| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Module.h" |
| #include "llvm/Type.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/System/Memory.h" |
| #include <algorithm> |
| #include <iostream> |
| #include <list> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumBytes("jit", "Number of bytes of machine code compiled"); |
| Statistic<> NumRelos("jit", "Number of relocations applied"); |
| JIT *TheJIT = 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITMemoryManager code. |
| // |
| namespace { |
| /// JITMemoryManager - Manage memory for the JIT code generation in a logical, |
| /// sane way. This splits a large block of MAP_NORESERVE'd memory into two |
| /// sections, one for function stubs, one for the functions themselves. We |
| /// have to do this because we may need to emit a function stub while in the |
| /// middle of emitting a function, and we don't know how large the function we |
| /// are emitting is. This never bothers to release the memory, because when |
| /// we are ready to destroy the JIT, the program exits. |
| class JITMemoryManager { |
| std::list<sys::MemoryBlock> Blocks; // List of blocks allocated by the JIT |
| unsigned char *FunctionBase; // Start of the function body area |
| unsigned char *GlobalBase; // Start of the Global area |
| unsigned char *ConstantBase; // Memory allocated for constant pools |
| unsigned char *CurStubPtr, *CurFunctionPtr, *CurConstantPtr, *CurGlobalPtr; |
| unsigned char *GOTBase; // Target Specific reserved memory |
| |
| // centralize memory block allocation |
| sys::MemoryBlock getNewMemoryBlock(unsigned size); |
| public: |
| JITMemoryManager(bool useGOT); |
| ~JITMemoryManager(); |
| |
| inline unsigned char *allocateStub(unsigned StubSize); |
| inline unsigned char *allocateConstant(unsigned ConstantSize, |
| unsigned Alignment); |
| inline unsigned char* allocateGlobal(unsigned Size, |
| unsigned Alignment); |
| inline unsigned char *startFunctionBody(); |
| inline void endFunctionBody(unsigned char *FunctionEnd); |
| |
| unsigned char *getGOTBase() const { |
| return GOTBase; |
| } |
| bool isManagingGOT() const { |
| return GOTBase != NULL; |
| } |
| }; |
| } |
| |
| JITMemoryManager::JITMemoryManager(bool useGOT) { |
| // Allocate a 16M block of memory for functions |
| sys::MemoryBlock FunBlock = getNewMemoryBlock(16 << 20); |
| // Allocate a 1M block of memory for Constants |
| sys::MemoryBlock ConstBlock = getNewMemoryBlock(1 << 20); |
| // Allocate a 1M Block of memory for Globals |
| sys::MemoryBlock GVBlock = getNewMemoryBlock(1 << 20); |
| |
| Blocks.push_front(FunBlock); |
| Blocks.push_front(ConstBlock); |
| Blocks.push_front(GVBlock); |
| |
| FunctionBase = reinterpret_cast<unsigned char*>(FunBlock.base()); |
| ConstantBase = reinterpret_cast<unsigned char*>(ConstBlock.base()); |
| GlobalBase = reinterpret_cast<unsigned char*>(GVBlock.base()); |
| |
| // Allocate stubs backwards from the base, allocate functions forward |
| // from the base. |
| CurStubPtr = CurFunctionPtr = FunctionBase + 512*1024;// Use 512k for stubs |
| |
| CurConstantPtr = ConstantBase + ConstBlock.size(); |
| CurGlobalPtr = GlobalBase + GVBlock.size(); |
| |
| //Allocate the GOT just like a global array |
| GOTBase = NULL; |
| if (useGOT) |
| GOTBase = allocateGlobal(sizeof(void*) * 8192, 8); |
| } |
| |
| JITMemoryManager::~JITMemoryManager() { |
| for (std::list<sys::MemoryBlock>::iterator ib = Blocks.begin(), |
| ie = Blocks.end(); ib != ie; ++ib) |
| sys::Memory::ReleaseRWX(*ib); |
| Blocks.clear(); |
| } |
| |
| unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) { |
| CurStubPtr -= StubSize; |
| if (CurStubPtr < FunctionBase) { |
| // FIXME: allocate a new block |
| std::cerr << "JIT ran out of memory for function stubs!\n"; |
| abort(); |
| } |
| return CurStubPtr; |
| } |
| |
| unsigned char *JITMemoryManager::allocateConstant(unsigned ConstantSize, |
| unsigned Alignment) { |
| // Reserve space and align pointer. |
| CurConstantPtr -= ConstantSize; |
| CurConstantPtr = |
| (unsigned char *)((intptr_t)CurConstantPtr & ~((intptr_t)Alignment - 1)); |
| |
| if (CurConstantPtr < ConstantBase) { |
| //Either allocate another MB or 2xConstantSize |
| sys::MemoryBlock ConstBlock = getNewMemoryBlock(2 * ConstantSize); |
| ConstantBase = reinterpret_cast<unsigned char*>(ConstBlock.base()); |
| CurConstantPtr = ConstantBase + ConstBlock.size(); |
| return allocateConstant(ConstantSize, Alignment); |
| } |
| return CurConstantPtr; |
| } |
| |
| unsigned char *JITMemoryManager::allocateGlobal(unsigned Size, |
| unsigned Alignment) { |
| // Reserve space and align pointer. |
| CurGlobalPtr -= Size; |
| CurGlobalPtr = |
| (unsigned char *)((intptr_t)CurGlobalPtr & ~((intptr_t)Alignment - 1)); |
| |
| if (CurGlobalPtr < GlobalBase) { |
| //Either allocate another MB or 2xSize |
| sys::MemoryBlock GVBlock = getNewMemoryBlock(2 * Size); |
| GlobalBase = reinterpret_cast<unsigned char*>(GVBlock.base()); |
| CurGlobalPtr = GlobalBase + GVBlock.size(); |
