| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PPCISelLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCISelLowering.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| PPCTargetLowering::PPCTargetLowering(TargetMachine &TM) |
| : TargetLowering(TM) { |
| |
| // Fold away setcc operations if possible. |
| setSetCCIsExpensive(); |
| setPow2DivIsCheap(); |
| |
| // Use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmpLongJmp(true); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); |
| addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); |
| addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); |
| |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| |
| // PowerPC has no intrinsics for these particular operations |
| setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); |
| setOperationAction(ISD::MEMSET, MVT::Other, Expand); |
| setOperationAction(ISD::MEMCPY, MVT::Other, Expand); |
| |
| // PowerPC has an i16 but no i8 (or i1) SEXTLOAD |
| setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand); |
| |
| // PowerPC has no SREM/UREM instructions |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| // We don't support sin/cos/sqrt/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| |
| // If we're enabling GP optimizations, use hardware square root |
| if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| } |
| |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| // PowerPC does not have BSWAP, CTPOP or CTTZ |
| setOperationAction(ISD::BSWAP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| |
| // PowerPC does not have ROTR |
| setOperationAction(ISD::ROTR, MVT::i32 , Expand); |
| |
| // PowerPC does not have Select |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| |
| // PowerPC wants to turn select_cc of FP into fsel when possible. |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| // PowerPC wants to optimize integer setcc a bit |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| |
| // PowerPC does not have BRCOND which requires SetCC |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| // PowerPC does not have [U|S]INT_TO_FP |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| |
| setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); |
| setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); |
| |
| // PowerPC does not have truncstore for i1. |
| setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote); |
| |
| // Support label based line numbers. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| // FIXME - use subtarget debug flags |
| if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) |
| setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); |
| |
| // We want to legalize GlobalAddress and ConstantPool nodes into the |
| // appropriate instructions to materialize the address. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| |
| // RET must be custom lowered, to meet ABI requirements |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| if (TM.getSubtarget<PPCSubtarget>().is64Bit()) { |
| // They also have instructions for converting between i64 and fp. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| |
| // FIXME: disable this lowered code. This generates 64-bit register values, |
| // and we don't model the fact that the top part is clobbered by calls. We |
| // need to flag these together so that the value isn't live across a call. |
| //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| |
| // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); |
| } else { |
| // PowerPC does not have FP_TO_UINT on 32-bit implementations. |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| } |
| |
| if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) { |
| // 64 bit PowerPC implementations can support i64 types directly |
| addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); |
| // BUILD_PAIR can't be handled natively, and should be expanded to shl/or |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| } else { |
| // 32 bit PowerPC wants to expand i64 shifts itself. |
| setOperationAction(ISD::SHL, MVT::i64, Custom); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| } |
| |
| if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| // add/sub/and/or/xor are legal for all supported vector VT's. |
| setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); |
| setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); |
| setOperationAction(ISD::AND , (MVT::ValueType)VT, Legal); |
| setOperationAction(ISD::OR , (MVT::ValueType)VT, Legal); |
| setOperationAction(ISD::XOR , (MVT::ValueType)VT, Legal); |
| |
| // We promote all shuffles to v16i8. |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); |
| AddPromotedToType(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); |
| |
| setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); |
| } |
| |
| // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle |
| // with merges, splats, etc. |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); |
| |
| addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); |
| addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); |
| |
| setOperationAction(ISD::MUL, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| } |
| |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setStackPointerRegisterToSaveRestore(PPC::R1); |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::STORE); |
| |
| computeRegisterProperties(); |
| } |
| |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case PPCISD::FSEL: return "PPCISD::FSEL"; |
| case PPCISD::FCFID: return "PPCISD::FCFID"; |
| case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; |
| case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; |
| case PPCISD::STFIWX: return "PPCISD::STFIWX"; |
| case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; |
