| //===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// |
| // |
| // This tablegen backend is responsible for emitting a description of the target |
| // instruction set for the code generator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstrSelectorEmitter.h" |
| #include "CodeGenWrappers.h" |
| #include "Record.h" |
| #include "Support/Debug.h" |
| #include "Support/StringExtras.h" |
| #include <set> |
| |
| NodeType::ArgResultTypes NodeType::Translate(Record *R) { |
| const std::string &Name = R->getName(); |
| if (Name == "DNVT_any") return Any; |
| if (Name == "DNVT_void") return Void; |
| if (Name == "DNVT_val" ) return Val; |
| if (Name == "DNVT_arg0") return Arg0; |
| if (Name == "DNVT_arg1") return Arg1; |
| if (Name == "DNVT_ptr" ) return Ptr; |
| if (Name == "DNVT_i8" ) return I8; |
| throw "Unknown DagNodeValType '" + Name + "'!"; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| /// getValueRecord - Returns the value of this tree node as a record. For now |
| /// we only allow DefInit's as our leaf values, so this is used. |
| Record *TreePatternNode::getValueRecord() const { |
| DefInit *DI = dynamic_cast<DefInit*>(getValue()); |
| assert(DI && "Instruction Selector does not yet support non-def leaves!"); |
| return DI->getDef(); |
| } |
| |
| |
| // updateNodeType - Set the node type of N to VT if VT contains information. If |
| // N already contains a conflicting type, then throw an exception |
| // |
| bool TreePatternNode::updateNodeType(MVT::ValueType VT, |
| const std::string &RecName) { |
| if (VT == MVT::Other || getType() == VT) return false; |
| if (getType() == MVT::Other) { |
| setType(VT); |
| return true; |
| } |
| |
| throw "Type inferfence contradiction found for pattern " + RecName; |
| } |
| |
| /// InstantiateNonterminals - If this pattern refers to any nonterminals which |
| /// are not themselves completely resolved, clone the nonterminal and resolve it |
| /// with the using context we provide. |
| /// |
| void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) { |
| if (!isLeaf()) { |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| getChild(i)->InstantiateNonterminals(ISE); |
| return; |
| } |
| |
| // If this is a leaf, it might be a reference to a nonterminal! Check now. |
| Record *R = getValueRecord(); |
| if (R->isSubClassOf("Nonterminal")) { |
| Pattern *NT = ISE.getPattern(R); |
| if (!NT->isResolved()) { |
| // We found an unresolved nonterminal reference. Ask the ISE to clone |
| // it for us, then update our reference to the fresh, new, resolved, |
| // nonterminal. |
| |
| Value = new DefInit(ISE.InstantiateNonterminal(NT, getType())); |
| } |
| } |
| } |
| |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(Value); |
| } else { |
| std::vector<std::pair<TreePatternNode*, std::string> > CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(std::make_pair(getChild(i)->clone(),getChildName(i))); |
| New = new TreePatternNode(Operator, CChildren); |
| } |
| New->setType(Type); |
| return New; |
| } |
| |
| std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) { |
| if (N.isLeaf()) |
| return OS << N.getType() << ":" << *N.getValue(); |
| OS << "(" << N.getType() << ":"; |
| OS << N.getOperator()->getName(); |
| |
| if (N.getNumChildren() != 0) { |
| OS << " " << *N.getChild(0); |
| for (unsigned i = 1, e = N.getNumChildren(); i != e; ++i) |
| OS << ", " << *N.getChild(i); |
| } |
| return OS << ")"; |
| } |
| |
| void TreePatternNode::dump() const { std::cerr << *this; } |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern implementation |
| // |
| |
| // Parse the specified DagInit into a TreePattern which we can use. |
| // |
| Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec, |
| InstrSelectorEmitter &ise) |
| : PTy(pty), ResultNode(0), TheRecord(TheRec), ISE(ise) { |
| |
| // First, parse the pattern... |
| Tree = ParseTreePattern(RawPat); |
| |
| // Run the type-inference engine... |
| InferAllTypes(); |
| |
| if (PTy == Instruction || PTy == Expander) { |
| // Check to make sure there is not any unset types in the tree pattern... |
| if (!isResolved()) { |
| std::cerr << "In pattern: " << *Tree << "\n"; |
| error("Could not infer all types!"); |
| } |
| |
| // Check to see if we have a top-level (set) of a register. |
| if (Tree->getOperator()->getName() == "set") { |
| assert(Tree->getNumChildren() == 2 && "Set with != 2 arguments?"); |
| if (!Tree->getChild(0)->isLeaf()) |
| error("Arg #0 of set should be a register or register class!"); |
| ResultNode = Tree->getChild(0); |