| return allocateGlobal(Size, Alignment); |
| } |
| return CurGlobalPtr; |
| } |
| |
| unsigned char *JITMemoryManager::startFunctionBody() { |
| // Round up to an even multiple of 8 bytes, this should eventually be target |
| // specific. |
| return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7); |
| } |
| |
| void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) { |
| assert(FunctionEnd > CurFunctionPtr); |
| CurFunctionPtr = FunctionEnd; |
| } |
| |
| sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) { |
| const sys::MemoryBlock* BOld = 0; |
| if (Blocks.size()) |
| BOld = &Blocks.front(); |
| //never allocate less than 1 MB |
| sys::MemoryBlock B; |
| try { |
| B = sys::Memory::AllocateRWX(std::max(((unsigned)1 << 20), size), BOld); |
| } catch (std::string& err) { |
| std::cerr << "Allocation failed when allocating new memory in the JIT\n"; |
| std::cerr << err << "\n"; |
| abort(); |
| } |
| Blocks.push_front(B); |
| return B; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| class JITResolverState { |
| private: |
| /// FunctionToStubMap - Keep track of the stub created for a particular |
| /// function so that we can reuse them if necessary. |
| std::map<Function*, void*> FunctionToStubMap; |
| |
| /// StubToFunctionMap - Keep track of the function that each stub |
| /// corresponds to. |
| std::map<void*, Function*> StubToFunctionMap; |
| |
| public: |
| std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return FunctionToStubMap; |
| } |
| |
| std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return StubToFunctionMap; |
| } |
| }; |
| |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| /// MCE - The MachineCodeEmitter to use to emit stubs with. |
| MachineCodeEmitter &MCE; |
| |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| JITResolverState state; |
| |
| /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for |
| /// external functions. |
| std::map<void*, void*> ExternalFnToStubMap; |
| |
| //map addresses to indexes in the GOT |
| std::map<void*, unsigned> revGOTMap; |
| unsigned nextGOTIndex; |
| |
| public: |
| JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) { |
| LazyResolverFn = |
| TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *getFunctionStub(Function *F); |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *getExternalFunctionStub(void *FnAddr); |
| |
| /// AddCallbackAtLocation - If the target is capable of rewriting an |
| /// instruction without the use of a stub, record the location of the use so |
| /// we know which function is being used at the location. |
| void *AddCallbackAtLocation(Function *F, void *Location) { |
| MutexGuard locked(TheJIT->lock); |
| /// Get the target-specific JIT resolver function. |
| state.getStubToFunctionMap(locked)[Location] = F; |
| return (void*)LazyResolverFn; |
| } |
| |
| /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| /// and address. This function only manages slots, it does not manage the |
| /// contents of the slots or the memory associated with the GOT. |
| unsigned getGOTIndexForAddr(void* addr); |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| } |
| |
| /// getJITResolver - This function returns the one instance of the JIT resolver. |
| /// |
| static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) { |
| static JITResolver TheJITResolver(*MCE); |
| return TheJITResolver; |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getFunctionStub(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = state.getFunctionToStubMap(locked)[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function unless we already KNOW it is an external |
| // function, in which case we just skip the lazy resolution step. |
| void *Actual = (void*)LazyResolverFn; |
| if (F->isExternal() && F->hasExternalLinkage()) |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // Otherwise, codegen a new stub. For now, the stub will call the lazy |
| // resolver function. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE); |
| |
| if (Actual != (void*)LazyResolverFn) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"); |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| state.getStubToFunctionMap(locked)[Stub] = F; |
| return Stub; |
| } |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = ExternalFnToStubMap[FnAddr]; |
| if (Stub) return Stub; |
| |
| Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE); |
| DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub |
| << "] for external function at '" << FnAddr << "'\n"); |
| return Stub; |
| } |
| |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| unsigned idx = revGOTMap[addr]; |
| if (!idx) { |
| idx = ++nextGOTIndex; |
| revGOTMap[addr] = idx; |
| DEBUG(std::cerr << "Adding GOT entry " << idx |
| << " for addr " << addr << "\n"); |
| // ((void**)MemMgr.getGOTBase())[idx] = addr; |
| } |
| return idx; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = getJITResolver(); |
| |
