| //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the AsmPrinter class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/AsmPrinter.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/CodeGen/GCMetadataPrinter.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/Support/Mangler.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetAsmInfo.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include <cerrno> | 
 | using namespace llvm; | 
 |  | 
 | char AsmPrinter::ID = 0; | 
 | AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm, | 
 |                        const TargetAsmInfo *T) | 
 |   : MachineFunctionPass(&ID), FunctionNumber(0), O(o), | 
 |     TM(tm), TAI(T), TRI(tm.getRegisterInfo()), | 
 |     IsInTextSection(false) | 
 | {} | 
 |  | 
 | AsmPrinter::~AsmPrinter() { | 
 |   for (gcp_iterator I = GCMetadataPrinters.begin(), | 
 |                     E = GCMetadataPrinters.end(); I != E; ++I) | 
 |     delete I->second; | 
 | } | 
 |  | 
 | /// SwitchToTextSection - Switch to the specified text section of the executable | 
 | /// if we are not already in it! | 
 | /// | 
 | void AsmPrinter::SwitchToTextSection(const char *NewSection, | 
 |                                      const GlobalValue *GV) { | 
 |   std::string NS; | 
 |   if (GV && GV->hasSection()) | 
 |     NS = TAI->getSwitchToSectionDirective() + GV->getSection(); | 
 |   else | 
 |     NS = NewSection; | 
 |    | 
 |   // If we're already in this section, we're done. | 
 |   if (CurrentSection == NS) return; | 
 |  | 
 |   // Close the current section, if applicable. | 
 |   if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) | 
 |     O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; | 
 |  | 
 |   CurrentSection = NS; | 
 |  | 
 |   if (!CurrentSection.empty()) | 
 |     O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; | 
 |  | 
 |   IsInTextSection = true; | 
 | } | 
 |  | 
 | /// SwitchToDataSection - Switch to the specified data section of the executable | 
 | /// if we are not already in it! | 
 | /// | 
 | void AsmPrinter::SwitchToDataSection(const char *NewSection, | 
 |                                      const GlobalValue *GV) { | 
 |   std::string NS; | 
 |   if (GV && GV->hasSection()) | 
 |     NS = TAI->getSwitchToSectionDirective() + GV->getSection(); | 
 |   else | 
 |     NS = NewSection; | 
 |    | 
 |   // If we're already in this section, we're done. | 
 |   if (CurrentSection == NS) return; | 
 |  | 
 |   // Close the current section, if applicable. | 
 |   if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) | 
 |     O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; | 
 |  | 
 |   CurrentSection = NS; | 
 |    | 
 |   if (!CurrentSection.empty()) | 
 |     O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; | 
 |  | 
 |   IsInTextSection = false; | 
 | } | 
 |  | 
 | /// SwitchToSection - Switch to the specified section of the executable if we | 
 | /// are not already in it! | 
 | void AsmPrinter::SwitchToSection(const Section* NS) { | 
 |   const std::string& NewSection = NS->getName(); | 
 |  | 
 |   // If we're already in this section, we're done. | 
 |   if (CurrentSection == NewSection) return; | 
 |  | 
 |   // Close the current section, if applicable. | 
 |   if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) | 
 |     O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; | 
 |  | 
 |   // FIXME: Make CurrentSection a Section* in the future | 
 |   CurrentSection = NewSection; | 
 |   CurrentSection_ = NS; | 
 |  | 
 |   if (!CurrentSection.empty()) { | 
 |     // If section is named we need to switch into it via special '.section' | 
 |     // directive and also append funky flags. Otherwise - section name is just | 
 |     // some magic assembler directive. | 
 |     if (NS->isNamed()) | 
 |       O << TAI->getSwitchToSectionDirective() | 
 |         << CurrentSection | 
 |         << TAI->getSectionFlags(NS->getFlags()); | 
 |     else | 
 |       O << CurrentSection; | 
 |     O << TAI->getDataSectionStartSuffix() << '\n'; | 
 |   } | 
 |  | 
 |   IsInTextSection = (NS->getFlags() & SectionFlags::Code); | 
 | } | 
 |  | 
 | void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 |   AU.addRequired<GCModuleInfo>(); | 
 | } | 
 |  | 
 | bool AsmPrinter::doInitialization(Module &M) { | 
 |   Mang = new Mangler(M, TAI->getGlobalPrefix()); | 
 |    | 
 |   GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); | 
 |   assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
 |   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) | 
 |     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) | 
 |       MP->beginAssembly(O, *this, *TAI); | 
 |    | 
 |   if (!M.getModuleInlineAsm().empty()) | 
 |     O << TAI->getCommentString() << " Start of file scope inline assembly\n" | 
 |       << M.getModuleInlineAsm() | 
 |       << '\n' << TAI->getCommentString() | 
 |       << " End of file scope inline assembly\n"; | 
 |  | 
 |   SwitchToDataSection("");   // Reset back to no section. | 
 |    | 
 |   MMI = getAnalysisToUpdate<MachineModuleInfo>(); | 
 |   if (MMI) MMI->AnalyzeModule(M); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | bool AsmPrinter::doFinalization(Module &M) { | 
 |   if (TAI->getWeakRefDirective()) { | 
 |     if (!ExtWeakSymbols.empty()) | 
 |       SwitchToDataSection(""); | 
 |  | 
 |     for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), | 
 |          e = ExtWeakSymbols.end(); i != e; ++i) { | 
 |       const GlobalValue *GV = *i; | 
 |       std::string Name = Mang->getValueName(GV); | 
 |       O << TAI->getWeakRefDirective() << Name << '\n'; | 
 |     } | 
 |   } | 
 |  | 
 |   if (TAI->getSetDirective()) { | 
 |     if (!M.alias_empty()) | 
 |       SwitchToSection(TAI->getTextSection()); | 
 |  | 
 |     O << '\n'; | 
 |     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); | 
 |          I!=E; ++I) { | 
 |       std::string Name = Mang->getValueName(I); | 
 |       std::string Target; | 
 |  | 
 |       const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); | 
 |       Target = Mang->getValueName(GV); | 
 |  | 
 |       if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) | 
 |         O << "\t.globl\t" << Name << '\n'; | 
 |       else if (I->hasWeakLinkage()) | 
 |         O << TAI->getWeakRefDirective() << Name << '\n'; | 
 |       else if (!I->hasInternalLinkage()) | 
 |         assert(0 && "Invalid alias linkage"); | 
 |  | 
 |       printVisibility(Name, I->getVisibility()); | 
 |  | 
 |       O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; | 
 |  | 
 |       // If the aliasee has external weak linkage it can be referenced only by | 
 |       // alias itself. In this case it can be not in ExtWeakSymbols list. Emit | 
 |       // weak reference in such case. | 
 |       if (GV->hasExternalWeakLinkage()) { | 
 |         if (TAI->getWeakRefDirective()) | 
 |           O << TAI->getWeakRefDirective() << Target << '\n'; | 
 |         else | 
 |           O << "\t.globl\t" << Target << '\n'; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>(); | 
 |   assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
 |   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) | 
 |     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) | 
 |       MP->finishAssembly(O, *this, *TAI); | 
 |  | 
 |   // If we don't have any trampolines, then we don't require stack memory | 
