction map. |
| // We can't do that! Multiple threads could be stuck, waiting to acquire the |
| // lock above. As soon as the 1st function finishes compiling the function, |
| // the next one will be released, and needs to be able to find the function |
| // it needs to call. |
| //JR.state.getStubToFunctionMap(locked).erase(I); |
| |
| DOUT << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << ActualPtr << "\n"; |
| |
| Result = TheJIT->getPointerToFunction(F); |
| } |
| |
| // Reacquire the lock to erase the stub in the map. |
| MutexGuard locked(TheJIT->lock); |
| |
| // We don't need to reuse this stub in the future, as F is now compiled. |
| JR.state.getFunctionToStubMap(locked).erase(F); |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| |
| // What we will do is set the compiled function address to map to the |
| // same GOT entry as the stub so that later clients may update the GOT |
| // if they see it still using the stub address. |
| // Note: this is done so the Resolver doesn't have to manage GOT memory |
| // Do this without allocating map space if the target isn't using a GOT |
| if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function Index Support |
| |
| // On MacOS we generate an index of currently JIT'd functions so that |
| // performance tools can determine a symbol name and accurate code range for a |
| // PC value. Because performance tools are generally asynchronous, the code |
| // below is written with the hope that it could be interrupted at any time and |
| // have useful answers. However, we don't go crazy with atomic operations, we |
| // just do a "reasonable effort". |
| #ifdef __APPLE__ |
| #define ENABLE_JIT_SYMBOL_TABLE 0 |
| #endif |
| |
| /// JitSymbolEntry - Each function that is JIT compiled results in one of these |
| /// being added to an array of symbols. This indicates the name of the function |
| /// as well as the address range it occupies. This allows the client to map |
| /// from a PC value to the name of the function. |
| struct JitSymbolEntry { |
| const char *FnName; // FnName - a strdup'd string. |
| void *FnStart; |
| intptr_t FnSize; |
| }; |
| |
| |
| struct JitSymbolTable { |
| /// NextPtr - This forms a linked list of JitSymbolTable entries. This |
| /// pointer is not used right now, but might be used in the future. Consider |
| /// it reserved for future use. |
| JitSymbolTable *NextPtr; |
| |
| /// Symbols - This is an array of JitSymbolEntry entries. Only the first |
| /// 'NumSymbols' symbols are valid. |
| JitSymbolEntry *Symbols; |
| |
| /// NumSymbols - This indicates the number entries in the Symbols array that |
| /// are valid. |
| unsigned NumSymbols; |
| |
| /// NumAllocated - This indicates the amount of space we have in the Symbols |
| /// array. This is a private field that should not be read by external tools. |
| unsigned NumAllocated; |
| }; |
| |
| #if ENABLE_JIT_SYMBOL_TABLE |
| JitSymbolTable *__jitSymbolTable; |
| #endif |
| |
| static void AddFunctionToSymbolTable(const char *FnName, |
| void *FnStart, intptr_t FnSize) { |
| assert(FnName != 0 && FnStart != 0 && "Bad symbol to add"); |
| JitSymbolTable **SymTabPtrPtr = 0; |
| #if !ENABLE_JIT_SYMBOL_TABLE |
| return; |
| #else |
| SymTabPtrPtr = &__jitSymbolTable; |
| #endif |
| |
| // If this is the first entry in the symbol table, add the JitSymbolTable |
| // index. |
| if (*SymTabPtrPtr == 0) { |
| JitSymbolTable *New = new JitSymbolTable(); |
| New->NextPtr = 0; |
| New->Symbols = 0; |
| New->NumSymbols = 0; |
| New->NumAllocated = 0; |
| *SymTabPtrPtr = New; |
| } |
| |
| JitSymbolTable *SymTabPtr = *SymTabPtrPtr; |
| |
| // If we have space in the table, reallocate the table. |
| if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) { |
| // If we don't have space, reallocate the table. |
| unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2); |
| JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize]; |
| JitSymbolEntry *OldSymbols = SymTabPtr->Symbols; |
| |
| // Copy the old entries over. |
| memcpy(NewSymbols, OldSymbols, SymTabPtr->NumSymbols*sizeof(OldSymbols[0])); |
| |
| // Swap the new symbols in, delete the old ones. |
| SymTabPtr->Symbols = NewSymbols; |
| SymTabPtr->NumAllocated = NewSize; |
| delete [] OldSymbols; |
| } |
| |
| // Otherwise, we have enough space, just tack it onto the end of the array. |
| JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols]; |
| Entry.FnName = strdup(FnName); |
| Entry.FnStart = FnStart; |
| Entry.FnSize = FnSize; |
| ++SymTabPtr->NumSymbols; |
| } |
| |
| static void RemoveFunctionFromSymbolTable(void *FnStart) { |
| assert(FnStart && "Invalid function pointer"); |
| JitSymbolTable **SymTabPtrPtr = 0; |
| #if !ENABLE_JIT_SYMBOL_TABLE |
| return; |
| #else |
| SymTabPtrPtr = &__jitSymbolTable; |
| #endif |
| |
| JitSymbolTable *SymTabPtr = *SymTabPtrPtr; |
| JitSymbolEntry *Symbols = SymTabPtr->Symbols; |
| |
| // Scan the table to find its index. The table is not sorted, so do a linear |
| // scan. |
| unsigned Index; |
| for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index) |
| assert(Index != SymTabPtr->NumSymbols && "Didn't find function!"); |
| |
| // Once we have an index, we know to nuke this entry, overwrite it with the |
| // entry at the end of the array, making the last entry redundant. |
| const char *OldName = Symbols[Index].FnName; |
| Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1]; |
| free((void*)OldName); |
| |
| // Drop the number of symbols in the table. |
| --SymTabPtr->NumSymbols; |
| |
| // Finally, if we deleted the final symbol, deallocate the table itself. |
| if (SymTabPtr->NumSymbols != 0) |
| return; |
| |
| *SymTabPtrPtr = 0; |
| delete [] Symbols; |
| delete SymTabPtr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| namespace { |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public JITCodeEmitter { |
| JITMemoryManager *MemMgr; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save BufferBegin/BufferEnd/CurBufferPtr here. |
| unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| |
| /// MBBLocations - This vector is a mapping from MBB ID's to their address. |
| /// It is filled in by the StartMachineBasicBlock callback and queried by |
| /// the getMachineBasicBlockAddress callback. |
| std::vector<uintptr_t> MBBLocations; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineConstantPool *ConstantPool; |
| |
| /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| /// |
| void *ConstantPoolBase; |
| |
| /// ConstPoolAddresses - Addresses of individual constant pool entries. |
| /// |
| SmallVector<uintptr_t, 8> ConstPoolAddresses; |
| |
| /// JumpTable - The jump tables for the current function. |
| /// |
| MachineJumpTableInfo *JumpTable; |
| |
| /// JumpTableBase - A pointer to the first entry in the jump table. |
| /// |
| void *JumpTableBase; |
| |
| /// Resolver - This contains info about the currently resolved functions. |
| JITResolver Resolver; |
| |
| /// DE - The dwarf emitter for the jit. |
| JITDwarfEmitter *DE; |
| |
| /// LabelLocations - This vector is a mapping from Label ID's to their |
| /// address. |
| std::vector<uintptr_t> LabelLocations; |
| |
| /// MMI - Machine module info for exception informations |
| MachineModuleInfo* MMI; |
| |
| // GVSet - a set to keep track of which globals have been seen |
| SmallPtrSet<const GlobalVariable*, 8> GVSet; |
| |
| // CurFn - The llvm function being emitted. Only valid during |
| // finishFunction(). |
| const Function *CurFn; |
| |
| // CurFnStubUses - For a given Function, a vector of stubs that it |
| // references. This facilitates the JIT detecting that a stub is no |
| // longer used, so that it may be deallocated. |
| DenseMap<const Function *, SmallVector<void*, 1> > CurFnStubUses; |
| |
| // StubFnRefs - For a given pointer to a stub, a set of Functions which |
| // reference the stub. When the count of a stub's references drops to zero, |
| // the stub is unused. |
| DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs; |
| |
| // ExtFnStubs - A map of external function names to stubs which have entries |
| // in the JITResolver's ExternalFnToStubMap. |
| StringMap<void *> ExtFnStubs; |
| |
| // MCI - A pointer to a MachineCodeInfo object to update with information. |
| MachineCodeInfo *MCI; |
| |
| public: |
| JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit), CurFn(0), MCI(0) { |
| MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); |
| if (jit.getJITInfo().needsGOT()) { |
| MemMgr->AllocateGOT(); |
| DOUT << "JIT is managing a GOT\n"; |
| } |
| |
| if (ExceptionHandling) DE = new JITDwarfEmitter(jit); |
| } |
| ~JITEmitter() { |
| delete MemMgr; |
| if (ExceptionHandling) delete DE; |
| } |
| |
| /// classof - Methods for support type inquiry through isa, cast, and |
| /// dyn_cast: |
| /// |
| static inline bool classof(const JITEmitter*) { return true; } |
| static inline bool classof(const MachineCodeEmitter*) { return true; } |
| |
| JITResolver &getJITResolver() { return Resolver; } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual bool finishFunction(MachineFunction &F); |
| |
| void emitConstantPool(MachineConstantPool *MCP); |
| void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| void emitJumpTableInfo(MachineJumpTableInfo *MJTI); |
| |
| virtual void startGVStub(const GlobalValue* GV, unsigned StubSize, |
| unsigned Alignment = 1); |