| MutexGuard locked(TheJIT->lock); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| std::map<void*, Function*>::iterator I = |
| JR.state.getStubToFunctionMap(locked).upper_bound(Stub); |
| assert(I != JR.state.getStubToFunctionMap(locked).begin() && |
| "This is not a known stub!"); |
| Function *F = (--I)->second; |
| |
| // We might like to remove the stub from the StubToFunction map. |
| // We can't do that! Multiple threads could be stuck, waiting to acquire the |
| // lock above. As soon as the 1st function finishes compiling the function, |
| // the next one will be released, and needs to be able to find the function it |
| // needs to call. |
| //JR.state.getStubToFunctionMap(locked).erase(I); |
| |
| DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << I->first << "\n"); |
| |
| void *Result = TheJIT->getPointerToFunction(F); |
| |
| // We don't need to reuse this stub in the future, as F is now compiled. |
| JR.state.getFunctionToStubMap(locked).erase(F); |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| |
| // What we will do is set the compiled function address to map to the |
| // same GOT entry as the stub so that later clients may update the GOT |
| // if they see it still using the stub address. |
| // Note: this is done so the Resolver doesn't have to manage GOT memory |
| // Do this without allocating map space if the target isn't using a GOT |
| if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| |
| return Result; |
| } |
| |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it |
| return getJITResolver(MCE).getFunctionStub(F); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| namespace { |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public MachineCodeEmitter { |
| JITMemoryManager MemMgr; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save BufferBegin/BufferEnd/CurBufferPtr here. |
| unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineConstantPool *ConstantPool; |
| |
| /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| /// |
| void *ConstantPoolBase; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineJumpTableInfo *JumpTable; |
| |
| /// JumpTableBase - A pointer to the first entry in the jump table. |
| /// |
| void *JumpTableBase; |
| public: |
| JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) { |
| TheJIT = &jit; |
| DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n"); |
| } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual bool finishFunction(MachineFunction &F); |
| virtual void emitConstantPool(MachineConstantPool *MCP); |
| virtual void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| virtual void emitJumpTableInfo(MachineJumpTableInfo *MJTI, |
| std::map<MachineBasicBlock*,uint64_t> &MBBM); |
| virtual void startFunctionStub(unsigned StubSize); |
| virtual void* finishFunctionStub(const Function *F); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual uint64_t getConstantPoolEntryAddress(unsigned Entry); |
| virtual uint64_t getJumpTableEntryAddress(unsigned Entry); |
| virtual unsigned char* allocateGlobal(unsigned size, unsigned alignment); |
| |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); |
| }; |
| } |
| |
| MachineCodeEmitter *JIT::createEmitter(JIT &jit) { |
| return new JITEmitter(jit); |
| } |
| |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| /// FIXME: If we straightened things out, this could actually emit the |
| /// global immediately instead of queuing it for codegen later! |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| } |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| if (ResultPtr) return ResultPtr; |
| |
| if (F->hasExternalLinkage() && F->isExternal()) { |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. |
| if (DoesntNeedStub) |
| return TheJIT->getPointerToFunction(F); |
| |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| // Okay, the function has not been compiled yet, if the target callback |
| // mechanism is capable of rewriting the instruction directly, prefer to do |
| // that instead of emitting a stub. |
| if (DoesntNeedStub) |
| return getJITResolver(this).AddCallbackAtLocation(F, Reference); |
| |
| // Otherwise, we have to emit a lazy resolving stub. |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(); |
| TheJIT->updateGlobalMapping(F.getFunction(), BufferBegin); |
| |
| /// FIXME: implement out of space handling correctly! |
| BufferEnd = (unsigned char*)(intptr_t)~0ULL; |
| } |
| |
| bool JITEmitter::finishFunction(MachineFunction &F) { |
| MemMgr.endFunctionBody(CurBufferPtr); |
| NumBytes += getCurrentPCOffset(); |
| |
| if (!Relocations.empty()) { |
| NumRelos += Relocations.size(); |
| |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr; |
| if (MR.isString()) { |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); |
| |
| // If the target REALLY wants a stub for this function, emit it now. |
| if (!MR.doesntNeedFunctionStub()) |
| ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr); |