 |   // to be executable. Some targets have a directive to declare this. | 
 |   Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); | 
 |   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) | 
 |     if (TAI->getNonexecutableStackDirective()) | 
 |       O << TAI->getNonexecutableStackDirective() << '\n'; | 
 |  | 
 |   delete Mang; Mang = 0; | 
 |   return false; | 
 | } | 
 |  | 
 | std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { | 
 |   assert(MF && "No machine function?"); | 
 |   std::string Name = MF->getFunction()->getName(); | 
 |   if (Name.empty()) | 
 |     Name = Mang->getValueName(MF->getFunction()); | 
 |   return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); | 
 | } | 
 |  | 
 | void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { | 
 |   // What's my mangled name? | 
 |   CurrentFnName = Mang->getValueName(MF.getFunction()); | 
 |   IncrementFunctionNumber(); | 
 | } | 
 |  | 
 | /// EmitConstantPool - Print to the current output stream assembly | 
 | /// representations of the constants in the constant pool MCP. This is | 
 | /// used to print out constants which have been "spilled to memory" by | 
 | /// the code generator. | 
 | /// | 
 | void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { | 
 |   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); | 
 |   if (CP.empty()) return; | 
 |  | 
 |   // Calculate sections for constant pool entries. We collect entries to go into | 
 |   // the same section together to reduce amount of section switch statements. | 
 |   typedef | 
 |     std::multimap<const Section*, | 
 |                   std::pair<MachineConstantPoolEntry, unsigned> > CPMap; | 
 |   CPMap  CPs; | 
 |   SmallPtrSet<const Section*, 5> Sections; | 
 |  | 
 |   for (unsigned i = 0, e = CP.size(); i != e; ++i) { | 
 |     MachineConstantPoolEntry CPE = CP[i]; | 
 |     const Section* S = TAI->SelectSectionForMachineConst(CPE.getType()); | 
 |     CPs.insert(std::make_pair(S, std::make_pair(CPE, i))); | 
 |     Sections.insert(S); | 
 |   } | 
 |  | 
 |   // Now print stuff into the calculated sections. | 
 |   for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(), | 
 |          ES = Sections.end(); IS != ES; ++IS) { | 
 |     SwitchToSection(*IS); | 
 |     EmitAlignment(MCP->getConstantPoolAlignment()); | 
 |  | 
 |     std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS); | 
 |     for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) { | 
 |       CPMap::iterator J = next(I); | 
 |       MachineConstantPoolEntry Entry = I->second.first; | 
 |       unsigned index = I->second.second; | 
 |  | 
 |       O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' | 
 |         << index << ":\t\t\t\t\t"; | 
 |     // O << TAI->getCommentString() << ' ' <<  | 
 |     //      WriteTypeSymbolic(O, CP[i].first.getType(), 0); | 
 |       O << '\n'; | 
 |       if (Entry.isMachineConstantPoolEntry()) | 
 |         EmitMachineConstantPoolValue(Entry.Val.MachineCPVal); | 
 |       else | 
 |         EmitGlobalConstant(Entry.Val.ConstVal); | 
 |  | 
 |       // Emit inter-object padding for alignment. | 
 |       if (J != E) { | 
 |         const Type *Ty = Entry.getType(); | 
 |         unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty); | 
 |         unsigned ValEnd = Entry.getOffset() + EntSize; | 
 |         EmitZeros(J->second.first.getOffset()-ValEnd); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// EmitJumpTableInfo - Print assembly representations of the jump tables used | 
 | /// by the current function to the current output stream.   | 
 | /// | 
 | void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, | 
 |                                    MachineFunction &MF) { | 
 |   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
 |   if (JT.empty()) return; | 
 |  | 
 |   bool IsPic = TM.getRelocationModel() == Reloc::PIC_; | 
 |    | 
 |   // Pick the directive to use to print the jump table entries, and switch to  | 
 |   // the appropriate section. | 
 |   TargetLowering *LoweringInfo = TM.getTargetLowering(); | 
 |  | 
 |   const char* JumpTableDataSection = TAI->getJumpTableDataSection(); | 
 |   const Function *F = MF.getFunction(); | 
 |   unsigned SectionFlags = TAI->SectionFlagsForGlobal(F); | 
 |   if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || | 
 |      !JumpTableDataSection || | 
 |       SectionFlags & SectionFlags::Linkonce) { | 
 |     // In PIC mode, we need to emit the jump table to the same section as the | 
 |     // function body itself, otherwise the label differences won't make sense. | 
 |     // We should also do if the section name is NULL or function is declared in | 
 |     // discardable section. | 
 |     SwitchToSection(TAI->SectionForGlobal(F)); | 
 |   } else { | 
 |     SwitchToDataSection(JumpTableDataSection); | 
 |   } | 
 |    | 
 |   EmitAlignment(Log2_32(MJTI->getAlignment())); | 
 |    | 
 |   for (unsigned i = 0, e = JT.size(); i != e; ++i) { | 
 |     const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; | 
 |      | 
 |     // If this jump table was deleted, ignore it.  | 
 |     if (JTBBs.empty()) continue; | 
 |  | 
 |     // For PIC codegen, if possible we want to use the SetDirective to reduce | 
 |     // the number of relocations the assembler will generate for the jump table. | 
 |     // Set directives are all printed before the jump table itself. | 
 |     SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; | 
 |     if (TAI->getSetDirective() && IsPic) | 
 |       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) | 
 |         if (EmittedSets.insert(JTBBs[ii])) | 
 |           printPICJumpTableSetLabel(i, JTBBs[ii]); | 
 |      | 
 |     // On some targets (e.g. darwin) we want to emit two consequtive labels | 
 |     // before each jump table.  The first label is never referenced, but tells | 
 |     // the assembler and linker the extents of the jump table object.  The | 
 |     // second label is actually referenced by the code. | 
 |     if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) | 
 |       O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; | 
 |      | 
 |     O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()  | 
 |       << '_' << i << ":\n"; | 
 |      | 
 |     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { | 
 |       printPICJumpTableEntry(MJTI, JTBBs[ii], i); | 
 |       O << '\n'; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, | 
 |                                         const MachineBasicBlock *MBB, | 
 |                                         unsigned uid)  const { | 
 |   bool IsPic = TM.getRelocationModel() == Reloc::PIC_; | 
 |    | 
 |   // Use JumpTableDirective otherwise honor the entry size from the jump table | 
 |   // info. | 
 |   const char *JTEntryDirective = TAI->getJumpTableDirective(); | 
 |   bool HadJTEntryDirective = JTEntryDirective != NULL; | 
 |   if (!HadJTEntryDirective) { | 
 |     JTEntryDirective = MJTI->getEntrySize() == 4 ? | 
 |       TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); | 
 |   } | 
 |  | 
 |   O << JTEntryDirective << ' '; | 
 |  | 
 |   // If we have emitted set directives for the jump table entries, print  | 
 |   // them rather than the entries themselves.  If we're emitting PIC, then | 
 |   // emit the table entries as differences between two text section labels. | 
 |   // If we're emitting non-PIC code, then emit the entries as direct | 
 |   // references to the target basic blocks. | 
 |   if (IsPic) { | 
 |     if (TAI->getSetDirective()) { | 
 |       O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() | 
 |         << '_' << uid << "_set_" << MBB->getNumber(); | 
 |     } else { | 
 |       printBasicBlockLabel(MBB, false, false, false); | 
 |       // If the arch uses custom Jump Table directives, don't calc relative to | 
 |       // JT | 
 |       if (!HadJTEntryDirective)  | 
 |         O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" | 
 |           << getFunctionNumber() << '_' << uid; | 
 |     } | 
 |   } else { | 
 |     printBasicBlockLabel(MBB, false, false, false); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// EmitSpecialLLVMGlobal - Check to see if the specified global is a | 
 | /// special global used by LLVM.  If so, emit it and return true, otherwise | 
 | /// do nothing and return false. | 
 | bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { | 
 |   if (GV->getName() == "llvm.used") { | 
 |     if (TAI->getUsedDirective() != 0)    // No need to emit this at all. | 
 |       EmitLLVMUsedList(GV->getInitializer()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Ignore debug and non-emitted data. | 
 |   if (GV->getSection() == "llvm.metadata") return true; | 
 |    | 
 |   if (!GV->hasAppendingLinkage()) return false; | 
 |  | 
 |   assert(GV->hasInitializer() && "Not a special LLVM global!"); | 
 |    | 
 |   const TargetData *TD = TM.getTargetData(); | 
 |   unsigned Align = Log2_32(TD->getPointerPrefAlignment()); | 
 |   if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { | 
 |     SwitchToDataSection(TAI->getStaticCtorsSection()); | 
 |     EmitAlignment(Align, 0); | 
 |     EmitXXStructorList(GV->getInitializer()); | 
 |     return true; | 
 |   }  | 
 |    | 
 |   if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { | 
 |     SwitchToDataSection(TAI->getStaticDtorsSection()); | 
 |     EmitAlignment(Align, 0); | 
 |     EmitXXStructorList(GV->getInitializer()); | 
 |     return true; | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// findGlobalValue - if CV is an expression equivalent to a single | 
 | /// global value, return that value. | 
 | const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) { | 
 |   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) | 
 |     return GV; | 
 |   else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { | 
 |     const TargetData *TD = TM.getTargetData(); | 
 |     unsigned Opcode = CE->getOpcode();     | 
 |     switch (Opcode) { | 
 |     case Instruction::GetElementPtr: { | 
 |       const Constant *ptrVal = CE->getOperand(0); | 
 |       SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); | 
 |       if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) | 
 |         return 0; | 
 |       return findGlobalValue(ptrVal); | 
 |     } | 
 |     case Instruction::BitCast: | 
 |       return findGlobalValue(CE->getOperand(0)); | 
 |     default: | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each | 
 | /// global in the specified llvm.used list for which emitUsedDirectiveFor | 
 | /// is true, as being used with this directive. | 
 |  | 
 | void AsmPrinter::EmitLLVMUsedList(Constant *List) { | 
 |   const char *Directive = TAI->getUsedDirective(); | 
 |  | 
 |   // Should be an array of 'sbyte*'. | 
 |   ConstantArray *InitList = dyn_cast<ConstantArray>(List); | 
 |   if (InitList == 0) return; | 
 |    | 
 |   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | 
 |     const GlobalValue *GV = findGlobalValue(InitList->getOperand(i)); | 
 |     if (TAI->emitUsedDirectiveFor(GV, Mang)) { | 
 |       O << Directive; | 
 |       EmitConstantValueOnly(InitList->getOperand(i)); | 
 |       O << '\n'; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the  | 
 | /// function pointers, ignoring the init priority. | 
 | void AsmPrinter::EmitXXStructorList(Constant *List) { | 
 |   // Should be an array of '{ int, void ()* }' structs.  The first value is the | 
 |   // init priority, which we ignore. | 
 |   if (!isa<ConstantArray>(List)) return; | 
 |   ConstantArray *InitList = cast<ConstantArray>(List); | 
 |   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) | 
 |     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ | 
 |       if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs. | 
 |  | 
 |       if (CS->getOperand(1)->isNullValue()) | 
 |         return;  // Found a null terminator, exit printing. | 
 |       // Emit the function pointer. | 
 |       EmitGlobalConstant(CS->getOperand(1)); | 
 |     } | 
 | } | 
 |  | 
 | /// getGlobalLinkName - Returns the asm/link name of of the specified | 
 | /// global variable.  Should be overridden by each target asm printer to | 
 | /// generate the appropriate value. | 
 | const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ | 
 |   std::string LinkName; | 
 |    | 
 |   if (isa<Function>(GV)) { | 
 |     LinkName += TAI->getFunctionAddrPrefix(); | 
 |     LinkName += Mang->getValueName(GV); | 
 |     LinkName += TAI->getFunctionAddrSuffix(); | 
 |   } else { | 
 |     LinkName += TAI->getGlobalVarAddrPrefix(); | 
 |     LinkName += Mang->getValueName(GV); | 
 |     LinkName += TAI->getGlobalVarAddrSuffix(); | 
 |   }   | 
 |    | 
 |   return LinkName; | 
 | } | 
 |  | 
 | /// EmitExternalGlobal - Emit the external reference to a global variable. | 
 | /// Should be overridden if an indirect reference should be used. | 
 | void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { | 
 |   O << getGlobalLinkName(GV); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | /// LEB 128 number encoding. | 
 |  | 
 | /// PrintULEB128 - Print a series of hexidecimal values (separated by commas) | 
 | /// representing an unsigned leb128 value. | 
 | void AsmPrinter::PrintULEB128(unsigned Value) const { | 
 |   char Buffer[20]; | 
 |   do { | 
 |     unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); | 
 |     Value >>= 7; | 
 |     if (Value) Byte |= 0x80; | 
 |     O << "0x" << utohex_buffer(Byte, Buffer+20); | 
 |     if (Value) O << ", "; | 
 |   } while (Value); | 
 | } | 
 |  | 
 | /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) | 
 | /// representing a signed leb128 value. | 
 | void AsmPrinter::PrintSLEB128(int Value) const { | 
 |   int Sign = Value >> (8 * sizeof(Value) - 1); | 
 |   bool IsMore; | 
 |   char Buffer[20]; | 
 |  | 
 |   do { | 
 |     unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); | 
 |     Value >>= 7; | 
 |     IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; | 
 |     if (IsMore) Byte |= 0x80; | 
 |     O << "0x" << utohex_buffer(Byte, Buffer+20); | 
 |     if (IsMore) O << ", "; | 
 |   } while (IsMore); | 
 | } | 
 |  | 
 | //===--------------------------------------------------------------------===// | 
 | // Emission and print routines | 
 | // | 
 |  | 
 | /// PrintHex - Print a value as a hexidecimal value. | 
 | /// | 
 | void AsmPrinter::PrintHex(int Value) const {  | 
 |   char Buffer[20]; | 
 |   O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); | 
 | } | 
 |  | 
 | /// EOL - Print a newline character to asm stream.  If a comment is present | 
 | /// then it will be printed first.  Comments should not contain '\n'. | 
 | void AsmPrinter::EOL() const { | 
 |   O << '\n'; | 
 | } | 
 |  | 
 | void AsmPrinter::EOL(const std::string &Comment) const { | 
 |   if (VerboseAsm && !Comment.empty()) { | 
 |     O << '\t' | 
 |       << TAI->getCommentString() | 
 |       << ' ' | 
 |       << Comment; | 
 |   } | 
 |   O << '\n'; | 
 | } | 
 |  | 
 | void AsmPrinter::EOL(const char* Comment) const { | 
 |   if (VerboseAsm && *Comment) { | 
 |     O << '\t' | 
 |       << TAI->getCommentString() | 
 |       << ' ' | 
 |       << Comment; | 
 |   } | 
 |   O << '\n'; | 
 | } | 
 |  | 
 | /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an | 
 | /// unsigned leb128 value. | 
 | void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { | 
 |   if (TAI->hasLEB128()) { | 
 |     O << "\t.uleb128\t" | 
 |       << Value; | 
 |   } else { | 
 |     O << TAI->getData8bitsDirective(); | 
 |     PrintULEB128(Value); | 
 |   } | 
 | } | 
 |  | 
 | /// EmitSLEB128Bytes - print an assembler byte data directive to compose a | 
 | /// signed leb128 value. | 
 | void AsmPrinter::EmitSLEB128Bytes(int Value) const { | 
 |   if (TAI->hasLEB128()) { | 
 |     O << "\t.sleb128\t" | 
 |       << Value; | 
 |   } else { | 
 |     O << TAI->getData8bitsDirective(); | 
 |     PrintSLEB128(Value); | 
 |   } | 
 | } | 
 |  | 
 | /// EmitInt8 - Emit a byte directive and value. | 
 | /// | 
 | void AsmPrinter::EmitInt8(int Value) const { | 
 |   O << TAI->getData8bitsDirective(); | 
 |   PrintHex(Value & 0xFF); | 
 | } | 
 |  | 
 | /// EmitInt16 - Emit a short directive and value. | 
 | /// | 
 | void AsmPrinter::EmitInt16(int Value) const { | 
 |   O << TAI->getData16bitsDirective(); | 
 |   PrintHex(Value & 0xFFFF); | 
 | } | 
 |  | 
 | /// EmitInt32 - Emit a long directive and value. | 
 | /// | 
 | void AsmPrinter::EmitInt32(int Value) const { | 
 |   O << TAI->getData32bitsDirective(); | 
 |   PrintHex(Value); | 
 | } | 
 |  | 
 | /// EmitInt64 - Emit a long long directive and value. | 
 | /// | 
 | void AsmPrinter::EmitInt64(uint64_t Value) const { | 
 |   if (TAI->getData64bitsDirective()) { | 
 |     O << TAI->getData64bitsDirective(); | 
 |     PrintHex(Value); | 
 |   } else { | 
 |     if (TM.getTargetData()->isBigEndian()) { | 
 |       EmitInt32(unsigned(Value >> 32)); O << '\n'; | 
 |       EmitInt32(unsigned(Value)); | 
 |     } else { | 
 |       EmitInt32(unsigned(Value)); O << '\n'; | 
 |       EmitInt32(unsigned(Value >> 32)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// toOctal - Convert the low order bits of X into an octal digit. | 
 | /// | 
 | static inline char toOctal(int X) { | 
 |   return (X&7)+'0'; | 
 | } | 
 |  | 
 | /// printStringChar - Print a char, escaped if necessary. | 
 | /// | 
 | static void printStringChar(raw_ostream &O, char C) { | 
 |   if (C == '"') { | 
 |     O << "\\\""; | 
 |   } else if (C == '\\') { | 
 |     O << "\\\\"; | 
 |   } else if (isprint(C)) { | 
 |     O << C; | 
 |   } else { | 
 |     switch(C) { | 
 |     case '\b': O << "\\b"; break; | 
 |     case '\f': O << "\\f"; break; | 
 |     case '\n': O << "\\n"; break; | 
 |     case '\r': O << "\\r"; break; | 
 |     case '\t': O << "\\t"; break; | 
 |     default: | 
 |       O << '\\'; | 
 |       O << toOctal(C >> 6); | 
 |       O << toOctal(C >> 3); | 
 |       O << toOctal(C >> 0); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// EmitString - Emit a string with quotes and a null terminator. | 
 | /// Special characters are emitted properly. | 
 | /// \literal (Eg. '\t') \endliteral | 
 | void AsmPrinter::EmitString(const std::string &String) const { | 
 |   const char* AscizDirective = TAI->getAscizDirective(); | 
 |   if (AscizDirective) | 
 |     O << AscizDirective; | 
 |   else | 
 |     O << TAI->getAsciiDirective(); | 
 |   O << '\"'; | 
 |   for (unsigned i = 0, N = String.size(); i < N; ++i) { | 
 |     unsigned char C = String[i]; | 
 |     printStringChar(O, C); | 
 |   } | 
 |   if (AscizDirective) | 
 |     O << '\"'; | 
 |   else | 
 |     O << "\\0\""; | 
 | } | 
 |  | 
 |  | 
 | /// EmitFile - Emit a .file directive. | 
 | void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { | 
 |   O << "\t.file\t" << Number << " \""; | 
 |   for (unsigned i = 0, N = Name.size(); i < N; ++i) { | 
 |     unsigned char C = Name[i]; | 
 |     printStringChar(O, C); | 
 |   } | 
 |   O << '\"'; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // EmitAlignment - Emit an alignment directive to the specified power of | 
 | // two boundary.  For example, if you pass in 3 here, you will get an 8 | 
 | // byte alignment.  If a global value is specified, and if that global has | 
 | // an explicit alignment requested, it will unconditionally override the | 
 | // alignment request.  However, if ForcedAlignBits is specified, this value | 
 | // has final say: the ultimate alignment will be the max of ForcedAlignBits | 
 | // and the alignment computed with NumBits and the global. | 
 | // | 
 | // The algorithm is: | 
 | //     Align = NumBits; | 
 | //     if (GV && GV->hasalignment) Align = GV->getalignment(); | 
 | //     Align = std::max(Align, ForcedAlignBits); | 
 | // | 
 | void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, | 
 |                                unsigned ForcedAlignBits, | 
 |                                bool UseFillExpr) const { | 
 |   if (GV && GV->getAlignment()) | 
 |     NumBits = Log2_32(GV->getAlignment()); | 
 |   NumBits = std::max(NumBits, ForcedAlignBits); | 
 |    | 
 |   if (NumBits == 0) return;   // No need to emit alignment. | 
 |   if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; | 
 |   O << TAI->getAlignDirective() << NumBits; | 
 |  | 
 |   unsigned FillValue = TAI->getTextAlignFillValue(); | 
 |   UseFillExpr &= IsInTextSection && FillValue; | 
 |   if (UseFillExpr) { | 
 |     O << ','; | 
 |     PrintHex(FillValue); | 
 |   } | 
 |   O << '\n'; | 
 | } | 
 |  | 
 |      | 
 | /// EmitZeros - Emit a block of zeros. | 
 | /// | 
 | void AsmPrinter::EmitZeros(uint64_t NumZeros) const { | 
 |   if (NumZeros) { | 
 |     if (TAI->getZeroDirective()) { | 
 |       O << TAI->getZeroDirective() << NumZeros; | 
 |       if (TAI->getZeroDirectiveSuffix()) | 
 |         O << TAI->getZeroDirectiveSuffix(); | 
 |       O << '\n'; | 
 |     } else { | 
 |       for (; NumZeros; --NumZeros) | 
 |         O << TAI->getData8bitsDirective() << "0\n"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Print out the specified constant, without a storage class.  Only the | 
 | // constants valid in constant expressions can occur here. | 
 | void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { | 
 |   if (CV->isNullValue() || isa<UndefValue>(CV)) | 
 |     O << '0'; | 
 |   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
 |     O << CI->getZExtValue(); | 
 |   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { | 
 |     // This is a constant address for a global variable or function. Use the | 
 |     // name of the variable or function as the address value, possibly | 
 |     // decorating it with GlobalVarAddrPrefix/Suffix or | 
 |     // FunctionAddrPrefix/Suffix (these all default to "" ) | 
 |     if (isa<Function>(GV)) { | 
 |       O << TAI->getFunctionAddrPrefix() | 
 |         << Mang->getValueName(GV) | 
 |         << TAI->getFunctionAddrSuffix(); | 
 |     } else { | 
 |       O << TAI->getGlobalVarAddrPrefix() | 
 |         << Mang->getValueName(GV) | 
 |         << TAI->getGlobalVarAddrSuffix(); | 
 |     } | 
 |   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { | 
 |     const TargetData *TD = TM.getTargetData(); | 
 |     unsigned Opcode = CE->getOpcode();     | 
 |     switch (Opcode) { | 
 |     case Instruction::GetElementPtr: { | 
 |       // generate a symbolic expression for the byte address | 
 |       const Constant *ptrVal = CE->getOperand(0); | 
 |       SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); | 
 |       if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], | 
 |                                                 idxVec.size())) { | 
 |         if (Offset) | 
 |           O << '('; | 
 |         EmitConstantValueOnly(ptrVal); | 
 |         if (Offset > 0) | 
 |           O << ") + " << Offset; | 
 |         else if (Offset < 0) | 
 |           O << ") - " << -Offset; | 
 |       } else { | 
 |         EmitConstantValueOnly(ptrVal); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Instruction::Trunc: | 
 |     case Instruction::ZExt: | 
 |     case Instruction::SExt: | 
 |     case Instruction::FPTrunc: | 
 |     case Instruction::FPExt: | 
 |     case Instruction::UIToFP: | 
 |     case Instruction::SIToFP: | 
 |     case Instruction::FPToUI: | 
 |     case Instruction::FPToSI: | 
 |       assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); | 
 |       break; | 
 |     case Instruction::BitCast: | 
 |       return EmitConstantValueOnly(CE->getOperand(0)); | 
 |  | 
 |     case Instruction::IntToPtr: { | 
 |       // Handle casts to pointers by changing them into casts to the appropriate | 
 |       // integer type.  This promotes constant folding and simplifies this code. | 
 |       Constant *Op = CE->getOperand(0); | 
 |       Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); | 
 |       return EmitConstantValueOnly(Op); | 
 |     } | 
 |        | 
 |        | 
 |     case Instruction::PtrToInt: { | 
 |       // Support only foldable casts to/from pointers that can be eliminated by | 
 |       // changing the pointer to the appropriately sized integer type. | 
 |       Constant *Op = CE->getOperand(0); | 
 |       const Type *Ty = CE->getType(); | 
 |  | 
 |       // We can emit the pointer value into this slot if the slot is an | 
 |       // integer slot greater or equal to the size of the pointer. | 
 |       if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) | 
 |         return EmitConstantValueOnly(Op); | 
 |  | 
 |       O << "(("; | 
 |       EmitConstantValueOnly(Op); | 
 |       APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty)); | 
 |        | 
 |       SmallString<40> S; | 
 |       ptrMask.toStringUnsigned(S); | 
 |       O << ") & " << S.c_str() << ')'; | 
 |       break; | 
 |     } | 
 |     case Instruction::Add: | 
 |     case Instruction::Sub: | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |       O << '('; | 
 |       EmitConstantValueOnly(CE->getOperand(0)); | 
 |       O << ')'; | 
 |       switch (Opcode) { | 
 |       case Instruction::Add: | 
 |        O << " + "; | 
 |        break; | 
 |       case Instruction::Sub: | 
 |        O << " - "; | 
 |        break; | 
 |       case Instruction::And: | 
 |        O << " & "; | 
 |        break; | 
 |       case Instruction::Or: | 
 |        O << " | "; | 
 |        break; | 
 |       case Instruction::Xor: | 
 |        O << " ^ "; | 
 |        break; | 
 |       default: | 
 |        break; | 
 |       } | 
 |       O << '('; | 
 |       EmitConstantValueOnly(CE->getOperand(1)); | 
 |       O << ')'; | 
 |       break; | 
 |     default: | 
 |       assert(0 && "Unsupported operator!"); | 
 |     } | 
 |   } else { | 
 |     assert(0 && "Unknown constant value!"); | 
 |   } | 
 | } | 
 |  | 
 | /// printAsCString - Print the specified array as a C compatible string, only if | 
 | /// the predicate isString is true. | 
 | /// | 
 | static void printAsCString(raw_ostream &O, const ConstantArray *CVA, | 
 |                            unsigned LastElt) { | 
 |   assert(CVA->isString() && "Array is not string compatible!"); | 
 |  | 
 |   O << '\"'; | 
 |   for (unsigned i = 0; i != LastElt; ++i) { | 
 |     unsigned char C = | 
 |         (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); | 
 |     printStringChar(O, C); | 
 |   } | 
 |   O << '\"'; | 
 | } | 
 |  | 
 | /// EmitString - Emit a zero-byte-terminated string constant. | 
 | /// | 
 | void AsmPrinter::EmitString(const ConstantArray *CVA) const { | 
 |   unsigned NumElts = CVA->getNumOperands(); | 
 |   if (TAI->getAscizDirective() && NumElts &&  | 
 |       cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { | 
 |     O << TAI->getAscizDirective(); | 
 |     printAsCString(O, CVA, NumElts-1); | 
 |   } else { | 
 |     O << TAI->getAsciiDirective(); | 
 |     printAsCString(O, CVA, NumElts); | 
 |   } | 
 |   O << '\n'; | 
 | } | 
 |  | 
 | /// EmitGlobalConstant - Print a general LLVM constant to the .s file. | 
 | void AsmPrinter::EmitGlobalConstant(const Constant *CV) { | 
 |   const TargetData *TD = TM.getTargetData(); | 
 |   unsigned Size = TD->getABITypeSize(CV->getType()); | 
 |  | 
 |   if (CV->isNullValue() || isa<UndefValue>(CV)) { | 
 |     EmitZeros(Size); | 
 |     return; | 
 |   } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { | 
 |     if (CVA->isString()) { | 
 |       EmitString(CVA); | 
 |     } else { // Not a string.  Print the values in successive locations | 
 |       for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) | 
 |         EmitGlobalConstant(CVA->getOperand(i)); | 
 |     } | 
 |     return; | 
 |   } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { | 
 |     // Print the fields in successive locations. Pad to align if needed! | 
 |     const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); | 
 |     uint64_t sizeSoFar = 0; | 
 |     for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { | 
 |       const Constant* field = CVS->getOperand(i); | 
 |  | 
 |       // Check if padding is needed and insert one or more 0s. | 
 |       uint64_t fieldSize = TD->getABITypeSize(field->getType()); | 
 |       uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) | 
 |                           - cvsLayout->getElementOffset(i)) - fieldSize; | 
 |       sizeSoFar += fieldSize + padSize; | 
 |  | 
 |       // Now print the actual field value. | 
 |       EmitGlobalConstant(field); | 
 |  | 
 |       // Insert padding - this may include padding to increase the size of the | 
 |       // current field up to the ABI size (if the struct is not packed) as well | 
 |       // as padding to ensure that the next field starts at the right offset. | 
 |       EmitZeros(padSize); | 
 |     } | 
 |     assert(sizeSoFar == cvsLayout->getSizeInBytes() && | 
 |            "Layout of constant struct may be incorrect!"); | 
 |     return; | 
 |   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { | 
 |     // FP Constants are printed as integer constants to avoid losing | 
 |     // precision... | 
 |     if (CFP->getType() == Type::DoubleTy) { | 
 |       double Val = CFP->getValueAPF().convertToDouble();  // for comment only | 
 |       uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
 |       if (TAI->getData64bitsDirective()) | 
 |         O << TAI->getData64bitsDirective() << i << '\t' | 
 |           << TAI->getCommentString() << " double value: " << Val << '\n'; | 
 |       else if (TD->isBigEndian()) { | 
 |         O << TAI->getData32bitsDirective() << unsigned(i >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " double most significant word " << Val << '\n'; | 
