| //===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TDDataStructures class, which represents the |
| // Top-down Interprocedural closure of the data structure graph over the |
| // program. This is useful (but not strictly necessary?) for applications |
| // like pointer analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DataStructure/DataStructure.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Analysis/DataStructure/DSGraph.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| namespace { |
| RegisterAnalysis<TDDataStructures> // Register the pass |
| Y("tddatastructure", "Top-down Data Structure Analysis"); |
| |
| Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); |
| } |
| |
| void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N, |
| hash_set<DSNode*> &Visited) { |
| if (!N || Visited.count(N)) return; |
| Visited.insert(N); |
| |
| for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) { |
| DSNodeHandle &NH = N->getLink(i*N->getPointerSize()); |
| if (DSNode *NN = NH.getNode()) { |
| const std::vector<GlobalValue*> &Globals = NN->getGlobals(); |
| for (unsigned G = 0, e = Globals.size(); G != e; ++G) |
| if (Function *F = dyn_cast<Function>(Globals[G])) |
| ArgsRemainIncomplete.insert(F); |
| |
| markReachableFunctionsExternallyAccessible(NN, Visited); |
| } |
| } |
| } |
| |
| |
| // run - Calculate the top down data structure graphs for each function in the |
| // program. |
| // |
| bool TDDataStructures::runOnModule(Module &M) { |
| BUDataStructures &BU = getAnalysis<BUDataStructures>(); |
| GlobalsGraph = new DSGraph(BU.getGlobalsGraph()); |
| GlobalsGraph->setPrintAuxCalls(); |
| |
| // Figure out which functions must not mark their arguments complete because |
| // they are accessible outside this compilation unit. Currently, these |
| // arguments are functions which are reachable by global variables in the |
| // globals graph. |
| const DSScalarMap &GGSM = GlobalsGraph->getScalarMap(); |
| hash_set<DSNode*> Visited; |
| for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end(); |
| I != E; ++I) |
| markReachableFunctionsExternallyAccessible(GGSM.find(*I)->second.getNode(), |
| Visited); |
| |
| // Loop over unresolved call nodes. Any functions passed into (but not |
| // returned!) from unresolvable call nodes may be invoked outside of the |
| // current module. |
| for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(), |
| E = GlobalsGraph->afc_end(); I != E; ++I) |
| for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg) |
| markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(), |
| Visited); |
| Visited.clear(); |
| |
| // Functions without internal linkage also have unknown incoming arguments! |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal() && !I->hasInternalLinkage()) |
| ArgsRemainIncomplete.insert(I); |
| |
| // We want to traverse the call graph in reverse post-order. To do this, we |
| // calculate a post-order traversal, then reverse it. |
| hash_set<DSGraph*> VisitedGraph; |
| std::vector<DSGraph*> PostOrder; |
| const BUDataStructures::ActualCalleesTy &ActualCallees = |
| getAnalysis<BUDataStructures>().getActualCallees(); |
| |
| // Calculate top-down from main... |
| if (Function *F = M.getMainFunction()) |
| ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees); |
| |
| // Next calculate the graphs for each unreachable function... |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees); |
| |
| VisitedGraph.clear(); // Release memory! |
| |
| // Visit each of the graphs in reverse post-order now! |
| while (!PostOrder.empty()) { |
| inlineGraphIntoCallees(*PostOrder.back()); |
| PostOrder.pop_back(); |
| } |
| |
| ArgsRemainIncomplete.clear(); |
| GlobalsGraph->removeTriviallyDeadNodes(); |
| |
| return false; |
| } |
| |
| |
| DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { |
| DSGraph *&G = DSInfo[&F]; |
| if (G == 0) { // Not created yet? Clone BU graph... |
| G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F)); |
| G->getAuxFunctionCalls().clear(); |
| G->setPrintAuxCalls(); |
| G->setGlobalsGraph(GlobalsGraph); |
| } |
| return *G; |
| } |
| |
| |
| void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited, |
| std::vector<DSGraph*> &PostOrder, |
| const BUDataStructures::ActualCalleesTy &ActualCallees) { |
| if (F.isExternal()) return; |
| DSGraph &G = getOrCreateDSGraph(F); |
| if (Visited.count(&G)) return; |
| Visited.insert(&G); |
| |
| // Recursively traverse all of the callee graphs. |
| for (DSGraph::fc_iterator CI = G.fc_begin(), E = G.fc_end(); CI != E; ++CI) { |
| Instruction *CallI = CI->getCallSite().getInstruction(); |
| std::pair<BUDataStructures::ActualCalleesTy::const_iterator, |
| BUDataStructures::ActualCalleesTy::const_iterator> |
| IP = ActualCallees.equal_range(CallI); |
| |
| for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; |
| I != IP.second; ++I) |
| ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees); |
| } |
| |
| PostOrder.push_back(&G); |
| } |
| |
| |
| |
| |
| |
| // releaseMemory - If the pass pipeline is done with this pass, we can release |
| // our memory... here... |
| // |
| // FIXME: This should be releaseMemory and will work fine, except that LoadVN |
| // has no way to extend the lifetime of the pass, which screws up ds-aa. |
| // |
| void TDDataStructures::releaseMyMemory() { |
| for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(), |
| E = DSInfo.end(); I != E; ++I) { |
| I->second->getReturnNodes().erase(I->first); |
| if (I->second->getReturnNodes().empty()) |
| delete I->second; |
| } |
| |
| // Empty map so next time memory is released, data structures are not |
| // re-deleted. |
| DSInfo.clear(); |
| delete GlobalsGraph; |
| GlobalsGraph = 0; |
| } |
| |
| void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) { |
| // Recompute the Incomplete markers and eliminate unreachable nodes. |
| Graph.maskIncompleteMarkers(); |
| |
| // If any of the functions has incomplete incoming arguments, don't mark any |
| // of them as complete. |
| bool HasIncompleteArgs = false; |
| for (DSGraph::retnodes_iterator I = Graph.retnodes_begin(), |
| E = Graph.retnodes_end(); I != E; ++I) |
| if (ArgsRemainIncomplete.count(I->first)) { |
| HasIncompleteArgs = true; |
| break; |
| } |
| |
| // Now fold in the necessary globals from the GlobalsGraph. A global G |
| // must be folded in if it exists in the current graph (i.e., is not dead) |
| // and it was not inlined from any of my callers. If it was inlined from |
| // a caller, it would have been fully consistent with the GlobalsGraph |
| // in the caller so folding in is not necessary. Otherwise, this node came |
| // solely from this function's BU graph and so has to be made consistent. |
| // |
| Graph.updateFromGlobalGraph(); |
| |
| // Recompute the Incomplete markers. Depends on whether args are complete |
| unsigned Flags |
| = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; |
| Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); |
| |
| // Delete dead nodes. Treat globals that are unreachable as dead also. |
| Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); |
| |
| // We are done with computing the current TD Graph! Now move on to |
| // inlining the current graph into the graphs for its callees, if any. |
| // |
| if (Graph.fc_begin() == Graph.fc_end()) { |
| DEBUG(std::cerr << " [TD] No callees for: " << Graph.getFunctionNames() |
| << "\n"); |
| return; |
| } |
| |
| // Now that we have information about all of the callees, propagate the |
| // current graph into the callees. Clone only the reachable subgraph at |
| // each call-site, not the entire graph (even though the entire graph |
| // would be cloned only once, this should still be better on average). |
| // |
| DEBUG(std::cerr << " [TD] Inlining '" << Graph.getFunctionNames() <<"' into " |
| << Graph.getFunctionCalls().size() << " call nodes.\n"); |
| |
| const BUDataStructures::ActualCalleesTy &ActualCallees = |
| getAnalysis<BUDataStructures>().getActualCallees(); |
| |
| // Loop over all the call sites and all the callees at each call site. Build |
| // a mapping from called DSGraph's to the call sites in this function that |
| // invoke them. This is useful because we can be more efficient if there are |
| // multiple call sites to the callees in the graph from this caller. |
| std::multimap<DSGraph*, std::pair<Function*, const DSCallSite*> > CallSites; |
| |
| for (DSGraph::fc_iterator CI = Graph.fc_begin(), E = Graph.fc_end(); |
| CI != E; ++CI) { |
| Instruction *CallI = CI->getCallSite().getInstruction(); |
| // For each function in the invoked function list at this call site... |
| std::pair<BUDataStructures::ActualCalleesTy::const_iterator, |
| BUDataStructures::ActualCalleesTy::const_iterator> |
| IP = ActualCallees.equal_range(CallI); |
| // Loop over each actual callee at this call site |
| for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; |
| I != IP.second; ++I) { |
| DSGraph& CalleeGraph = getDSGraph(*I->second); |
| if (&CalleeGraph != &Graph) |
| CallSites.insert(std::make_pair(&CalleeGraph, |
| std::make_pair(I->second, &*CI))); |
| } |
| } |
| |
| // Now that we built the mapping, actually perform the inlining a callee graph |
| // at a time. |
| std::multimap<DSGraph*,std::pair<Function*,const DSCallSite*> >::iterator CSI; |
| for (CSI = CallSites.begin(); CSI != CallSites.end(); ) { |
| DSGraph &CalleeGraph = *CSI->first; |
| // Iterate through all of the call sites of this graph, cloning and merging |
| // any nodes required by the call. |
| ReachabilityCloner RC(CalleeGraph, Graph, DSGraph::StripModRefBits); |
| |
| // Clone over any global nodes that appear in both graphs. |
| for (DSScalarMap::global_iterator |
| SI = CalleeGraph.getScalarMap().global_begin(), |
| SE = CalleeGraph.getScalarMap().global_end(); SI != SE; ++SI) { |
| DSScalarMap::const_iterator GI = Graph.getScalarMap().find(*SI); |
| if (GI != Graph.getScalarMap().end()) |
| RC.merge(CalleeGraph.getNodeForValue(*SI), GI->second); |
| } |
| |
| // Loop over all of the distinct call sites in the caller of the callee. |
| for (; CSI != CallSites.end() && CSI->first == &CalleeGraph; ++CSI) { |
| Function &CF = *CSI->second.first; |
| const DSCallSite &CS = *CSI->second.second; |
| DEBUG(std::cerr << " [TD] Resolving arguments for callee graph '" |
| << CalleeGraph.getFunctionNames() |
| << "': " << CF.getFunctionType()->getNumParams() |
| << " args\n at call site (DSCallSite*) 0x" << &CS << "\n"); |
| |
| // Get the formal argument and return nodes for the called function and |
| // merge them with the cloned subgraph. |
| RC.mergeCallSite(CalleeGraph.getCallSiteForArguments(CF), CS); |
| ++NumTDInlines; |
| } |
| } |
| |
| DEBUG(std::cerr << " [TD] Done inlining into callees for: " |
| << Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+" |
| << Graph.getFunctionCalls().size() << "]\n"); |
| } |
| |
| static const Function *getFnForValue(const Value *V) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent()->getParent(); |
| else if (const Argument *A = dyn_cast<Argument>(V)) |
| return A->getParent(); |
| else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent(); |
| return 0; |
| } |
| |
| void TDDataStructures::deleteValue(Value *V) { |
| if (const Function *F = getFnForValue(V)) { // Function local value? |
| // If this is a function local value, just delete it from the scalar map! |
| getDSGraph(*F).getScalarMap().eraseIfExists(V); |
| return; |
| } |
| |
| if (Function *F = dyn_cast<Function>(V)) { |
| assert(getDSGraph(*F).getReturnNodes().size() == 1 && |
| "cannot handle scc's"); |
| delete DSInfo[F]; |
| DSInfo.erase(F); |
| return; |
| } |
| |
| assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!"); |
| } |
| |
| void TDDataStructures::copyValue(Value *From, Value *To) { |
| if (From == To) return; |
| if (const Function *F = getFnForValue(From)) { // Function local value? |
| // If this is a function local value, just delete it from the scalar map! |
| getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To); |
| return; |
| } |
| |
| if (Function *FromF = dyn_cast<Function>(From)) { |
| Function *ToF = cast<Function>(To); |
| assert(!DSInfo.count(ToF) && "New Function already exists!"); |
| DSGraph *NG = new DSGraph(getDSGraph(*FromF)); |
| DSInfo[ToF] = NG; |
| assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!"); |
| |
| // Change the Function* is the returnnodes map to the ToF. |
| DSNodeHandle Ret = NG->retnodes_begin()->second; |
| NG->getReturnNodes().clear(); |
| NG->getReturnNodes()[ToF] = Ret; |
| return; |
| } |
| |
| assert(!isa<GlobalVariable>(From) && "Do not know how to copy GV's yet!"); |
| } |