| } else if (MR.isGlobalValue()) |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedFunctionStub()); |
| else //ConstantPoolIndex |
| ResultPtr = |
| (void*)(intptr_t)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| |
| MR.setResultPointer(ResultPtr); |
| |
| // if we are managing the GOT and the relocation wants an index, |
| // give it one |
| if (MemMgr.isManagingGOT() && !MR.isConstantPoolIndex() && |
| MR.isGOTRelative()) { |
| unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr); |
| MR.setGOTIndex(idx); |
| if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) { |
| DEBUG(std::cerr << "GOT was out of date for " << ResultPtr |
| << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] |
| << "\n"); |
| ((void**)MemMgr.getGOTBase())[idx] = ResultPtr; |
| } |
| } |
| } |
| |
| TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| Relocations.size(), MemMgr.getGOTBase()); |
| } |
| |
| //Update the GOT entry for F to point to the new code. |
| if(MemMgr.isManagingGOT()) { |
| unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin); |
| if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) { |
| DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin |
| << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n"); |
| ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin; |
| } |
| } |
| |
| DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)BufferBegin |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << getCurrentPCOffset() << " bytes of text, " |
| << Relocations.size() << " relocations\n"); |
| Relocations.clear(); |
| return false; |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| unsigned Size = Constants.back().Offset; |
| Size += TheJIT->getTargetData().getTypeSize(Constants.back().Val->getType()); |
| |
| ConstantPoolBase = MemMgr.allocateConstant(Size, |
| 1 << MCP->getConstantPoolAlignment()); |
| ConstantPool = MCP; |
| |
| // Initialize the memory for all of the constant pool entries. |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset; |
| TheJIT->InitializeMemory(Constants[i].Val, CAddr); |
| } |
| } |
| |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned Size = 0; |
| unsigned EntrySize = MJTI->getEntrySize(); |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| Size += JT[i].MBBs.size() * EntrySize; |
| |
| // Just allocate space for all the jump tables now. We will fix up the actual |
| // MBB entries in the tables after we emit the code for each block, since then |
| // we will know the final locations of the MBBs in memory. |
| JumpTable = MJTI; |
| JumpTableBase = MemMgr.allocateConstant(Size, MJTI->getAlignment()); |
| } |
| |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI, |
| std::map<MachineBasicBlock*,uint64_t> &MBBM){ |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| // For each jump table, map each target in the jump table to the address of |
| // an emitted MachineBasicBlock. |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { |
| uint64_t addr = MBBM[MBBs[mi]]; |
| GenericValue addrgv; |
| const Type *Ty; |
| if (EntrySize == 4) { |
| addrgv.UIntVal = addr; |
| Ty = Type::UIntTy; |
| } else if (EntrySize == 8) { |
| addrgv.ULongVal = addr; |
| Ty = Type::ULongTy; |
| } else { |
| assert(0 && "Unhandled jump table entry size!"); |
| abort(); |
| } |
| // Store the address of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| void *ptr = (void *)((char *)JumpTableBase + Offset); |
| TheJIT->StoreValueToMemory(addrgv, (GenericValue *)ptr, Ty); |
| Offset += EntrySize; |
| } |
| } |
| } |
| |
| void JITEmitter::startFunctionStub(unsigned StubSize) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize); |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void *JITEmitter::finishFunctionStub(const Function *F) { |
| NumBytes += getCurrentPCOffset(); |
| std::swap(SavedBufferBegin, BufferBegin); |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| return SavedBufferBegin; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) { |
| assert(ConstantNum < ConstantPool->getConstants().size() && |
| "Invalid ConstantPoolIndex!"); |
| return (intptr_t)ConstantPoolBase + |
| ConstantPool->getConstants()[ConstantNum].Offset; |
| } |
| |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| // |
| uint64_t JITEmitter::getJumpTableEntryAddress(unsigned Index) { |
| const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| assert(Index < JT.size() && "Invalid jump table index!"); |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = JumpTable->getEntrySize(); |
| |
| for (unsigned i = 0; i < Index; ++i) |
| Offset += JT[i].MBBs.size() * EntrySize; |
| |
| return (intptr_t)((char *)JumpTableBase + Offset); |
| } |
| |
| unsigned char* JITEmitter::allocateGlobal(unsigned size, unsigned alignment) |
| { |
| return MemMgr.allocateGlobal(size, alignment); |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| Module &M = TheJIT->getModule(); |
| if (Function *F = M.getNamedFunction(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |