| //===-- SparcV9CodeEmitter.cpp --------------------------------------------===// |
| // |
| // SPARC-specific backend for emitting machine code to memory. |
| // |
| // This module also contains the code for lazily resolving the targets |
| // of call instructions, including the callback used to redirect calls |
| // to functions for which the code has not yet been generated into the |
| // JIT compiler. |
| // |
| // This file #includes SparcV9CodeEmitter.inc, which contains the code |
| // for getBinaryCodeForInstr(), a method that converts a MachineInstr |
| // into the corresponding binary machine code word. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/Debug.h" |
| #include "Support/hash_set" |
| #include "Support/Statistic.h" |
| #include "SparcInternals.h" |
| #include "SparcV9CodeEmitter.h" |
| #include "Config/alloca.h" |
| |
| namespace { |
| Statistic<> OverwrittenCalls("call-ovwr", "Number of over-written calls"); |
| Statistic<> UnmodifiedCalls("call-skip", "Number of unmodified calls"); |
| Statistic<> CallbackCalls("callback", "Number CompilationCallback() calls"); |
| } |
| |
| bool UltraSparc::addPassesToEmitMachineCode(FunctionPassManager &PM, |
| MachineCodeEmitter &MCE) { |
| MachineCodeEmitter *M = &MCE; |
| DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE)); |
| PM.add(new SparcV9CodeEmitter(*this, *M)); |
| PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed |
| return false; |
| } |
| |
| namespace { |
| class JITResolver { |
| SparcV9CodeEmitter &SparcV9; |
| MachineCodeEmitter &MCE; |
| |
| /// LazyCodeGenMap - Keep track of call sites for functions that are to be |
| /// lazily resolved. |
| /// |
| std::map<uint64_t, Function*> LazyCodeGenMap; |
| |
| /// LazyResolverMap - Keep track of the lazy resolver created for a |
| /// particular function so that we can reuse them if necessary. |
| /// |
| std::map<Function*, uint64_t> LazyResolverMap; |
| |
| public: |
| enum CallType { ShortCall, FarCall }; |
| |
| private: |
| /// We need to keep track of whether we used a simple call or a far call |
| /// (many instructions) in sequence. This means we need to keep track of |
| /// what type of stub we generate. |
| static std::map<uint64_t, CallType> LazyCallFlavor; |
| |
| public: |
| JITResolver(SparcV9CodeEmitter &V9, |
| MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} |
| uint64_t getLazyResolver(Function *F); |
| uint64_t addFunctionReference(uint64_t Address, Function *F); |
| void deleteFunctionReference(uint64_t Address); |
| void addCallFlavor(uint64_t Address, CallType Flavor) { |
| LazyCallFlavor[Address] = Flavor; |
| } |
| |
| // Utility functions for accessing data from static callback |
| uint64_t getCurrentPCValue() { |
| return MCE.getCurrentPCValue(); |
| } |
| unsigned getBinaryCodeForInstr(MachineInstr &MI) { |
| return SparcV9.getBinaryCodeForInstr(MI); |
| } |
| |
| inline void insertFarJumpAtAddr(int64_t Value, uint64_t Addr); |
| void insertJumpAtAddr(int64_t Value, uint64_t &Addr); |
| |
| private: |
| uint64_t emitStubForFunction(Function *F); |
| static void SaveRegisters(uint64_t DoubleFP[], uint64_t &FSR, |
| uint64_t &FPRS, uint64_t &CCR); |
| static void RestoreRegisters(uint64_t DoubleFP[], uint64_t &FSR, |
| uint64_t &FPRS, uint64_t &CCR); |
| static void CompilationCallback(); |
| uint64_t resolveFunctionReference(uint64_t RetAddr); |
| |
| }; |
| |
| JITResolver *TheJITResolver; |
| std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor; |
| } |
| |
| /// addFunctionReference - This method is called when we need to emit the |
| /// address of a function that has not yet been emitted, so we don't know the |
| /// address. Instead, we emit a call to the CompilationCallback method, and |
| /// keep track of where we are. |
| /// |
| uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { |
| LazyCodeGenMap[Address] = F; |
| return (intptr_t)&JITResolver::CompilationCallback; |