 |         O << TAI->getData32bitsDirective() << unsigned(i) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " double least significant word " << Val << '\n'; | 
 |       } else { | 
 |         O << TAI->getData32bitsDirective() << unsigned(i) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " double least significant word " << Val << '\n'; | 
 |         O << TAI->getData32bitsDirective() << unsigned(i >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " double most significant word " << Val << '\n'; | 
 |       } | 
 |       return; | 
 |     } else if (CFP->getType() == Type::FloatTy) { | 
 |       float Val = CFP->getValueAPF().convertToFloat();  // for comment only | 
 |       O << TAI->getData32bitsDirective() | 
 |         << CFP->getValueAPF().bitcastToAPInt().getZExtValue() | 
 |         << '\t' << TAI->getCommentString() << " float " << Val << '\n'; | 
 |       return; | 
 |     } else if (CFP->getType() == Type::X86_FP80Ty) { | 
 |       // all long double variants are printed as hex | 
 |       // api needed to prevent premature destruction | 
 |       APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
 |       const uint64_t *p = api.getRawData(); | 
 |       // Convert to double so we can print the approximate val as a comment. | 
 |       APFloat DoubleVal = CFP->getValueAPF(); | 
 |       bool ignored; | 
 |       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, | 
 |                         &ignored); | 
 |       if (TD->isBigEndian()) { | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double most significant halfword of ~" | 
 |           << DoubleVal.convertToDouble() << '\n'; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[1]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double least significant halfword\n"; | 
 |        } else { | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[1]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double least significant halfword of ~" | 
 |           << DoubleVal.convertToDouble() << '\n'; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next halfword\n"; | 
 |         O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double most significant halfword\n"; | 
 |       } | 
 |       EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); | 
 |       return; | 
 |     } else if (CFP->getType() == Type::PPC_FP128Ty) { | 
 |       // all long double variants are printed as hex | 
 |       // api needed to prevent premature destruction | 
 |       APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
 |       const uint64_t *p = api.getRawData(); | 
 |       if (TD->isBigEndian()) { | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double most significant word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[0]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[1]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double least significant word\n"; | 
 |        } else { | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[1]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double least significant word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[0]) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double next word\n"; | 
 |         O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) | 
 |           << '\t' << TAI->getCommentString() | 
 |           << " long double most significant word\n"; | 
 |       } | 
 |       return; | 
 |     } else assert(0 && "Floating point constant type not handled"); | 
 |   } else if (CV->getType()->isInteger() && | 
 |              cast<IntegerType>(CV->getType())->getBitWidth() >= 64) { | 
 |     if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
 |       unsigned BitWidth = CI->getBitWidth(); | 
 |       assert(isPowerOf2_32(BitWidth) && | 
 |              "Non-power-of-2-sized integers not handled!"); | 
 |  | 
 |       // We don't expect assemblers to support integer data directives | 
 |       // for more than 64 bits, so we emit the data in at most 64-bit | 
 |       // quantities at a time. | 
 |       const uint64_t *RawData = CI->getValue().getRawData(); | 
 |       for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { | 
 |         uint64_t Val; | 
 |         if (TD->isBigEndian()) | 
 |           Val = RawData[e - i - 1]; | 
 |         else | 
 |           Val = RawData[i]; | 
 |  | 
 |         if (TAI->getData64bitsDirective()) | 
 |           O << TAI->getData64bitsDirective() << Val << '\n'; | 
 |         else if (TD->isBigEndian()) { | 
 |           O << TAI->getData32bitsDirective() << unsigned(Val >> 32) | 
 |             << '\t' << TAI->getCommentString() | 
 |             << " Double-word most significant word " << Val << '\n'; | 
 |           O << TAI->getData32bitsDirective() << unsigned(Val) | 
 |             << '\t' << TAI->getCommentString() | 
 |             << " Double-word least significant word " << Val << '\n'; | 
 |         } else { | 
 |           O << TAI->getData32bitsDirective() << unsigned(Val) | 
 |             << '\t' << TAI->getCommentString() | 
 |             << " Double-word least significant word " << Val << '\n'; | 
 |           O << TAI->getData32bitsDirective() << unsigned(Val >> 32) | 
 |             << '\t' << TAI->getCommentString() | 
 |             << " Double-word most significant word " << Val << '\n'; | 
 |         } | 
 |       } | 
 |       return; | 
 |     } | 
 |   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { | 
 |     const VectorType *PTy = CP->getType(); | 
 |      | 
 |     for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) | 
 |       EmitGlobalConstant(CP->getOperand(I)); | 
 |      | 
 |     return; | 
 |   } | 
 |  | 
 |   const Type *type = CV->getType(); | 
 |   printDataDirective(type); | 
 |   EmitConstantValueOnly(CV); | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
 |     SmallString<40> S; | 
 |     CI->getValue().toStringUnsigned(S, 16); | 
 |     O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); | 
 |   } | 
 |   O << '\n'; | 
 | } | 
 |  | 
 | void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { | 
 |   // Target doesn't support this yet! | 
 |   abort(); | 
 | } | 
 |  | 
 | /// PrintSpecial - Print information related to the specified machine instr | 
 | /// that is independent of the operand, and may be independent of the instr | 
 | /// itself.  This can be useful for portably encoding the comment character | 
 | /// or other bits of target-specific knowledge into the asmstrings.  The | 
 | /// syntax used is ${:comment}.  Targets can override this to add support | 
 | /// for their own strange codes. | 
 | void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { | 
 |   if (!strcmp(Code, "private")) { | 
 |     O << TAI->getPrivateGlobalPrefix(); | 
 |   } else if (!strcmp(Code, "comment")) { | 
 |     O << TAI->getCommentString(); | 
 |   } else if (!strcmp(Code, "uid")) { | 
 |     // Assign a unique ID to this machine instruction. | 
 |     static const MachineInstr *LastMI = 0; | 
 |     static const Function *F = 0; | 
 |     static unsigned Counter = 0U-1; | 
 |  | 
 |     // Comparing the address of MI isn't sufficient, because machineinstrs may | 
 |     // be allocated to the same address across functions. | 
 |     const Function *ThisF = MI->getParent()->getParent()->getFunction(); | 
 |      | 
 |     // If this is a new machine instruction, bump the counter. | 
 |     if (LastMI != MI || F != ThisF) { | 
 |       ++Counter; | 