| virtual void startGVStub(const GlobalValue* GV, void *Buffer, |
| unsigned StubSize); |
| virtual void* finishGVStub(const GlobalValue *GV); |
| |
| /// allocateSpace - Reserves space in the current block if any, or |
| /// allocate a new one of the given size. |
| virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { |
| if (MBBLocations.size() <= (unsigned)MBB->getNumber()) |
| MBBLocations.resize((MBB->getNumber()+1)*2); |
| MBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at [" |
| << (void*) getCurrentPCValue() << "]\n"; |
| } |
| |
| virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; |
| virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; |
| |
| virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { |
| assert(MBBLocations.size() > (unsigned)MBB->getNumber() && |
| MBBLocations[MBB->getNumber()] && "MBB not emitted!"); |
| return MBBLocations[MBB->getNumber()]; |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. |
| void deallocateMemForFunction(Function *F); |
| |
| /// AddStubToCurrentFunction - Mark the current function being JIT'd as |
| /// using the stub at the specified address. Allows |
| /// deallocateMemForFunction to also remove stubs no longer referenced. |
| void AddStubToCurrentFunction(void *Stub); |
| |
| /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for |
| /// MachineRelocations that reference external functions by name. |
| const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; } |
| |
| virtual void emitLabel(uint64_t LabelID) { |
| if (LabelLocations.size() <= LabelID) |
| LabelLocations.resize((LabelID+1)*2); |
| LabelLocations[LabelID] = getCurrentPCValue(); |
| } |
| |
| virtual uintptr_t getLabelAddress(uint64_t LabelID) const { |
| assert(LabelLocations.size() > (unsigned)LabelID && |
| LabelLocations[LabelID] && "Label not emitted!"); |
| return LabelLocations[LabelID]; |
| } |
| |
| virtual void setModuleInfo(MachineModuleInfo* Info) { |
| MMI = Info; |
| if (ExceptionHandling) DE->setModuleInfo(Info); |
| } |
| |
| void setMemoryExecutable(void) { |
| MemMgr->setMemoryExecutable(); |
| } |
| |
| JITMemoryManager *getMemMgr(void) const { return MemMgr; } |
| |
| void setMachineCodeInfo(MachineCodeInfo *mci) { |
| MCI = mci; |
| } |
| |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); |
| void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference, |
| bool NoNeedStub); |
| unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size); |
| unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size); |
| unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size); |
| unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF); |
| }; |
| } |
| |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| |
| if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| void *ResultPtr; |
| if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) { |
| // Return the function stub if it's already created. |
| ResultPtr = Resolver.getFunctionStubIfAvailable(F); |
| if (ResultPtr) |
| AddStubToCurrentFunction(ResultPtr); |
| } else { |
| ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| } |
| if (ResultPtr) return ResultPtr; |
| |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. In dlsym mode, |
| // external functions are forced through a stub, regardless of reloc type. |
| if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() && |
| DoesntNeedStub && !TheJIT->areDlsymStubsEnabled()) |
| return TheJIT->getPointerToFunction(F); |
| |
| // Okay, the function has not been compiled yet, if the target callback |
| // mechanism is capable of rewriting the instruction directly, prefer to do |
| // that instead of emitting a stub. This uses the lazy resolver, so is not |
| // legal if lazy compilation is disabled. |
| if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) |
| return Resolver.AddCallbackAtLocation(F, Reference); |
| |
| // Otherwise, we have to emit a stub. |
| void *StubAddr = Resolver.getFunctionStub(F); |
| |
| // Add the stub to the current function's list of referenced stubs, so we can |
| // deallocate them if the current function is ever freed. It's possible to |
| // return null from getFunctionStub in the case of a weak extern that fails |
| // to resolve. |
| if (StubAddr) |
| AddStubToCurrentFunction(StubAddr); |
| |
| return StubAddr; |
| } |
| |
| void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference, |
| bool NoNeedStub) { |
| // Make sure GV is emitted first, and create a stub containing the fully |
| // resolved address. |
| void *GVAddress = getPointerToGlobal(V, Reference, true); |
| void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); |
| |