| case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; |
| case PPCISD::VPERM: return "PPCISD::VPERM"; |
| case PPCISD::Hi: return "PPCISD::Hi"; |
| case PPCISD::Lo: return "PPCISD::Lo"; |
| case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; |
| case PPCISD::SRL: return "PPCISD::SRL"; |
| case PPCISD::SRA: return "PPCISD::SRA"; |
| case PPCISD::SHL: return "PPCISD::SHL"; |
| case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; |
| case PPCISD::STD_32: return "PPCISD::STD_32"; |
| case PPCISD::CALL: return "PPCISD::CALL"; |
| case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; |
| case PPCISD::MFCR: return "PPCISD::MFCR"; |
| case PPCISD::VCMP: return "PPCISD::VCMP"; |
| case PPCISD::VCMPo: return "PPCISD::VCMPo"; |
| } |
| } |
| |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0. |
| static bool isFloatingPointZero(SDOperand Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); |
| else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) { |
| // Maybe this has already been legalized into the constant pool? |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get())) |
| return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); |
| } |
| return false; |
| } |
| |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if it matches the specified value. |
| static bool isConstantOrUndef(SDOperand Op, unsigned Val) { |
| return Op.getOpcode() == ISD::UNDEF || |
| cast<ConstantSDNode>(Op)->getValue() == Val; |
| } |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), i*2+1)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), i*2+1) || |
| !isConstantOrUndef(N->getOperand(i+8), i*2+1)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; i += 2) |
| if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+1), i*2+3)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; i += 2) |
| if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+1), i*2+3) || |
| !isConstantOrUndef(N->getOperand(i+8), i*2+2) || |
| !isConstantOrUndef(N->getOperand(i+9), i*2+3)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMerge - Common function, used to match vmrg* shuffles. |
| /// |
| static bool isVMerge(SDNode *N, unsigned UnitSize, |
| unsigned LHSStart, unsigned RHSStart) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); |
| assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && |
| "Unsupported merge size!"); |
| |
| for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units |
| for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit |
| if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), |
| LHSStart+j+i*UnitSize) || |
| !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), |
| RHSStart+j+i*UnitSize)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 8, 24); |
| return isVMerge(N, UnitSize, 8, 8); |
| } |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 0, 16); |
| return isVMerge(N, UnitSize, 0, 0); |
| } |
| |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i; |
| for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) |
| /*search*/; |
| |
| if (i == 16) return -1; // all undef. |
| |
| // Otherwise, check to see if the rest of the elements are consequtively |
| // numbered from this value. |
| unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue(); |
| if (ShiftAmt < i) return -1; |
| ShiftAmt -= i; |
| |
| if (!isUnary) { |
| // Check the rest of the elements to see if they are consequtive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) |
| return -1; |
| } else { |
| // Check the rest of the elements to see if they are consequtive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) |
| return -1; |
| } |
| |
| return ShiftAmt; |
| } |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| N->getNumOperands() == 16 && |
| (EltSize == 1 || EltSize == 2 || EltSize == 4)); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned ElementBase = 0; |
| SDOperand Elt = N->getOperand(0); |
| if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) |
| ElementBase = EltV->getValue(); |
| else |
| return false; // FIXME: Handle UNDEF elements too! |
| |
| if (cast<ConstantSDNode>(Elt)->getValue() >= 16) |
| return false; |
| |
| // Check that they are consequtive. |
| for (unsigned i = 1; i != EltSize; ++i) { |
| if (!isa<ConstantSDNode>(N->getOperand(i)) || |
| cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase) |
| return false; |
| } |
| |
| assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!"); |
| for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { |
| assert(isa<ConstantSDNode>(N->getOperand(i)) && |
| "Invalid VECTOR_SHUFFLE mask!"); |
| for (unsigned j = 0; j != EltSize; ++j) |
| if (N->getOperand(i+j) != N->getOperand(j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { |
| assert(isSplatShuffleMask(N, EltSize)); |
| return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize; |
| } |
| |
| /// get_VSPLI_elt - If this is a build_vector of constants which can be formed |
| /// by using a vspltis[bhw] instruction of the specified element size, return |
| /// the constant being splatted. The ByteSize field indicates the number of |
| /// bytes of each element [124] -> [bhw]. |
| SDOperand PPC::get_VSPLI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { |
| SDOperand OpVal(0, 0); |
| // Check to see if this buildvec has a single non-undef value in its elements. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| if (OpVal.Val == 0) |
| OpVal = N->getOperand(i); |
| else if (OpVal != N->getOperand(i)) |
| return SDOperand(); |
| } |
| |
| if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def. |
| |
| unsigned ValSizeInBytes = 0; |
| uint64_t Value = 0; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { |
| Value = CN->getValue(); |
| ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { |
| assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); |
| Value = FloatToBits(CN->getValue()); |
| ValSizeInBytes = 4; |
| } |
| |
| // If the splat value is larger than the element value, then we can never do |
| // this splat. The only case that we could fit the replicated bits into our |
| // immediate field for would be zero, and we prefer to use vxor for it. |
| if (ValSizeInBytes < ByteSize) return SDOperand(); |
| |
| // If the element value is larger than the splat value, cut it in half and |
| // check to see if the two halves are equal. Continue doing this until we |
| // get to ByteSize. This allows us to handle 0x01010101 as 0x01. |
| while (ValSizeInBytes > ByteSize) { |
| ValSizeInBytes >>= 1; |
| |
| // If the top half equals the bottom half, we're still ok. |
| if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != |
| (Value & ((1 << (8*ValSizeInBytes))-1))) |
| return SDOperand(); |
| } |
| |
| // Properly sign extend the value. |
| int ShAmt = (4-ByteSize)*8; |
| int MaskVal = ((int)Value << ShAmt) >> ShAmt; |
| |
| // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. |
| if (MaskVal == 0) return SDOperand(); |
| |
| // Finally, if this value fits in a 5 bit sext field, return it |
| if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) |
| return DAG.getTargetConstant(MaskVal, MVT::i32); |
| return SDOperand(); |
| } |
| |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Wasn't expecting to be able to lower this!"); |
| case ISD::FP_TO_SINT: { |
| assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); |
| SDOperand Src = Op.getOperand(0); |
| if (Src.getValueType() == MVT::f32) |
| Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); |
| |
| SDOperand Tmp; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); |
| case MVT::i32: |
| Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); |
| break; |
| case MVT::i64: |
| Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); |
| break; |
| } |
| |
| // Convert the FP value to an int value through memory. |
| SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp); |
| if (Op.getValueType() == MVT::i32) |
| Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits); |
| return Bits; |
| } |
| case ISD::SINT_TO_FP: |
| if (Op.getOperand(0).getValueType() == MVT::i64) { |
| SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); |
| SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); |
| return FP; |
| } else { |
| assert(Op.getOperand(0).getValueType() == MVT::i32 && |
| "Unhandled SINT_TO_FP type in custom expander!"); |
| // Since we only generate this in 64-bit mode, we can take advantage of |
| // 64-bit registers. In particular, sign extend the input value into the |
| // 64-bit register with extsw, store the WHOLE 64-bit value into the stack |
| // then lfd it and fcfid it. |
| MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(8, 8); |
| SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); |
| |
| SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, |
| Op.getOperand(0)); |
| |
| // STD the extended value into the stack slot. |
| SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, |
| DAG.getEntryNode(), Ext64, FIdx, |
| DAG.getSrcValue(NULL)); |
| // Load the value as a double. |
| SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL)); |
| |
| // FCFID it and return it. |
| SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); |
| return FP; |
| } |
| break; |
| |
| case ISD::SELECT_CC: { |
| // Turn FP only select_cc's into fsel instructions. |
| if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || |
| !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) |
| break; |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| |
| // Cannot handle SETEQ/SETNE. |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) break; |
| |
| MVT::ValueType ResVT = Op.getValueType(); |
| MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); |
| SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3); |
| |
| // If the RHS of the comparison is a 0.0, we don't need to do the |
| // subtraction at all. |
| if (isFloatingPointZero(RHS)) |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETLT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETUGE: |
| case ISD::SETGE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETULE: |
| case ISD::SETLE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, ResVT, |
| DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); |
| } |
| |
| SDOperand Cmp; |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETLT: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); |
| case ISD::SETUGE: |
| case ISD::SETGE: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); |
| case ISD::SETULE: |
| case ISD::SETLE: |
| Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); |
| } |
| break; |
| } |
| case ISD::SHL: { |
| assert(Op.getValueType() == MVT::i64 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); |
| // The generic code does a fine job expanding shift by a constant. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) break; |
| |
| // Otherwise, expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| SDOperand Amt = Op.getOperand(1); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5); |
| SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); |
| SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt); |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); |
| } |
| case ISD::SRL: { |
| assert(Op.getValueType() == MVT::i64 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); |
| // The generic code does a fine job expanding shift by a constant. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) break; |
| |
| // Otherwise, expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| SDOperand Amt = Op.getOperand(1); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5); |
| SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); |
| SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt); |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); |
| } |
| case ISD::SRA: { |
| assert(Op.getValueType() == MVT::i64 && |
| Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!"); |
| // The generic code does a fine job expanding shift by a constant. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) break; |
| |
| // Otherwise, expand into a bunch of logical ops, followed by a select_cc. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| SDOperand Amt = Op.getOperand(1); |
| |
| SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, |
| DAG.getConstant(32, MVT::i32), Amt); |
| SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); |
| SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); |
| SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); |
| SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, |
| DAG.getConstant(-32U, MVT::i32)); |
| SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5); |
| SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt); |
| SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32), |
| Tmp4, Tmp6, ISD::SETLE); |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi); |
| } |
| case ISD::ConstantPool: { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| Constant *C = CP->get(); |
| SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment()); |
| SDOperand Zero = DAG.getConstant(0, MVT::i32); |
| |
| if (getTargetMachine().getRelocationModel() == Reloc::Static) { |
| // Generate non-pic code that has direct accesses to the constant pool. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero); |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero); |
| return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); |
| } |
| |
| // Only lower ConstantPool on Darwin. |
| if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break; |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero); |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) { |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| Hi = DAG.getNode(ISD::ADD, MVT::i32, |
| DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi); |
| } |
| |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero); |
| Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); |
| return Lo; |
| } |
| case ISD::GlobalAddress: { |
| GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); |
| GlobalValue *GV = GSDN->getGlobal(); |
| SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset()); |
| SDOperand Zero = DAG.getConstant(0, MVT::i32); |
| |
| if (getTargetMachine().getRelocationModel() == Reloc::Static) { |
| // Generate non-pic code that has direct accesses to globals. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero); |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero); |
| return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); |
| } |
| |
| // Only lower GlobalAddress on Darwin. |
| if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break; |
| |
| SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero); |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) { |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| Hi = DAG.getNode(ISD::ADD, MVT::i32, |
| DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi); |
| } |
| |
| SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero); |
| Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo); |
| |
| if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() && |
| (!GV->isExternal() || GV->hasNotBeenReadFromBytecode())) |
| return Lo; |
| |
| // If the global is weak or external, we have to go through the lazy |
| // resolution stub. |
| return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0)); |
| } |
| case ISD::SETCC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| // If we're comparing for equality to zero, expose the fact that this is |
| // implented as a ctlz/srl pair on ppc, so that the dag combiner can |
| // fold the new nodes. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (C->isNullValue() && CC == ISD::SETEQ) { |
| MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| SDOperand Zext = Op.getOperand(0); |
| if (VT < MVT::i32) { |
| VT = MVT::i32; |
| Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); |
| } |
| unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); |
| SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); |
| SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, |
| DAG.getConstant(Log2b, getShiftAmountTy())); |
| return DAG.getNode(ISD::TRUNCATE, getSetCCResultTy(), Scc); |
| } |
| // Leave comparisons against 0 and -1 alone for now, since they're usually |
| // optimized. FIXME: revisit this when we can custom lower all setcc |
| // optimizations. |
| if (C->isAllOnesValue() || C->isNullValue()) |
| break; |
| } |
| |
| // If we have an integer seteq/setne, turn it into a compare against zero |
| // by subtracting the rhs from the lhs, which is faster than setting a |
| // condition register, reading it back out, and masking the correct bit. |
| MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); |
| if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| MVT::ValueType VT = Op.getValueType(); |
| SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), |
| Op.getOperand(1)); |
| return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); |
| } |
| break; |
| } |
| case ISD::VASTART: { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| // FIXME: Replace MVT::i32 with PointerTy |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case ISD::RET: { |
| SDOperand Copy; |
| |
| switch(Op.getNumOperands()) { |
| default: |
| assert(0 && "Do not know how to return this many arguments!"); |
| abort(); |
| case 1: |
| return SDOperand(); // ret void is legal |
| case 2: { |
| MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); |
| unsigned ArgReg = MVT::isInteger(ArgVT) ? PPC::R3 : PPC::F1; |
| Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1), |
| SDOperand()); |
| break; |
| } |
| case 3: |
| Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2), |
| SDOperand()); |
| Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1)); |
| break; |
| } |
| return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); |
| } |
| case ISD::SCALAR_TO_VECTOR: { |
| // Create a stack slot that is 16-byte aligned. |
| MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(16, 16); |
| SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32); |
| |
| // Store the input value into Value#0 of the stack slot. |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), |
| Op.getOperand(0), FIdx,DAG.getSrcValue(NULL)); |
| // Load it out. |
| return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL)); |
| } |
| case ISD::BUILD_VECTOR: |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. If we CAN select this case, return Op. |
| |
| // See if this is all zeros. |
| // FIXME: We should handle splat(-0.0), and other cases here. |
| if (ISD::isBuildVectorAllZeros(Op.Val)) |
| return Op; |
| |
| if (PPC::get_VSPLI_elt(Op.Val, 1, DAG).Val || // vspltisb |
| PPC::get_VSPLI_elt(Op.Val, 2, DAG).Val || // vspltish |
| PPC::get_VSPLI_elt(Op.Val, 4, DAG).Val) // vspltisw |
| return Op; |
| |
| return SDOperand(); |
| |
| case ISD::VECTOR_SHUFFLE: { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand PermMask = Op.getOperand(2); |
| |
| // Cases that are handled by instructions that take permute immediates |
| // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be |
| // selected by the instruction selector. |
| if (V2.getOpcode() == ISD::UNDEF) { |
| if (PPC::isSplatShuffleMask(PermMask.Val, 1) || |
| PPC::isSplatShuffleMask(PermMask.Val, 2) || |
| PPC::isSplatShuffleMask(PermMask.Val, 4) || |
| PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || |
| PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || |
| PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { |
| return Op; |
| } |
| } |
| |
| // Altivec has a variety of "shuffle immediates" that take two vector inputs |
| // and produce a fixed permutation. If any of these match, do not lower to |
| // VPERM. |
| if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || |
| PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || |
| PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || |
| PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || |
| PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) |
| return Op; |
| |
| // TODO: Handle more cases, and also handle cases that are cheaper to do as |
| // multiple such instructions than as a constant pool load/vperm pair. |
| |
| // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant |
| // vector that will get spilled to the constant pool. |
| if (V2.getOpcode() == ISD::UNDEF) V2 = V1; |
| |
| // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except |
| // that it is in input element units, not in bytes. Convert now. |
| MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType()); |
| unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; |
| |
| std::vector<SDOperand> ResultMask; |
| for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { |
| unsigned SrcElt =cast<ConstantSDNode>(PermMask.getOperand(i))->getValue(); |
| |
| for (unsigned j = 0; j != BytesPerElement; ++j) |
| ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, |
| MVT::i8)); |
| } |
| |
| SDOperand VPermMask =DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask); |
| return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); |
| |
| // If this is a lowered altivec predicate compare, CompareOpc is set to the |
| // opcode number of the comparison. |
| int CompareOpc = -1; |
| bool isDot = false; |
| switch (IntNo) { |
| default: return SDOperand(); // Don't custom lower most intrinsics. |
| // Comparison predicates. |
| case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; |
| |
| // Normal Comparisons. |
| case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; |
| } |
| |
| assert(CompareOpc>0 && "We only lower altivec predicate compares so far!"); |
| |
| // If this is a non-dot comparison, make the VCMP node. |
| if (!isDot) { |
| SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), |
| Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(CompareOpc, MVT::i32)); |
| return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); |
| } |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| std::vector<SDOperand> Ops; |
| std::vector<MVT::ValueType> VTs; |
| Ops.push_back(Op.getOperand(2)); // LHS |
| Ops.push_back(Op.getOperand(3)); // RHS |
| Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32)); |
| VTs.push_back(Op.getOperand(2).getValueType()); |
| VTs.push_back(MVT::Flag); |
| SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops); |
| |
| // Now that we have the comparison, emit a copy from the CR to a GPR. |
| // This is flagged to the above dot comparison. |
| SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| CompNode.getValue(1)); |
| |
| // Unpack the result based on how the target uses it. |
| unsigned BitNo; // Bit # of CR6. |
| bool InvertBit; // Invert result? |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Return the value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = false; |
| break; |
| case 1: // Return the inverted value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = true; |
| break; |
| case 2: // Return the value of the LT bit of CR6. |
| BitNo = 2; InvertBit = false; |
| break; |
| case 3: // Return the inverted value of the LT bit of CR6. |
| BitNo = 2; InvertBit = true; |
| break; |
| } |
| |
| // Shift the bit into the low position. |
| Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, |
| DAG.getConstant(8-(3-BitNo), MVT::i32)); |
| // Isolate the bit. |
| Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| |
| // If we are supposed to, toggle the bit. |
| if (InvertBit) |
| Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| return Flags; |
| } |
| } |
| return SDOperand(); |
| } |
| |
| std::vector<SDOperand> |
| PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| // |
| // add beautiful description of PPC stack frame format, or at least some docs |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MachineBasicBlock& BB = MF.front(); |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| std::vector<SDOperand> ArgValues; |
| |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on PPC, |
| // the arguments start at offset 24, although they are likely to be passed |
| // in registers. |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| SDOperand newroot, argt; |
| unsigned ObjSize; |
| bool needsLoad = false; |
| bool ArgLive = !I->use_empty(); |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| ObjSize = 4; |
| if (!ArgLive) break; |
| if (GPR_remaining > 0) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); |
| if (ObjectVT != MVT::i32) { |
| unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext |
| : ISD::AssertZext; |
| argt = DAG.getNode(AssertOp, MVT::i32, argt, |
| DAG.getValueType(ObjectVT)); |
| argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt); |
| } |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::i64: |
| ObjSize = 8; |
| if (!ArgLive) break; |
| if (GPR_remaining > 0) { |
| SDOperand argHi, argLo; |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); |
| // If we have two or more remaining argument registers, then both halves |
| // of the i64 can be sourced from there. Otherwise, the lower half will |
| // have to come off the stack. This can happen when an i64 is preceded |
| // by 28 bytes of arguments. |
| if (GPR_remaining > 1) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| MF.addLiveIn(GPR[GPR_idx+1], VReg); |
| argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32); |
| } else { |
| int FI = MFI->CreateFixedObject(4, ArgOffset+4); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| } |
| // Build the outgoing arg thingy |
| argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi); |
| newroot = argLo; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| ObjSize = (ObjectVT == MVT::f64) ? 8 : 4; |
| if (!ArgLive) { |
| if (FPR_remaining > 0) { |
| --FPR_remaining; |
| ++FPR_idx; |
| } |
| break; |
| } |
| if (FPR_remaining > 0) { |
| unsigned VReg; |
| if (ObjectVT == MVT::f32) |
| VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass); |
| else |
| VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass); |
| MF.addLiveIn(FPR[FPR_idx], VReg); |
| argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT); |
| --FPR_remaining; |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined above |
| // that we ran out of physical registers of the appropriate type |
| if (needsLoad) { |
| unsigned SubregOffset = 0; |
| if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3; |
| if (ObjectVT == MVT::i16) SubregOffset = 2; |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, |
| DAG.getConstant(SubregOffset, MVT::i32)); |
| argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| } |
| |
| // Every 4 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_remaining > 0) { |
| unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; |
| GPR_remaining -= delta; |
| GPR_idx += delta; |
| } |
| ArgOffset += ObjSize; |
| if (newroot.Val) |
| DAG.setRoot(newroot.getValue(1)); |
| |
| ArgValues.push_back(argt); |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (F.isVarArg()) { |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing the |
| // result of va_next. |
| std::vector<SDOperand> MemOps; |
| for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) { |
| unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| MF.addLiveIn(GPR[GPR_idx], VReg); |
| SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), |
| Val, FIN, DAG.getSrcValue(NULL)); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDOperand PtrOff = DAG.getConstant(4, getPointerTy()); |
| FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff); |
| } |
| if (!MemOps.empty()) { |
| MemOps.push_back(DAG.getRoot()); |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps)); |
| } |
| } |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(PPC::R3); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(PPC::R3); |
| MF.addLiveOut(PPC::R4); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(PPC::F1); |
| break; |
| } |
| |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| PPCTargetLowering::LowerCallTo(SDOperand Chain, |
| const Type *RetTy, bool isVarArg, |
| unsigned CallingConv, bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| // args_to_use will accumulate outgoing args for the PPCISD::CALL case in |
| // SelectExpr to use to put the arguments in the appropriate registers. |
| std::vector<SDOperand> args_to_use; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. |
| unsigned NumBytes = 24; |
| |
| if (Args.empty()) { |
| Chain = DAG.getCALLSEQ_START(Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| } else { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| } |
| |
| // Just to be safe, we'll always reserve the full 24 bytes of linkage area |
| // plus 32 bytes of argument space in case any called code gets funky on us. |
| // (Required by ABI to support var arg) |
| if (NumBytes < 56) NumBytes = 56; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = 24; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| |
| std::vector<SDOperand> MemOps; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MVT::ValueType ArgVT = getValueType(Args[i].second); |
| |
| switch (ArgVT) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| if (Args[i].second->isSigned()) |
| Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); |
| else |
| Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); |
| // FALL THROUGH |
| case MVT::i32: |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(Args[i].first); |
| --GPR_remaining; |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| } |
| ArgOffset += 4; |
| break; |
| case MVT::i64: |
| // If we have one free GPR left, we can place the upper half of the i64 |
| // in it, and store the other half to the stack. If we have two or more |
| // free GPRs, then we can pass both halves of the i64 in registers. |
| if (GPR_remaining > 0) { |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(1, MVT::i32)); |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(0, MVT::i32)); |
| args_to_use.push_back(Hi); |
| --GPR_remaining; |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(Lo); |
| --GPR_remaining; |
| } else { |
| SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Lo, PtrOff, DAG.getSrcValue(NULL))); |
| } |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| } |
| ArgOffset += 8; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_remaining > 0) { |
| args_to_use.push_back(Args[i].first); |
| --FPR_remaining; |
| if (isVarArg) { |
| SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL)); |
| MemOps.push_back(Store); |
| // Float varargs are always shadowed in available integer registers |
| if (GPR_remaining > 0) { |
| SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, |
| DAG.getSrcValue(NULL)); |
| MemOps.push_back(Load.getValue(1)); |
| args_to_use.push_back(Load); |
| --GPR_remaining; |
| } |
| if (GPR_remaining > 0 && MVT::f64 == ArgVT) { |
| SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); |
| SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, |
| DAG.getSrcValue(NULL)); |
| MemOps.push_back(Load.getValue(1)); |
| args_to_use.push_back(Load); |
| --GPR_remaining; |
| } |
| } else { |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| // Args passed in FPRs consume either 1 (f32) or 2 (f64) available |
| // GPRs. |
| if (GPR_remaining > 0) { |
| args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| --GPR_remaining; |
| } |
| if (GPR_remaining > 0 && MVT::f64 == ArgVT) { |
| args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); |
| --GPR_remaining; |
| } |
| } |
| } else { |
| MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| } |
| ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; |
| break; |
| } |
| } |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| MVT::ValueType ActualRetTyVT = RetTyVT; |
| if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16) |
| ActualRetTyVT = MVT::i32; // Promote result to i32. |
| |
| if (RetTyVT == MVT::i64) { |
| RetVals.push_back(MVT::i32); |
| RetVals.push_back(MVT::i32); |
| } else if (RetTyVT != MVT::isVoid) { |
| RetVals.push_back(ActualRetTyVT); |
| } |
| RetVals.push_back(MVT::Other); |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32); |
| |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end()); |
| SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops); |
| Chain = TheCall.getValue(TheCall.Val->getNumValues()-1); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| SDOperand RetVal = TheCall; |
| |
| // If the result is a small value, add a note so that we keep track of the |
| // information about whether it is sign or zero extended. |
| if (RetTyVT != ActualRetTyVT) { |
| RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext, |
| MVT::i32, RetVal, DAG.getValueType(RetTyVT)); |
| RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal); |
| } else if (RetTyVT == MVT::i64) { |
| RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1)); |
| } |
| |
| return std::make_pair(RetVal, Chain); |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| assert((MI->getOpcode() == PPC::SELECT_CC_Int || |
| MI->getOpcode() == PPC::SELECT_CC_F4 || |
| MI->getOpcode() == PPC::SELECT_CC_F8) && |
| "Unexpected instr type to insert"); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the diamond |
| // control-flow pattern. The incoming instruction knows the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, MI->getOperand(4).getImmedValue(), 2) |
| .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| TargetMachine &TM = getTargetMachine(); |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::SINT_TO_FP: |
| if (TM.getSubtarget<PPCSubtarget>().is64Bit()) { |
| if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { |
| // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. |
| // We allow the src/dst to be either f32/f64, but the intermediate |
| // type must be i64. |
| if (N->getOperand(0).getValueType() == MVT::i64) { |
| SDOperand Val = N->getOperand(0).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| |
| Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| if (N->getValueType(0) == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| return Val; |
| } else if (N->getOperand(0).getValueType() == MVT::i32) { |
| // If the intermediate type is i32, we can avoid the load/store here |
| // too. |
| } |
| } |
| } |
| break; |
| case ISD::STORE: |
| // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). |
| if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && |
| N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && |
| N->getOperand(1).getValueType() == MVT::i32) { |
| SDOperand Val = N->getOperand(1).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| } |
| Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); |
| DCI.AddToWorklist(Val.Val); |
| |
| Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, |
| N->getOperand(2), N->getOperand(3)); |
| DCI.AddToWorklist(Val.Val); |
| return Val; |
| } |
| break; |
| case PPCISD::VCMP: { |
| // If a VCMPo node already exists with exactly the same operands as this |
| // node, use its result instead of this node (VCMPo computes both a CR6 and |
| // a normal output). |
| // |
| if (!N->getOperand(0).hasOneUse() && |
| !N->getOperand(1).hasOneUse() && |
| !N->getOperand(2).hasOneUse()) { |
| |
| // Scan all of the users of the LHS, looking for VCMPo's that match. |
| SDNode *VCMPoNode = 0; |
| |
| SDNode *LHSN = N->getOperand(0).Val; |
| for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); |
| UI != E; ++UI) |
| if ((*UI)->getOpcode() == PPCISD::VCMPo && |
| (*UI)->getOperand(1) == N->getOperand(1) && |
| (*UI)->getOperand(2) == N->getOperand(2) && |
| (*UI)->getOperand(0) == N->getOperand(0)) { |
| VCMPoNode = *UI; |
| break; |
| } |
| |
| // If there are non-zero uses of the flag value, use the VCMPo node! |
| if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1)) |
| return SDOperand(VCMPoNode, 0); |
| } |
| break; |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| unsigned Depth) const { |
| KnownZero = 0; |
| KnownOne = 0; |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) { |
| default: break; |
| case Intrinsic::ppc_altivec_vcmpbfp_p: |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: |
| case Intrinsic::ppc_altivec_vcmpequb_p: |
| case Intrinsic::ppc_altivec_vcmpequh_p: |
| case Intrinsic::ppc_altivec_vcmpequw_p: |
| case Intrinsic::ppc_altivec_vcmpgefp_p: |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: |
| case Intrinsic::ppc_altivec_vcmpgtub_p: |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: |
| KnownZero = ~1U; // All bits but the low one are known to be zero. |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| PPCTargetLowering::ConstraintType |
| PPCTargetLowering::getConstraintType(char ConstraintLetter) const { |
| switch (ConstraintLetter) { |
| default: break; |
| case 'b': |
| case 'r': |
| case 'f': |
| case 'v': |
| case 'y': |
| return C_RegisterClass; |
| } |
| return TargetLowering::getConstraintType(ConstraintLetter); |
| } |
| |
| |
| std::vector<unsigned> PPCTargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { // GCC RS6000 Constraint Letters |
| default: break; // Unknown constriant letter |
| case 'b': |
| return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 , |
| PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , |
| PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, |
| PPC::R12, PPC::R13, PPC::R14, PPC::R15, |
| PPC::R16, PPC::R17, PPC::R18, PPC::R19, |
| PPC::R20, PPC::R21, PPC::R22, PPC::R23, |
| PPC::R24, PPC::R25, PPC::R26, PPC::R27, |
| PPC::R28, PPC::R29, PPC::R30, PPC::R31, |
| 0); |
| case 'r': |
| return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 , |
| PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 , |
| PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, |
| PPC::R12, PPC::R13, PPC::R14, PPC::R15, |
| PPC::R16, PPC::R17, PPC::R18, PPC::R19, |
| PPC::R20, PPC::R21, PPC::R22, PPC::R23, |
| PPC::R24, PPC::R25, PPC::R26, PPC::R27, |
| PPC::R28, PPC::R29, PPC::R30, PPC::R31, |
| 0); |
| case 'f': |
| return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 , |
| PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 , |
| PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, |
| PPC::F12, PPC::F13, PPC::F14, PPC::F15, |
| PPC::F16, PPC::F17, PPC::F18, PPC::F19, |
| PPC::F20, PPC::F21, PPC::F22, PPC::F23, |
| PPC::F24, PPC::F25, PPC::F26, PPC::F27, |
| PPC::F28, PPC::F29, PPC::F30, PPC::F31, |
| 0); |
| case 'v': |
| return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , |
| PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , |
| PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, |
| PPC::V12, PPC::V13, PPC::V14, PPC::V15, |
| PPC::V16, PPC::V17, PPC::V18, PPC::V19, |
| PPC::V20, PPC::V21, PPC::V22, PPC::V23, |
| PPC::V24, PPC::V25, PPC::V26, PPC::V27, |
| PPC::V28, PPC::V29, PPC::V30, PPC::V31, |
| 0); |
| case 'y': |
| return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, |
| PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7, |
| 0); |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| // isOperandValidForConstraint |
| bool PPCTargetLowering:: |
| isOperandValidForConstraint(SDOperand Op, char Letter) { |
| switch (Letter) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': { |
| if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate. |
| unsigned Value = cast<ConstantSDNode>(Op)->getValue(); |
| switch (Letter) { |
| default: assert(0 && "Unknown constraint letter!"); |
| case 'I': // "I" is a signed 16-bit constant. |
| return (short)Value == (int)Value; |
| case 'J': // "J" is a constant with only the high-order 16 bits nonzero. |
| case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. |
| return (short)Value == 0; |
| case 'K': // "K" is a constant with only the low-order 16 bits nonzero. |
| return (Value >> 16) == 0; |
| case 'M': // "M" is a constant that is greater than 31. |
| return Value > 31; |
| case 'N': // "N" is a positive constant that is an exact power of two. |
| return (int)Value > 0 && isPowerOf2_32(Value); |
| case 'O': // "O" is the constant zero. |
| return Value == 0; |
| case 'P': // "P" is a constant whose negation is a signed 16-bit constant. |
| return (short)-Value == (int)-Value; |
| } |
| break; |
| } |
| } |
| |
| // Handle standard constraint letters. |
| return TargetLowering::isOperandValidForConstraint(Op, Letter); |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode. |
| bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const { |
| // PPC allows a sign-extended 16-bit immediate field. |
| return (V > -(1 << 16) && V < (1 << 16)-1); |
| } |