 |       LastMI = MI; | 
 |       F = ThisF; | 
 |     } | 
 |     O << Counter; | 
 |   } else { | 
 |     cerr << "Unknown special formatter '" << Code | 
 |          << "' for machine instr: " << *MI; | 
 |     exit(1); | 
 |   }     | 
 | } | 
 |  | 
 |  | 
 | /// printInlineAsm - This method formats and prints the specified machine | 
 | /// instruction that is an inline asm. | 
 | void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { | 
 |   unsigned NumOperands = MI->getNumOperands(); | 
 |    | 
 |   // Count the number of register definitions. | 
 |   unsigned NumDefs = 0; | 
 |   for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); | 
 |        ++NumDefs) | 
 |     assert(NumDefs != NumOperands-1 && "No asm string?"); | 
 |    | 
 |   assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); | 
 |  | 
 |   // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. | 
 |   const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); | 
 |  | 
 |   // If this asmstr is empty, just print the #APP/#NOAPP markers. | 
 |   // These are useful to see where empty asm's wound up. | 
 |   if (AsmStr[0] == 0) { | 
 |     O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; | 
 |     return; | 
 |   } | 
 |    | 
 |   O << TAI->getInlineAsmStart() << "\n\t"; | 
 |  | 
 |   // The variant of the current asmprinter. | 
 |   int AsmPrinterVariant = TAI->getAssemblerDialect(); | 
 |  | 
 |   int CurVariant = -1;            // The number of the {.|.|.} region we are in. | 
 |   const char *LastEmitted = AsmStr; // One past the last character emitted. | 
 |    | 
 |   while (*LastEmitted) { | 
 |     switch (*LastEmitted) { | 
 |     default: { | 
 |       // Not a special case, emit the string section literally. | 
 |       const char *LiteralEnd = LastEmitted+1; | 
 |       while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && | 
 |              *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') | 
 |         ++LiteralEnd; | 
 |       if (CurVariant == -1 || CurVariant == AsmPrinterVariant) | 
 |         O.write(LastEmitted, LiteralEnd-LastEmitted); | 
 |       LastEmitted = LiteralEnd; | 
 |       break; | 
 |     } | 
 |     case '\n': | 
 |       ++LastEmitted;   // Consume newline character. | 
 |       O << '\n';       // Indent code with newline. | 
 |       break; | 
 |     case '$': { | 
 |       ++LastEmitted;   // Consume '$' character. | 
 |       bool Done = true; | 
 |  | 
 |       // Handle escapes. | 
 |       switch (*LastEmitted) { | 
 |       default: Done = false; break; | 
 |       case '$':     // $$ -> $ | 
 |         if (CurVariant == -1 || CurVariant == AsmPrinterVariant) | 
 |           O << '$'; | 
 |         ++LastEmitted;  // Consume second '$' character. | 
 |         break; | 
 |       case '(':             // $( -> same as GCC's { character. | 
 |         ++LastEmitted;      // Consume '(' character. | 
 |         if (CurVariant != -1) { | 
 |           cerr << "Nested variants found in inline asm string: '" | 
 |                << AsmStr << "'\n"; | 
 |           exit(1); | 
 |         } | 
 |         CurVariant = 0;     // We're in the first variant now. | 
 |         break; | 
 |       case '|': | 
 |         ++LastEmitted;  // consume '|' character. | 
 |         if (CurVariant == -1) | 
 |           O << '|';       // this is gcc's behavior for | outside a variant | 
 |         else | 
 |           ++CurVariant;   // We're in the next variant. | 
 |         break; | 
 |       case ')':         // $) -> same as GCC's } char. | 
 |         ++LastEmitted;  // consume ')' character. | 
 |         if (CurVariant == -1) | 
 |           O << '}';     // this is gcc's behavior for } outside a variant | 
 |         else  | 
 |           CurVariant = -1; | 
 |         break; | 
 |       } | 
 |       if (Done) break; | 
 |        | 
 |       bool HasCurlyBraces = false; | 
 |       if (*LastEmitted == '{') {     // ${variable} | 
 |         ++LastEmitted;               // Consume '{' character. | 
 |         HasCurlyBraces = true; | 
 |       } | 
 |        | 
 |       const char *IDStart = LastEmitted; | 
 |       char *IDEnd; | 
 |       errno = 0; | 
 |       long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. | 
 |       if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { | 
 |         cerr << "Bad $ operand number in inline asm string: '"  | 
 |              << AsmStr << "'\n"; | 
 |         exit(1); | 
 |       } | 
 |       LastEmitted = IDEnd; | 
 |        | 
 |       char Modifier[2] = { 0, 0 }; | 
 |        | 
 |       if (HasCurlyBraces) { | 
 |         // If we have curly braces, check for a modifier character.  This | 
 |         // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. | 
 |         if (*LastEmitted == ':') { | 
 |           ++LastEmitted;    // Consume ':' character. | 
 |           if (*LastEmitted == 0) { | 
 |             cerr << "Bad ${:} expression in inline asm string: '"  | 
 |                  << AsmStr << "'\n"; | 
 |             exit(1); | 
 |           } | 
 |            | 
 |           Modifier[0] = *LastEmitted; | 
 |           ++LastEmitted;    // Consume modifier character. | 
 |         } | 
 |          | 
 |         if (*LastEmitted != '}') { | 
 |           cerr << "Bad ${} expression in inline asm string: '"  | 
 |                << AsmStr << "'\n"; | 
 |           exit(1); | 
 |         } | 
 |         ++LastEmitted;    // Consume '}' character. | 
 |       } | 
 |        | 
 |       if ((unsigned)Val >= NumOperands-1) { | 
 |         cerr << "Invalid $ operand number in inline asm string: '"  | 
 |              << AsmStr << "'\n"; | 
 |         exit(1); | 
 |       } | 
 |        | 
 |       // Okay, we finally have a value number.  Ask the target to print this | 
 |       // operand! | 
 |       if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { | 
 |         unsigned OpNo = 1; | 
 |  | 
 |         bool Error = false; | 
 |  | 
 |         // Scan to find the machine operand number for the operand. | 
 |         for (; Val; --Val) { | 
 |           if (OpNo >= MI->getNumOperands()) break; | 
 |           unsigned OpFlags = MI->getOperand(OpNo).getImm(); | 
 |           OpNo += (OpFlags >> 3) + 1; | 
 |         } | 
 |  | 
 |         if (OpNo >= MI->getNumOperands()) { | 
 |           Error = true; | 
 |         } else { | 
 |           unsigned OpFlags = MI->getOperand(OpNo).getImm(); | 
 |           ++OpNo;  // Skip over the ID number. | 
 |  | 
 |           if (Modifier[0]=='l')  // labels are target independent | 
 |             printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),  | 
 |                                  false, false, false); | 
 |           else { | 
 |             AsmPrinter *AP = const_cast<AsmPrinter*>(this); | 
 |             if ((OpFlags & 7) == 4) { | 
 |               Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, | 
 |                                                 Modifier[0] ? Modifier : 0); | 
 |             } else { | 
 |               Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, | 
 |                                           Modifier[0] ? Modifier : 0); | 
 |             } | 
 |           } | 
 |         } | 
 |         if (Error) { | 
 |           cerr << "Invalid operand found in inline asm: '" | 
 |                << AsmStr << "'\n"; | 
 |           MI->dump(); | 
 |           exit(1); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |   O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; | 
 | } | 
 |  | 
 | /// printImplicitDef - This method prints the specified machine instruction | 
 | /// that is an implicit def. | 
 | void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { | 
 |   O << '\t' << TAI->getCommentString() << " implicit-def: " | 
 |     << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; | 
 | } | 
 |  | 
 | /// printLabel - This method prints a local label used by debug and | 
 | /// exception handling tables. | 
 | void AsmPrinter::printLabel(const MachineInstr *MI) const { | 
 |   printLabel(MI->getOperand(0).getImm()); | 
 | } | 
 |  | 
 | void AsmPrinter::printLabel(unsigned Id) const { | 
 |   O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; | 
 | } | 
 |  | 
 | /// printDeclare - This method prints a local variable declaration used by | 
 | /// debug tables. | 
 | /// FIXME: It doesn't really print anything rather it inserts a DebugVariable | 
 | /// entry into dwarf table. | 
 | void AsmPrinter::printDeclare(const MachineInstr *MI) const { | 
 |   int FI = MI->getOperand(0).getIndex(); | 
 |   GlobalValue *GV = MI->getOperand(1).getGlobal(); | 
 |   MMI->RecordVariable(GV, FI); | 
 | } | 
 |  | 
 | /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM | 
 | /// instruction, using the specified assembler variant.  Targets should | 
 | /// overried this to format as appropriate. | 
 | bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, | 
 |                                  unsigned AsmVariant, const char *ExtraCode) { | 
 |   // Target doesn't support this yet! | 
 |   return true; | 
 | } | 
 |  | 
 | bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, | 
 |                                        unsigned AsmVariant, | 
 |                                        const char *ExtraCode) { | 
 |   // Target doesn't support this yet! | 
 |   return true; | 
 | } | 
 |  | 
 | /// printBasicBlockLabel - This method prints the label for the specified | 
 | /// MachineBasicBlock | 
 | void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, | 
 |                                       bool printAlign,  | 
 |                                       bool printColon, | 
 |                                       bool printComment) const { | 
 |   if (printAlign) { | 
 |     unsigned Align = MBB->getAlignment(); | 
 |     if (Align) | 
 |       EmitAlignment(Log2_32(Align)); | 
 |   } | 
 |  | 
 |   O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' | 
 |     << MBB->getNumber(); | 
 |   if (printColon) | 
 |     O << ':'; | 
 |   if (printComment && MBB->getBasicBlock()) | 
 |     O << '\t' << TAI->getCommentString() << ' ' | 
 |       << MBB->getBasicBlock()->getNameStart(); | 
 | } | 
 |  | 
 | /// printPICJumpTableSetLabel - This method prints a set label for the | 
 | /// specified MachineBasicBlock for a jumptable entry. | 
 | void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,  | 
 |                                            const MachineBasicBlock *MBB) const { | 
 |   if (!TAI->getSetDirective()) | 
 |     return; | 
 |    | 
 |   O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() | 
 |     << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; | 
 |   printBasicBlockLabel(MBB, false, false, false); | 
 |   O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()  | 
 |     << '_' << uid << '\n'; | 
 | } | 
 |  | 
 | void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, | 
 |                                            const MachineBasicBlock *MBB) const { | 
 |   if (!TAI->getSetDirective()) | 
 |     return; | 
 |    | 
 |   O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() | 
 |     << getFunctionNumber() << '_' << uid << '_' << uid2 | 
 |     << "_set_" << MBB->getNumber() << ','; | 
 |   printBasicBlockLabel(MBB, false, false, false); | 
 |   O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()  | 
 |     << '_' << uid << '_' << uid2 << '\n'; | 
 | } | 
 |  | 
 | /// printDataDirective - This method prints the asm directive for the | 
 | /// specified type. | 
 | void AsmPrinter::printDataDirective(const Type *type) { | 
 |   const TargetData *TD = TM.getTargetData(); | 
 |   switch (type->getTypeID()) { | 
 |   case Type::IntegerTyID: { | 
 |     unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); | 
 |     if (BitWidth <= 8) | 
 |       O << TAI->getData8bitsDirective(); | 
 |     else if (BitWidth <= 16) | 
 |       O << TAI->getData16bitsDirective(); | 
 |     else if (BitWidth <= 32) | 
 |       O << TAI->getData32bitsDirective(); | 
 |     else if (BitWidth <= 64) { | 
 |       assert(TAI->getData64bitsDirective() && | 
 |              "Target cannot handle 64-bit constant exprs!"); | 
 |       O << TAI->getData64bitsDirective(); | 
 |     } else { | 
 |       assert(0 && "Target cannot handle given data directive width!"); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Type::PointerTyID: | 
 |     if (TD->getPointerSize() == 8) { | 
 |       assert(TAI->getData64bitsDirective() && | 
 |              "Target cannot handle 64-bit pointer exprs!"); | 
 |       O << TAI->getData64bitsDirective(); | 
 |     } else { | 
 |       O << TAI->getData32bitsDirective(); | 
 |     } | 
 |     break; | 
 |   case Type::FloatTyID: case Type::DoubleTyID: | 
 |   case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: | 
 |     assert (0 && "Should have already output floating point constant."); | 
 |   default: | 
 |     assert (0 && "Can't handle printing this type of thing"); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix, | 
 |                                    const char *Prefix) { | 
 |   if (Name[0]=='\"') | 
 |     O << '\"'; | 
 |   O << TAI->getPrivateGlobalPrefix(); | 
 |   if (Prefix) O << Prefix; | 
 |   if (Name[0]=='\"') | 
 |     O << '\"'; | 
 |   if (Name[0]=='\"') | 
 |     O << Name[1]; | 
 |   else | 
 |     O << Name; | 
 |   O << Suffix; | 
 |   if (Name[0]=='\"') | 
 |     O << '\"'; | 
 | } | 
 |  | 
 | void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) { | 
 |   printSuffixedName(Name.c_str(), Suffix); | 
 | } | 
 |  | 
 | void AsmPrinter::printVisibility(const std::string& Name, | 
 |                                  unsigned Visibility) const { | 
 |   if (Visibility == GlobalValue::HiddenVisibility) { | 
 |     if (const char *Directive = TAI->getHiddenDirective()) | 
 |       O << Directive << Name << '\n'; | 
 |   } else if (Visibility == GlobalValue::ProtectedVisibility) { | 
 |     if (const char *Directive = TAI->getProtectedDirective()) | 
 |       O << Directive << Name << '\n'; | 
 |   } | 
 | } | 
 |  | 
 | GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { | 
 |   if (!S->usesMetadata()) | 
 |     return 0; | 
 |    | 
 |   gcp_iterator GCPI = GCMetadataPrinters.find(S); | 
 |   if (GCPI != GCMetadataPrinters.end()) | 
 |     return GCPI->second; | 
 |    | 
 |   const char *Name = S->getName().c_str(); | 
 |    | 
 |   for (GCMetadataPrinterRegistry::iterator | 
 |          I = GCMetadataPrinterRegistry::begin(), | 
 |          E = GCMetadataPrinterRegistry::end(); I != E; ++I) | 
 |     if (strcmp(Name, I->getName()) == 0) { | 
 |       GCMetadataPrinter *GMP = I->instantiate(); | 
 |       GMP->S = S; | 
 |       GCMetadataPrinters.insert(std::make_pair(S, GMP)); | 
 |       return GMP; | 
 |     } | 
 |    | 
 |   cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; | 
 |   abort(); | 
 | } |