| // Add the stub to the current function's list of referenced stubs, so we can |
| // deallocate them if the current function is ever freed. |
| AddStubToCurrentFunction(StubAddr); |
| |
| return StubAddr; |
| } |
| |
| void JITEmitter::AddStubToCurrentFunction(void *StubAddr) { |
| if (!TheJIT->areDlsymStubsEnabled()) |
| return; |
| |
| assert(CurFn && "Stub added to current function, but current function is 0!"); |
| |
| SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn]; |
| StubsUsed.push_back(StubAddr); |
| |
| SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr]; |
| FnRefs.insert(CurFn); |
| } |
| |
| static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, |
| const TargetData *TD) { |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return 0; |
| |
| unsigned Size = 0; |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| MachineConstantPoolEntry CPE = Constants[i]; |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| Size = (Size + AlignMask) & ~AlignMask; |
| const Type *Ty = CPE.getType(); |
| Size += TD->getTypeAllocSize(Ty); |
| } |
| return Size; |
| } |
| |
| static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return 0; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| return NumEntries * EntrySize; |
| } |
| |
| static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) { |
| if (Alignment == 0) Alignment = 1; |
| // Since we do not know where the buffer will be allocated, be pessimistic. |
| return Size + Alignment; |
| } |
| |
| /// addSizeOfGlobal - add the size of the global (plus any alignment padding) |
| /// into the running total Size. |
| |
| unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) { |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy); |
| size_t GVAlign = |
| (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV); |
| DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign; |
| DEBUG(GV->dump()); |
| // Assume code section ends with worst possible alignment, so first |
| // variable needs maximal padding. |
| if (Size==0) |
| Size = 1; |
| Size = ((Size+GVAlign-1)/GVAlign)*GVAlign; |
| Size += GVSize; |
| return Size; |
| } |
| |
| /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet |
| /// but are referenced from the constant; put them in GVSet and add their |
| /// size into the running total Size. |
| |
| unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, |
| unsigned Size) { |
| // If its undefined, return the garbage. |
| if (isa<UndefValue>(C)) |
| return Size; |
| |
| // If the value is a ConstantExpr |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| Constant *Op0 = CE->getOperand(0); |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: { |
| Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size); |
| break; |
| } |
| default: { |
| cerr << "ConstantExpr not handled: " << *CE << "\n"; |
| abort(); |
| } |
| } |
| } |
| |
| if (C->getType()->getTypeID() == Type::PointerTyID) |
| if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| if (GVSet.insert(GV)) |
| Size = addSizeOfGlobal(GV, Size); |
| |
| return Size; |
| } |
| |
| /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet |
| /// but are referenced from the given initializer. |
| |
| unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, |
| unsigned Size) { |
| if (!isa<UndefValue>(Init) && |
| !isa<ConstantVector>(Init) && |
| !isa<ConstantAggregateZero>(Init) && |
| !isa<ConstantArray>(Init) && |
| !isa<ConstantStruct>(Init) && |
| Init->getType()->isFirstClassType()) |
| Size = addSizeOfGlobalsInConstantVal(Init, Size); |
| return Size; |
| } |
| |
| /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for |
| /// globals; then walk the initializers of those globals looking for more. |
| /// If their size has not been considered yet, add it into the running total |
| /// Size. |
| |
| unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) { |
| unsigned Size = 0; |
| GVSet.clear(); |
| |
| for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); |
| MBB != E; ++MBB) { |
| for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| const TargetInstrDesc &Desc = I->getDesc(); |
| const MachineInstr &MI = *I; |
| unsigned NumOps = Desc.getNumOperands(); |
| for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) { |
| const MachineOperand &MO = MI.getOperand(CurOp); |
| if (MO.isGlobal()) { |
| GlobalValue* V = MO.getGlobal(); |
| const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V); |
| if (!GV) |
| continue; |
| // If seen in previous function, it will have an entry here. |
| if (TheJIT->getPointerToGlobalIfAvailable(GV)) |
| continue; |
| // If seen earlier in this function, it will have an entry here. |
| // FIXME: it should be possible to combine these tables, by |
| // assuming the addresses of the new globals in this module |
| // start at 0 (or something) and adjusting them after codegen |
| // complete. Another possibility is to grab a marker bit in GV. |
| if (GVSet.insert(GV)) |
| // A variable as yet unseen. Add in its size. |
| Size = addSizeOfGlobal(GV, Size); |
| } |
| } |
| } |
| } |
| DOUT << "JIT: About to look through initializers\n"; |
| // Look for more globals that are referenced only from initializers. |
| // GVSet.end is computed each time because the set can grow as we go. |
| for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin(); |
| I != GVSet.end(); I++) { |
| const GlobalVariable* GV = *I; |
| if (GV->hasInitializer()) |
| Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size); |
| } |
| |
| return Size; |
| } |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| DOUT << "JIT: Starting CodeGen of Function " |
| << F.getFunction()->getName() << "\n"; |
| |
| uintptr_t ActualSize = 0; |
| // Set the memory writable, if it's not already |
| MemMgr->setMemoryWritable(); |
| if (MemMgr->NeedsExactSize()) { |
| DOUT << "JIT: ExactSize\n"; |
| const TargetInstrInfo* TII = F.getTarget().getInstrInfo(); |
| MachineJumpTableInfo *MJTI = F.getJumpTableInfo(); |
| MachineConstantPool *MCP = F.getConstantPool(); |
| |
| // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| ActualSize = RoundUpToAlign(ActualSize, 16); |
| |
| // Add the alignment of the constant pool |
| ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment()); |
| |
| // Add the constant pool size |
| ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| |
| // Add the aligment of the jump table info |
| ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment()); |
| |
| // Add the jump table size |
| ActualSize += GetJumpTableSizeInBytes(MJTI); |
| |
| // Add the alignment for the function |
| ActualSize = RoundUpToAlign(ActualSize, |
| std::max(F.getFunction()->getAlignment(), 8U)); |
| |
| // Add the function size |
| ActualSize += TII->GetFunctionSizeInBytes(F); |
| |
| DOUT << "JIT: ActualSize before globals " << ActualSize << "\n"; |
| // Add the size of the globals that will be allocated after this function. |
| // These are all the ones referenced from this function that were not |
| // previously allocated. |
| ActualSize += GetSizeOfGlobalsInBytes(F); |
| DOUT << "JIT: ActualSize after globals " << ActualSize << "\n"; |
| } |
| |
| BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| |
| // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| emitAlignment(16); |
| |
| emitConstantPool(F.getConstantPool()); |
| initJumpTableInfo(F.getJumpTableInfo()); |
| |
| // About to start emitting the machine code for the function. |
| emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); |
| |
| MBBLocations.clear(); |
| } |
| |
| bool JITEmitter::finishFunction(MachineFunction &F) { |
| if (CurBufferPtr == BufferEnd) { |
| // FIXME: Allocate more space, then try again. |
| cerr << "JIT: Ran out of space for generated machine code!\n"; |
| abort(); |
| } |
| |
| emitJumpTableInfo(F.getJumpTableInfo()); |
| |
| // FnStart is the start of the text, not the start of the constant pool and |
| // other per-function data. |
| unsigned char *FnStart = |
| (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); |
| |
| // FnEnd is the end of the function's machine code. |
| unsigned char *FnEnd = CurBufferPtr; |
| |
| if (!Relocations.empty()) { |
| CurFn = F.getFunction(); |
| NumRelos += Relocations.size(); |
| |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr = 0; |
| if (!MR.letTargetResolve()) { |
| if (MR.isExternalSymbol()) { |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), |
| false); |
| DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" |
| << ResultPtr << "]\n"; |
| |
| // If the target REALLY wants a stub for this function, emit it now. |
| if (!MR.doesntNeedStub()) { |
| if (!TheJIT->areDlsymStubsEnabled()) { |
| ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); |
| } else { |
| void *&Stub = ExtFnStubs[MR.getExternalSymbol()]; |
| if (!Stub) { |
| Stub = Resolver.getExternalFunctionStub((void *)&Stub); |
| AddStubToCurrentFunction(Stub); |
| } |
| ResultPtr = Stub; |
| } |
| } |
| } else if (MR.isGlobalValue()) { |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedStub()); |
| } else if (MR.isIndirectSymbol()) { |
| ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedStub()); |
| } else if (MR.isBasicBlock()) { |
| ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); |
| } else if (MR.isConstantPoolIndex()) { |
| ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| } else { |
| assert(MR.isJumpTableIndex()); |
| ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| } |
| |
| MR.setResultPointer(ResultPtr); |
| } |
| |
| // if we are managing the GOT and the relocation wants an index, |
| // give it one |
| if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); |
| MR.setGOTIndex(idx); |
| if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { |
| DOUT << "JIT: GOT was out of date for " << ResultPtr |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| << "\n"; |
| ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; |
| } |
| } |
| } |
| |
| CurFn = 0; |
| TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| Relocations.size(), MemMgr->getGOTBase()); |
| } |
| |
| // Update the GOT entry for F to point to the new code. |
| if (MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); |
| if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { |
| DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"; |
| ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; |
| } |
| } |
| |
| // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for |
| // global variables that were referenced in the relocations. |
| MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| |
| if (CurBufferPtr == BufferEnd) { |
| // FIXME: Allocate more space, then try again. |
| cerr << "JIT: Ran out of space for generated machine code!\n"; |
| abort(); |
| } |
| |
| BufferBegin = CurBufferPtr = 0; |
| NumBytes += FnEnd-FnStart; |
| |
| // Invalidate the icache if necessary. |
| sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); |
| |
| // Add it to the JIT symbol table if the host wants it. |
| AddFunctionToSymbolTable(F.getFunction()->getNameStart(), |
| FnStart, FnEnd-FnStart); |
| |
| DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << (FnEnd-FnStart) << " bytes of text, " |
| << Relocations.size() << " relocations\n"; |
| |
| if (MCI) { |
| MCI->setAddress(FnStart); |
| MCI->setSize(FnEnd-FnStart); |
| } |
| |
| Relocations.clear(); |
| ConstPoolAddresses.clear(); |
| |
| // Mark code region readable and executable if it's not so already. |
| MemMgr->setMemoryExecutable(); |
| |
| #ifndef NDEBUG |
| { |
| if (sys::hasDisassembler()) { |
| DOUT << "JIT: Disassembled code:\n"; |
| DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart); |
| } else { |
| DOUT << "JIT: Binary code:\n"; |
| DOUT << std::hex; |
| unsigned char* q = FnStart; |
| for (int i = 0; q < FnEnd; q += 4, ++i) { |
| if (i == 4) |
| i = 0; |
| if (i == 0) |
| DOUT << "JIT: " << std::setw(8) << std::setfill('0') |
| << (long)(q - FnStart) << ": "; |
| bool Done = false; |
| for (int j = 3; j >= 0; --j) { |
| if (q + j >= FnEnd) |
| Done = true; |
| else |
| DOUT << std::setw(2) << std::setfill('0') << (unsigned short)q[j]; |
| } |
| if (Done) |
| break; |
| DOUT << ' '; |
| if (i == 3) |
| DOUT << '\n'; |
| } |
| DOUT << std::dec; |
| DOUT<< '\n'; |
| } |
| } |
| #endif |
| if (ExceptionHandling) { |
| uintptr_t ActualSize = 0; |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| if (MemMgr->NeedsExactSize()) { |
| ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd); |
| } |
| |
| BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd); |
| MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, |
| FrameRegister); |
| BufferBegin = SavedBufferBegin; |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| |
| TheJIT->RegisterTable(FrameRegister); |
| } |
| |
| if (MMI) |
| MMI->EndFunction(); |
| |
| return false; |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. Also drop any references the function has to stubs. |
| void JITEmitter::deallocateMemForFunction(Function *F) { |
| MemMgr->deallocateMemForFunction(F); |
| |
| // If the function did not reference any stubs, return. |
| if (CurFnStubUses.find(F) == CurFnStubUses.end()) |
| return; |
| |
| // For each referenced stub, erase the reference to this function, and then |
| // erase the list of referenced stubs. |
| SmallVectorImpl<void *> &StubList = CurFnStubUses[F]; |
| for (unsigned i = 0, e = StubList.size(); i != e; ++i) { |
| void *Stub = StubList[i]; |
| |
| // If we already invalidated this stub for this function, continue. |
| if (StubFnRefs.count(Stub) == 0) |
| continue; |
| |
| SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub]; |
| FnRefs.erase(F); |
| |
| // If this function was the last reference to the stub, invalidate the stub |
| // in the JITResolver. Were there a memory manager deallocateStub routine, |
| // we could call that at this point too. |
| if (FnRefs.empty()) { |
| DOUT << "\nJIT: Invalidated Stub at [" << Stub << "]\n"; |
| StubFnRefs.erase(Stub); |
| |
| // Invalidate the stub. If it is a GV stub, update the JIT's global |
| // mapping for that GV to zero, otherwise, search the string map of |
| // external function names to stubs and remove the entry for this stub. |
| GlobalValue *GV = Resolver.invalidateStub(Stub); |
| if (GV) { |
| TheJIT->updateGlobalMapping(GV, 0); |
| } else { |
| for (StringMapIterator<void*> i = ExtFnStubs.begin(), |
| e = ExtFnStubs.end(); i != e; ++i) { |
| if (i->second == Stub) { |
| ExtFnStubs.erase(i); |
| break; |
| } |
| } |
| } |
| } |
| } |
| CurFnStubUses.erase(F); |
| } |
| |
| |
| void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { |
| if (BufferBegin) |
| return JITCodeEmitter::allocateSpace(Size, Alignment); |
| |
| // create a new memory block if there is no active one. |
| // care must be taken so that BufferBegin is invalidated when a |
| // block is trimmed |
| BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); |
| BufferEnd = BufferBegin+Size; |
| return CurBufferPtr; |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| if (TheJIT->getJITInfo().hasCustomConstantPool()) |
| return; |
| |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| unsigned Align = MCP->getConstantPoolAlignment(); |
| ConstantPoolBase = allocateSpace(Size, Align); |
| ConstantPool = MCP; |
| |
| if (ConstantPoolBase == 0) return; // Buffer overflow. |
| |
| DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase |
| << "] (size: " << Size << ", alignment: " << Align << ")\n"; |
| |
| // Initialize the memory for all of the constant pool entries. |
| unsigned Offset = 0; |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| MachineConstantPoolEntry CPE = Constants[i]; |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| Offset = (Offset + AlignMask) & ~AlignMask; |
| |
| uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; |
| ConstPoolAddresses.push_back(CAddr); |
| if (CPE.isMachineConstantPoolEntry()) { |
| // FIXME: add support to lower machine constant pool values into bytes! |
| cerr << "Initialize memory with machine specific constant pool entry" |
| << " has not been implemented!\n"; |
| abort(); |
| } |
| TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); |
| DOUT << "JIT: CP" << i << " at [0x" |
| << std::hex << CAddr << std::dec << "]\n"; |
| |
| const Type *Ty = CPE.Val.ConstVal->getType(); |
| Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); |
| } |
| } |
| |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| return; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| // Just allocate space for all the jump tables now. We will fix up the actual |
| // MBB entries in the tables after we emit the code for each block, since then |
| // we will know the final locations of the MBBs in memory. |
| JumpTable = MJTI; |
| JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); |
| } |
| |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| return; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty() || JumpTableBase == 0) return; |
| |
| if (TargetMachine::getRelocationModel() == Reloc::PIC_) { |
| assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?"); |
| // For each jump table, place the offset from the beginning of the table |
| // to the target address. |
| int *SlotPtr = (int*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the offset of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| uintptr_t Base = (uintptr_t)SlotPtr; |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { |
| uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); |
| *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); |
| } |
| } |
| } else { |
| assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); |
| |
| // For each jump table, map each target in the jump table to the address of |
| // an emitted MachineBasicBlock. |
| intptr_t *SlotPtr = (intptr_t*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the address of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) |
| *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); |
| } |
| } |
| } |
| |
| void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize, |
| unsigned Alignment) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer, |
| unsigned StubSize) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = (unsigned char *)Buffer; |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void *JITEmitter::finishGVStub(const GlobalValue* GV) { |
| NumBytes += getCurrentPCOffset(); |
| std::swap(SavedBufferBegin, BufferBegin); |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| return SavedBufferBegin; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { |
| assert(ConstantNum < ConstantPool->getConstants().size() && |
| "Invalid ConstantPoolIndex!"); |
| return ConstPoolAddresses[ConstantNum]; |
| } |
| |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| // |
| uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| assert(Index < JT.size() && "Invalid jump table index!"); |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = JumpTable->getEntrySize(); |
| |
| for (unsigned i = 0; i < Index; ++i) |
| Offset += JT[i].MBBs.size(); |
| |
| Offset *= EntrySize; |
| |
| return (uintptr_t)((char *)JumpTableBase + Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public interface to this file |
| //===----------------------------------------------------------------------===// |
| |
| JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) { |
| return new JITEmitter(jit, JMM); |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| if (Function *F = TheJIT->FindFunctionNamed(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| return JE->getJITResolver().getFunctionStub(F); |
| } |
| |
| void JIT::registerMachineCodeInfo(MachineCodeInfo *mc) { |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| |
| JE->setMachineCodeInfo(mc); |
| } |
| |
| void JIT::updateFunctionStub(Function *F) { |
| // Get the empty stub we generated earlier. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| void *Stub = JE->getJITResolver().getFunctionStub(F); |
| |
| // Tell the target jit info to rewrite the stub at the specified address, |
| // rather than creating a new one. |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter()); |
| } |
| |
| /// updateDlsymStubTable - Emit the data necessary to relocate the stubs |
| /// that were emitted during code generation. |
| /// |
| void JIT::updateDlsymStubTable() { |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| |
| SmallVector<GlobalValue*, 8> GVs; |
| SmallVector<void*, 8> Ptrs; |
| const StringMap<void *> &ExtFns = JE->getExternalFnStubs(); |
| |
| JE->getJITResolver().getRelocatableGVs(GVs, Ptrs); |
| |
| unsigned nStubs = GVs.size() + ExtFns.size(); |
| |
| // If there are no relocatable stubs, return. |
| if (nStubs == 0) |
| return; |
| |
| // If there are no new relocatable stubs, return. |
| void *CurTable = JE->getMemMgr()->getDlsymTable(); |
| if (CurTable && (*(unsigned *)CurTable == nStubs)) |
| return; |
| |
| // Calculate the size of the stub info |
| unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs; |
| |
| SmallVector<unsigned, 8> Offsets; |
| for (unsigned i = 0; i != GVs.size(); ++i) { |
| Offsets.push_back(offset); |
| offset += GVs[i]->getName().length() + 1; |
| } |
| for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); |
| i != e; ++i) { |
| Offsets.push_back(offset); |
| offset += strlen(i->first()) + 1; |
| } |
| |
| // Allocate space for the new "stub", which contains the dlsym table. |
| JE->startGVStub(0, offset, 4); |
| |
| // Emit the number of records |
| JE->emitInt32(nStubs); |
| |
| // Emit the string offsets |
| for (unsigned i = 0; i != nStubs; ++i) |
| JE->emitInt32(Offsets[i]); |
| |
| // Emit the pointers. Verify that they are at least 2-byte aligned, and set |
| // the low bit to 0 == GV, 1 == Function, so that the client code doing the |
| // relocation can write the relocated pointer at the appropriate place in |
| // the stub. |
| for (unsigned i = 0; i != GVs.size(); ++i) { |
| intptr_t Ptr = (intptr_t)Ptrs[i]; |
| assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!"); |
| |
| if (isa<Function>(GVs[i])) |
| Ptr |= (intptr_t)1; |
| |
| if (sizeof(Ptr) == 8) |
| JE->emitInt64(Ptr); |
| else |
| JE->emitInt32(Ptr); |
| } |
| for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); |
| i != e; ++i) { |
| intptr_t Ptr = (intptr_t)i->second | 1; |
| |
| if (sizeof(Ptr) == 8) |
| JE->emitInt64(Ptr); |
| else |
| JE->emitInt32(Ptr); |
| } |
| |
| // Emit the strings. |
| for (unsigned i = 0; i != GVs.size(); ++i) |
| JE->emitString(GVs[i]->getName()); |
| for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end(); |
| i != e; ++i) |
| JE->emitString(i->first()); |
| |
| // Tell the JIT memory manager where it is. The JIT Memory Manager will |
| // deallocate space for the old one, if one existed. |
| JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0)); |
| } |
| |
| /// freeMachineCodeForFunction - release machine code memory for given Function. |
| /// |
| void JIT::freeMachineCodeForFunction(Function *F) { |
| |
| // Delete translation for this from the ExecutionEngine, so it will get |
| // retranslated next time it is used. |
| void *OldPtr = updateGlobalMapping(F, 0); |
| |
| if (OldPtr) |
| RemoveFunctionFromSymbolTable(OldPtr); |
| |
| // Free the actual memory for the function body and related stuff. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| cast<JITEmitter>(JCE)->deallocateMemForFunction(F); |
| } |
| |