| } |
| |
| /// deleteFunctionReference - If we are emitting a far call, we already added a |
| /// reference to the function, but it is now incorrect, since the address to the |
| /// JIT resolver is too far away to be a simple call instruction. This is used |
| /// to remove the address from the map. |
| /// |
| void JITResolver::deleteFunctionReference(uint64_t Address) { |
| std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address); |
| assert(I != LazyCodeGenMap.end() && "Not in map!"); |
| LazyCodeGenMap.erase(I); |
| } |
| |
| uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { |
| std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); |
| assert(I != LazyCodeGenMap.end() && "Not in map!"); |
| Function *F = I->second; |
| LazyCodeGenMap.erase(I); |
| return MCE.forceCompilationOf(F); |
| } |
| |
| uint64_t JITResolver::getLazyResolver(Function *F) { |
| std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F); |
| if (I != LazyResolverMap.end() && I->first == F) return I->second; |
| |
| uint64_t Stub = emitStubForFunction(F); |
| LazyResolverMap.insert(I, std::make_pair(F, Stub)); |
| return Stub; |
| } |
| |
| void JITResolver::insertJumpAtAddr(int64_t JumpTarget, uint64_t &Addr) { |
| DEBUG(std::cerr << "Emitting a jump to 0x" << std::hex << JumpTarget << "\n"); |
| |
| // If the target function is close enough to fit into the 19bit disp of |
| // BA, we should use this version, as it's much cheaper to generate. |
| int64_t BranchTarget = (JumpTarget-Addr) >> 2; |
| if (BranchTarget >= (1 << 19) || BranchTarget <= -(1 << 19)) { |
| TheJITResolver->insertFarJumpAtAddr(JumpTarget, Addr); |
| } else { |
| // ba <target> |
| MachineInstr *I = BuildMI(V9::BA, 1).addSImm(BranchTarget); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I); |
| Addr += 4; |
| delete I; |
| |
| // nop |
| I = BuildMI(V9::NOP, 0); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I); |
| delete I; |
| } |
| } |
| |
| void JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { |
| static const unsigned |
| o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0, |
| g1 = SparcIntRegClass::g1, g5 = SparcIntRegClass::g5; |
| |
| MachineInstr* BinaryCode[] = { |
| // |
| // Get address to branch into %g1, using %g5 as a temporary |
| // |
| // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 |
| BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), |
| // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %g5 |
| BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), |
| // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word |
| BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), |
| // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg |
| BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), |
| // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 |
| BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), |
| // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 |
| BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), |
| // jmpl %g1, %g0, %g0 ;; indirect branch on %g1 |
| BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0), |
| // nop ;; delay slot |
| BuildMI(V9::NOP, 0) |
| }; |
| |
| for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]); |
| delete BinaryCode[i]; |
| Addr += 4; |
| } |
| } |
| |
| void JITResolver::SaveRegisters(uint64_t DoubleFP[], uint64_t &FSR, |
| uint64_t &FPRS, uint64_t &CCR) { |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) |
| |
| #if 0 |
| __asm__ __volatile__ (// Save condition-code registers |
| "stx %%fsr, %0;\n\t" |
| "rd %%fprs, %1;\n\t" |
| "rd %%ccr, %2;\n\t" |
| : "=m"(FSR), "=r"(FPRS), "=r"(CCR)); |
| #endif |
| |
| // GCC says: `asm' only allows up to thirty parameters! |
| __asm__ __volatile__ (// Save Single/Double FP registers, part 1 |
| "std %%f0, %0;\n\t" "std %%f2, %1;\n\t" |
| "std %%f4, %2;\n\t" "std %%f6, %3;\n\t" |
| "std %%f8, %4;\n\t" "std %%f10, %5;\n\t" |
| "std %%f12, %6;\n\t" "std %%f14, %7;\n\t" |
| "std %%f16, %8;\n\t" "std %%f18, %9;\n\t" |
| "std %%f20, %10;\n\t" "std %%f22, %11;\n\t" |
| "std %%f24, %12;\n\t" "std %%f26, %13;\n\t" |
| "std %%f28, %14;\n\t" "std %%f30, %15;\n\t" |
| : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]), |
| "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]), |
| "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]), |
| "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]), |
| "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]), |
| "=m"(DoubleFP[10]), "=m"(DoubleFP[11]), |
| "=m"(DoubleFP[12]), "=m"(DoubleFP[13]), |
| "=m"(DoubleFP[14]), "=m"(DoubleFP[15])); |
| |
| __asm__ __volatile__ (// Save Double FP registers, part 2 |
| "std %%f32, %0;\n\t" "std %%f34, %1;\n\t" |
| "std %%f36, %2;\n\t" "std %%f38, %3;\n\t" |
| "std %%f40, %4;\n\t" "std %%f42, %5;\n\t" |
| "std %%f44, %6;\n\t" "std %%f46, %7;\n\t" |
| "std %%f48, %8;\n\t" "std %%f50, %9;\n\t" |
| "std %%f52, %10;\n\t" "std %%f54, %11;\n\t" |
| "std %%f56, %12;\n\t" "std %%f58, %13;\n\t" |
| "std %%f60, %14;\n\t" "std %%f62, %15;\n\t" |
| : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]), |
| "=m"(DoubleFP[18]), "=m"(DoubleFP[19]), |
| "=m"(DoubleFP[20]), "=m"(DoubleFP[21]), |
| "=m"(DoubleFP[22]), "=m"(DoubleFP[23]), |
| "=m"(DoubleFP[24]), "=m"(DoubleFP[25]), |
| "=m"(DoubleFP[26]), "=m"(DoubleFP[27]), |
| "=m"(DoubleFP[28]), "=m"(DoubleFP[29]), |
| "=m"(DoubleFP[30]), "=m"(DoubleFP[31])); |
| #endif |
| } |
| |
| |
| void JITResolver::RestoreRegisters(uint64_t DoubleFP[], uint64_t &FSR, |
| uint64_t &FPRS, uint64_t &CCR) |
| { |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) |
| |
| #if 0 |
| __asm__ __volatile__ (// Restore condition-code registers |
| "ldx %0, %%fsr;\n\t" |
| "wr %1, 0, %%fprs;\n\t" |
| "wr %2, 0, %%ccr;\n\t" |
| :: "m"(FSR), "r"(FPRS), "r"(CCR)); |
| #endif |
| |
| // GCC says: `asm' only allows up to thirty parameters! |
| __asm__ __volatile__ (// Restore Single/Double FP registers, part 1 |
| "ldd %0, %%f0;\n\t" "ldd %1, %%f2;\n\t" |
| "ldd %2, %%f4;\n\t" "ldd %3, %%f6;\n\t" |
| "ldd %4, %%f8;\n\t" "ldd %5, %%f10;\n\t" |
| "ldd %6, %%f12;\n\t" "ldd %7, %%f14;\n\t" |
| "ldd %8, %%f16;\n\t" "ldd %9, %%f18;\n\t" |
| "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t" |
| "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t" |
| "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t" |
| :: "m"(DoubleFP[0]), "m"(DoubleFP[1]), |
| "m"(DoubleFP[2]), "m"(DoubleFP[3]), |
| "m"(DoubleFP[4]), "m"(DoubleFP[5]), |
| "m"(DoubleFP[6]), "m"(DoubleFP[7]), |
| "m"(DoubleFP[8]), "m"(DoubleFP[9]), |
| "m"(DoubleFP[10]), "m"(DoubleFP[11]), |
| "m"(DoubleFP[12]), "m"(DoubleFP[13]), |
| "m"(DoubleFP[14]), "m"(DoubleFP[15])); |
| |
| __asm__ __volatile__ (// Restore Double FP registers, part 2 |
| "ldd %0, %%f32;\n\t" "ldd %1, %%f34;\n\t" |
| "ldd %2, %%f36;\n\t" "ldd %3, %%f38;\n\t" |
| "ldd %4, %%f40;\n\t" "ldd %5, %%f42;\n\t" |
| "ldd %6, %%f44;\n\t" "ldd %7, %%f46;\n\t" |
| "ldd %8, %%f48;\n\t" "ldd %9, %%f50;\n\t" |
| "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t" |
| "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t" |
| "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t" |
| :: "m"(DoubleFP[16]), "m"(DoubleFP[17]), |
| "m"(DoubleFP[18]), "m"(DoubleFP[19]), |
| "m"(DoubleFP[20]), "m"(DoubleFP[21]), |
| "m"(DoubleFP[22]), "m"(DoubleFP[23]), |
| "m"(DoubleFP[24]), "m"(DoubleFP[25]), |
| "m"(DoubleFP[26]), "m"(DoubleFP[27]), |
| "m"(DoubleFP[28]), "m"(DoubleFP[29]), |
| "m"(DoubleFP[30]), "m"(DoubleFP[31])); |
| #endif |
| } |
| |
| void JITResolver::CompilationCallback() { |
| // Local space to save double registers |
| uint64_t DoubleFP[32]; |
| uint64_t FSR, FPRS, CCR; |
| |
| SaveRegisters(DoubleFP, FSR, FPRS, CCR); |
| ++CallbackCalls; |
| |
| uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0); |
| uint64_t CameFrom1 = (uint64_t)(intptr_t)__builtin_return_address(1); |
| int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); |
| DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); |
| register int64_t returnAddr = 0; |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) |
| __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : ); |
| DEBUG(std::cerr << "Read i7 (return addr) = " |
| << std::hex << returnAddr << ", value: " |
| << std::hex << *(unsigned*)returnAddr << "\n"); |
| #endif |
| |
| // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a |
| // trampoline function stub!! |
| unsigned OrigCallInst = *((unsigned*)(intptr_t)CameFrom1); |
| int64_t OrigTarget = (Target-CameFrom1) >> 2; |
| if ((OrigCallInst & (1 << 30)) && |
| (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30))) |
| { |
| // The original call instruction was CALL <immed>, which means we can |
| // overwrite it directly, since the offset will fit into 30 bits |
| MachineInstr *C = BuildMI(V9::CALL, 1).addSImm(OrigTarget); |
| *((unsigned*)(intptr_t)CameFrom1)=TheJITResolver->getBinaryCodeForInstr(*C); |
| delete C; |
| ++OverwrittenCalls; |
| } else { |
| ++UnmodifiedCalls; |
| } |
| |
| // Rewrite the call target so that we don't fault every time we execute it. |
| // |
| |
| static const unsigned o6 = SparcIntRegClass::o6; |
| |
| // Subtract enough to overwrite up to the 'save' instruction |
| // This depends on whether we made a short call (1 instruction) or the |
| // farCall (7 instructions) |
| uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28; |
| uint64_t CodeBegin = CameFrom - Offset; |
| |
| // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame |
| // pointer elimination has been performed. Having a variable sized alloca |
| // disables frame pointer elimination currently, even if it's dead. This is |
| // a gross hack. |
| alloca(42+Offset); |
| // FIXME FIXME FIXME FIXME |
| |
| // Make sure that what we're about to overwrite is indeed "save" |
| MachineInstr *SV =BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); |
| unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV); |
| delete SV; |
| unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin; |
| if (CodeInMem != SaveInst) { |
| std::cerr << "About to overwrite smthg not a save instr!"; |
| abort(); |
| } |
| // Overwrite it |
| TheJITResolver->insertJumpAtAddr(Target, CodeBegin); |
| |
| RestoreRegisters(DoubleFP, FSR, FPRS, CCR); |
| |
| // Change the return address to re-execute the restore, then the jump. |
| // However, we can't just modify %i7 here, because we return to the function |
| // that will restore the floating-point registers for us. Thus, we just return |
| // the value we want it to be, and the parent will take care of setting %i7 |
| // correctly. |
| DEBUG(std::cerr << "Callback returning to: 0x" |
| << std::hex << (CameFrom-Offset-12) << "\n"); |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) |
| __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12)); |
| #endif |
| } |
| |
| /// emitStubForFunction - This method is used by the JIT when it needs to emit |
| /// the address of a function for a function whose code has not yet been |
| /// generated. In order to do this, it generates a stub which jumps to the lazy |
| /// function compiler, which will eventually get fixed to call the function |
| /// directly. |
| /// |
| uint64_t JITResolver::emitStubForFunction(Function *F) { |
| MCE.startFunctionStub(*F, 44); |
| |
| DEBUG(std::cerr << "Emitting stub at addr: 0x" |
| << std::hex << MCE.getCurrentPCValue() << "\n"); |
| |
| unsigned o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; |
| |
| // restore %g0, 0, %g0 |
| MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) |
| .addMReg(g0, MOTy::Def); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R)); |
| delete R; |
| |
| // save %sp, -192, %sp |
| MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); |
| delete SV; |
| |
| int64_t CurrPC = MCE.getCurrentPCValue(); |
| int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); |
| int64_t CallTarget = (Addr-CurrPC) >> 2; |
| if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) { |
| // Since this is a far call, the actual address of the call is shifted |
| // by the number of instructions it takes to calculate the exact address |
| deleteFunctionReference(CurrPC); |
| SparcV9.emitFarCall(Addr, F); |
| } else { |
| // call CallTarget ;; invoke the callback |
| MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call)); |
| delete Call; |
| |
| // nop ;; call delay slot |
| MachineInstr *Nop = BuildMI(V9::NOP, 0); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); |
| delete Nop; |
| |
| addCallFlavor(CurrPC, ShortCall); |
| } |
| |
| SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub |
| return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */ |
| } |
| |
| |
| SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, |
| MachineCodeEmitter &M): TM(tm), MCE(M) |
| { |
| TheJITResolver = new JITResolver(*this, M); |
| } |
| |
| SparcV9CodeEmitter::~SparcV9CodeEmitter() { |
| delete TheJITResolver; |
| } |
| |
| void SparcV9CodeEmitter::emitWord(unsigned Val) { |
| // Output the constant in big endian byte order... |
| unsigned byteVal; |
| for (int i = 3; i >= 0; --i) { |
| byteVal = Val >> 8*i; |
| MCE.emitByte(byteVal & 255); |
| } |
| } |
| |
| unsigned |
| SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, |
| MachineInstr &MI) { |
| const TargetRegInfo &RI = TM.getRegInfo(); |
| unsigned regClass, regType = RI.getRegType(fakeReg); |
| // At least map fakeReg into its class |
| fakeReg = RI.getClassRegNum(fakeReg, regClass); |
| |
| switch (regClass) { |
| case UltraSparcRegInfo::IntRegClassID: { |
| // Sparc manual, p31 |
| static const unsigned IntRegMap[] = { |
| // "o0", "o1", "o2", "o3", "o4", "o5", "o7", |
| 8, 9, 10, 11, 12, 13, 15, |
| // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| // "o6" |
| 14 |
| }; |
| |
| return IntRegMap[fakeReg]; |
| break; |
| } |
| case UltraSparcRegInfo::FloatRegClassID: { |
| DEBUG(std::cerr << "FP reg: " << fakeReg << "\n"); |
| if (regType == UltraSparcRegInfo::FPSingleRegType) { |
| // only numbered 0-31, hence can already fit into 5 bits (and 6) |
| DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n"); |
| } else if (regType == UltraSparcRegInfo::FPDoubleRegType) { |
| // FIXME: This assumes that we only have 5-bit register fields! |
| // From Sparc Manual, page 40. |
| // The bit layout becomes: b[4], b[3], b[2], b[1], b[5] |
| fakeReg |= (fakeReg >> 5) & 1; |
| fakeReg &= 0x1f; |
| DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n"); |
| } |
| return fakeReg; |
| } |
| case UltraSparcRegInfo::IntCCRegClassID: { |
| /* xcc, icc, ccr */ |
| static const unsigned IntCCReg[] = { 6, 4, 2 }; |
| |
| assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0]) |
| && "CC register out of bounds for IntCCReg map"); |
| DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n"); |
| return IntCCReg[fakeReg]; |
| } |
| case UltraSparcRegInfo::FloatCCRegClassID: { |
| /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ |
| DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n"); |
| return fakeReg; |
| } |
| default: |
| assert(0 && "Invalid unified register number in getRegType"); |
| return fakeReg; |
| } |
| } |
| |
| |
| // WARNING: if the call used the delay slot to do meaningful work, that's not |
| // being accounted for, and the behavior will be incorrect!! |
| inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) { |
| static const unsigned o6 = SparcIntRegClass::o6, |
| o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0, |
| g1 = SparcIntRegClass::g1, g5 = SparcIntRegClass::g5; |
| |
| MachineInstr* BinaryCode[] = { |
| // |
| // Get address to branch into %g1, using %g5 as a temporary |
| // |
| // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 |
| BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), |
| // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1 |
| BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), |
| // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word |
| BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), |
| // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg |
| BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), |
| // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 |
| BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), |
| // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 |
| BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), |
| // jmpl %g1, %g0, %o7 ;; indirect call on %g1 |
| BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7), |
| // nop ;; delay slot |
| BuildMI(V9::NOP, 0) |
| }; |
| |
| for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { |
| // This is where we save the return address in the LazyResolverMap!! |
| if (i == 6 && F != 0) { // Do this right before the JMPL |
| uint64_t CurrPC = MCE.getCurrentPCValue(); |
| TheJITResolver->addFunctionReference(CurrPC, F); |
| // Remember that this is a far call, to subtract appropriate offset later |
| TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall); |
| } |
| |
| emitWord(getBinaryCodeForInstr(*BinaryCode[i])); |
| delete BinaryCode[i]; |
| } |
| } |
| |
| bool UltraSparc::replaceMachineCodeForFunction (void *Old, void *New) { |
| if (!TheJITResolver) return true; // fail if not in JIT. |
| uint64_t Target = (uint64_t)(intptr_t)New; |
| uint64_t CodeBegin = (uint64_t)(intptr_t)Old; |
| TheJITResolver->insertJumpAtAddr(Target, CodeBegin); |
| return false; |
| } |
| |
| int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, |
| MachineOperand &MO) { |
| int64_t rv = 0; // Return value; defaults to 0 for unhandled cases |
| // or things that get fixed up later by the JIT. |
| |
| if (MO.isVirtualRegister()) { |
| std::cerr << "ERROR: virtual register found in machine code.\n"; |
| abort(); |
| } else if (MO.isPCRelativeDisp()) { |
| DEBUG(std::cerr << "PCRelativeDisp: "); |
| Value *V = MO.getVRegValue(); |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { |
| DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (const Constant *C = dyn_cast<Constant>(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n"); |
| } else { |
| std::cerr << "ERROR: constant not in map:" << MO << "\n"; |
| abort(); |
| } |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // same as MO.isGlobalAddress() |
| DEBUG(std::cerr << "GlobalValue: "); |
| // external function calls, etc.? |
| if (Function *F = dyn_cast<Function>(GV)) { |
| DEBUG(std::cerr << "Function: "); |
| if (F->isExternal()) { |
| // Sparc backend broken: this MO should be `ExternalSymbol' |
| rv = (int64_t)MCE.getGlobalValueAddress(F->getName()); |
| } else { |
| rv = (int64_t)MCE.getGlobalValueAddress(F); |
| } |
| if (rv == 0) { |
| DEBUG(std::cerr << "not yet generated\n"); |
| // Function has not yet been code generated! |
| TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F); |
| // Delayed resolution... |
| rv = TheJITResolver->getLazyResolver(F); |
| } else { |
| DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n"); |
| } |
| } else { |
| rv = (int64_t)MCE.getGlobalValueAddress(GV); |
| if (rv == 0) { |
| if (Constant *C = ConstantPointerRef::get(GV)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| } else { |
| std::cerr << "Constant: 0x" << std::hex << (intptr_t)C |
| << ", " << *V << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| } |
| } |
| DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n"); |
| } |
| // The real target of the call is Addr = PC + (rv * 4) |
| // So undo that: give the instruction (Addr - PC) / 4 |
| if (MI.getOpcode() == V9::CALL) { |
| int64_t CurrPC = MCE.getCurrentPCValue(); |
| DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n" |
| << "curr PC: 0x" << std::hex << CurrPC << "\n"); |
| int64_t CallInstTarget = (rv - CurrPC) >> 2; |
| if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) { |
| DEBUG(std::cerr << "Making far call!\n"); |
| // address is out of bounds for the 30-bit call, |
| // make an indirect jump-and-link |
| emitFarCall(rv); |
| // this invalidates the instruction so that the call with an incorrect |
| // address will not be emitted |
| rv = 0; |
| } else { |
| // The call fits into 30 bits, so just return the corrected address |
| rv = CallInstTarget; |
| } |
| DEBUG(std::cerr << "returning addr: 0x" << rv << "\n"); |
| } |
| } else { |
| std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; |
| abort(); |
| } |
| } else if (MO.isPhysicalRegister() || |
| MO.getType() == MachineOperand::MO_CCRegister) |
| { |
| // This is necessary because the Sparc backend doesn't actually lay out |
| // registers in the real fashion -- it skips those that it chooses not to |
| // allocate, i.e. those that are the FP, SP, etc. |
| unsigned fakeReg = MO.getAllocatedRegNum(); |
| unsigned realRegByClass = getRealRegNum(fakeReg, MI); |
| DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => " |
| << realRegByClass << " (LLC: " |
| << TM.getRegInfo().getUnifiedRegName(fakeReg) << ")\n"); |
| rv = realRegByClass; |
| } else if (MO.isImmediate()) { |
| rv = MO.getImmedValue(); |
| DEBUG(std::cerr << "immed: " << rv << "\n"); |
| } else if (MO.isGlobalAddress()) { |
| DEBUG(std::cerr << "GlobalAddress: not PC-relative\n"); |
| rv = (int64_t) |
| (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()), |
| MI, MO.isPCRelative()); |
| } else if (MO.isMachineBasicBlock()) { |
| // Duplicate code of the above case for VirtualRegister, BasicBlock... |
| // It should really hit this case, but Sparc backend uses VRegs instead |
| DEBUG(std::cerr << "Saving reference to MBB\n"); |
| const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (MO.isExternalSymbol()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; |
| abort(); |
| } else if (MO.isFrameIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| int FrameIndex = MO.getFrameIndex(); |
| std::cerr << "ERROR: Frame index unhandled.\n"; |
| abort(); |
| } else if (MO.isConstantPoolIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: Constant Pool index unhandled.\n"; |
| abort(); |
| } else { |
| std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; |
| abort(); |
| } |
| |
| // Finally, deal with the various bitfield-extracting functions that |
| // are used in SPARC assembly. (Some of these make no sense in combination |
| // with some of the above; we'll trust that the instruction selector |
| // will not produce nonsense, and not check for valid combinations here.) |
| if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc |
| return rv & 0x03ff; |
| } else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc |
| return (rv >> 10) & 0x03fffff; |
| } else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc |
| return (rv >> 32) & 0x03ff; |
| } else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc |
| return rv >> 42; |
| } else { // (unadorned) val |
| return rv; |
| } |
| } |
| |
| unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { |
| Val >>= bit; |
| return (Val & 1); |
| } |
| |
| bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { |
| MCE.startFunction(MF); |
| DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() |
| << ", address: " << "0x" << std::hex |
| << (long)MCE.getCurrentPCValue() << "\n"); |
| |
| // The Sparc backend does not use MachineConstantPool; |
| // instead, it has its own constant pool implementation. |
| // We create a new MachineConstantPool here to be compatible with the emitter. |
| MachineConstantPool MCP; |
| const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues(); |
| for (hash_set<const Constant*>::const_iterator I = pool.begin(), |
| E = pool.end(); I != E; ++I) |
| { |
| Constant *C = (Constant*)*I; |
| unsigned idx = MCP.getConstantPoolIndex(C); |
| DEBUG(std::cerr << "Constant[" << idx << "] = 0x" << (intptr_t)C << "\n"); |
| ConstantMap[C] = idx; |
| } |
| MCE.emitConstantPool(&MCP); |
| |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| emitBasicBlock(*I); |
| MCE.finishFunction(MF); |
| |
| DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n"); |
| ConstantMap.clear(); |
| |
| // Resolve branches to BasicBlocks for the entire function |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| long Location = BBLocations[BBRefs[i].first]; |
| unsigned *Ref = BBRefs[i].second.first; |
| MachineInstr *MI = BBRefs[i].second.second; |
| DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location |
| << " in instr: " << std::dec << *MI); |
| for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { |
| MachineOperand &op = MI->getOperand(ii); |
| if (op.isPCRelativeDisp()) { |
| // the instruction's branch target is made such that it branches to |
| // PC + (branchTarget * 4), so undo that arithmetic here: |
| // Location is the target of the branch |
| // Ref is the location of the instruction, and hence the PC |
| int64_t branchTarget = (Location - (long)Ref) >> 2; |
| // Save the flags. |
| bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; |
| if (op.opLoBits32()) { loBits32=true; } |
| if (op.opHiBits32()) { hiBits32=true; } |
| if (op.opLoBits64()) { loBits64=true; } |
| if (op.opHiBits64()) { hiBits64=true; } |
| MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, |
| branchTarget); |
| if (loBits32) { MI->setOperandLo32(ii); } |
| else if (hiBits32) { MI->setOperandHi32(ii); } |
| else if (loBits64) { MI->setOperandLo64(ii); } |
| else if (hiBits64) { MI->setOperandHi64(ii); } |
| DEBUG(std::cerr << "Rewrote BB ref: "); |
| unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); |
| *Ref = fixedInstr; |
| break; |
| } |
| } |
| } |
| BBRefs.clear(); |
| BBLocations.clear(); |
| |
| return false; |
| } |
| |
| void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { |
| currBB = MBB.getBasicBlock(); |
| BBLocations[currBB] = MCE.getCurrentPCValue(); |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){ |
| unsigned binCode = getBinaryCodeForInstr(**I); |
| if (binCode == (1 << 30)) { |
| // this is an invalid call: the addr is out of bounds. that means a code |
| // sequence has already been emitted, and this is a no-op |
| DEBUG(std::cerr << "Call supressed: already emitted far call.\n"); |
| } else { |
| emitWord(binCode); |
| } |
| } |
| } |
| |
| void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, |
| bool isPCRelative) |
| { |
| if (isPCRelative) { // must be a call, this is a major hack! |
| // Try looking up the function to see if it is already compiled! |
| if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) { |
| intptr_t CurByte = MCE.getCurrentPCValue(); |
| // The real target of the call is Addr = PC + (target * 4) |
| // CurByte is the PC, Addr we just received |
| return (void*) (((long)Addr - (long)CurByte) >> 2); |
| } else { |
| if (Function *F = dyn_cast<Function>(V)) { |
| // Function has not yet been code generated! |
| TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), |
| cast<Function>(V)); |
| // Delayed resolution... |
| return |
| (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V)); |
| |
| } else if (Constant *C = ConstantPointerRef::get(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| return (void*) |
| (intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| } else { |
| std::cerr << "Constant: 0x" << std::hex << &*C << std::dec |
| << ", " << *V << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| } else { |
| std::cerr << "Unhandled global: " << *V << "\n"; |
| abort(); |
| } |
| } |
| } else { |
| return (void*)(intptr_t)MCE.getGlobalValueAddress(V); |
| } |
| } |
| |
| #include "SparcV9CodeEmitter.inc" |