| ResultName = Tree->getChildName(0); |
| Tree = Tree->getChild(1); |
| } |
| } |
| |
| calculateArgs(Tree, ""); |
| } |
| |
| void Pattern::error(const std::string &Msg) const { |
| std::string M = "In "; |
| switch (PTy) { |
| case Nonterminal: M += "nonterminal "; break; |
| case Instruction: M += "instruction "; break; |
| case Expander : M += "expander "; break; |
| } |
| throw M + TheRecord->getName() + ": " + Msg; |
| } |
| |
| /// calculateArgs - Compute the list of all of the arguments to this pattern, |
| /// which are the non-void leaf nodes in this pattern. |
| /// |
| void Pattern::calculateArgs(TreePatternNode *N, const std::string &Name) { |
| if (N->isLeaf() || N->getNumChildren() == 0) { |
| if (N->getType() != MVT::isVoid) |
| Args.push_back(std::make_pair(N, Name)); |
| } else { |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| calculateArgs(N->getChild(i), N->getChildName(i)); |
| } |
| } |
| |
| /// getIntrinsicType - Check to see if the specified record has an intrinsic |
| /// type which should be applied to it. This infer the type of register |
| /// references from the register file information, for example. |
| /// |
| MVT::ValueType Pattern::getIntrinsicType(Record *R) const { |
| // Check to see if this is a register or a register class... |
| if (R->isSubClassOf("RegisterClass")) |
| return getValueType(R->getValueAsDef("RegType")); |
| else if (R->isSubClassOf("Nonterminal")) |
| return ISE.ReadNonterminal(R)->getTree()->getType(); |
| else if (R->isSubClassOf("Register")) { |
| std::cerr << "WARNING: Explicit registers not handled yet!\n"; |
| return MVT::Other; |
| } |
| |
| error("Unknown value used: " + R->getName()); |
| return MVT::Other; |
| } |
| |
| TreePatternNode *Pattern::ParseTreePattern(DagInit *Dag) { |
| Record *Operator = Dag->getNodeType(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only valid for a leaf node!"); |
| |
| Init *Arg = Dag->getArg(0); |
| TreePatternNode *New; |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| New = new TreePatternNode(DI); |
| // If it's a regclass or something else known, set the type. |
| New->setType(getIntrinsicType(DI->getDef())); |
| } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| New = ParseTreePattern(DI); |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| } |
| |
| // Apply the type cast... |
| New->updateNodeType(getValueType(Operator), TheRecord->getName()); |
| return New; |
| } |
| |
| if (!ISE.getNodeTypes().count(Operator)) |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| std::vector<std::pair<TreePatternNode*, std::string> > Children; |
| |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| Init *Arg = Dag->getArg(i); |
| if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| Children.push_back(std::make_pair(ParseTreePattern(DI), |
| Dag->getArgName(i))); |
| } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DefI->getDef(); |
| // Direct reference to a leaf DagNode? Turn it into a DagNode if its own. |
| if (R->isSubClassOf("DagNode")) { |
| Dag->setArg(i, new DagInit(R, |
| std::vector<std::pair<Init*, std::string> >())); |
| --i; // Revisit this node... |
| } else { |
| Children.push_back(std::make_pair(new TreePatternNode(DefI), |
| Dag->getArgName(i))); |
| // If it's a regclass or something else known, set the type. |
| Children.back().first->setType(getIntrinsicType(R)); |
| } |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| } |
| } |
| |
| return new TreePatternNode(Operator, Children); |
| } |
| |
| void Pattern::InferAllTypes() { |
| bool MadeChange, AnyUnset; |
| do { |
| MadeChange = false; |
| AnyUnset = InferTypes(Tree, MadeChange); |
| } while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange)); |
| Resolved = !AnyUnset; |
| } |
| |
| |
| // InferTypes - Perform type inference on the tree, returning true if there |
| // are any remaining untyped nodes and setting MadeChange if any changes were |
| // made. |
| bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) { |
| if (N->isLeaf()) return N->getType() == MVT::Other; |
| |
| bool AnyUnset = false; |
| Record *Operator = N->getOperator(); |
| const NodeType &NT = ISE.getNodeType(Operator); |
| |
| // Check to see if we can infer anything about the argument types from the |
| // return types... |
| if (N->getNumChildren() != NT.ArgTypes.size()) |
| error("Incorrect number of children for " + Operator->getName() + " node!"); |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| AnyUnset |= InferTypes(Child, MadeChange); |
| |
| switch (NT.ArgTypes[i]) { |
| case NodeType::Any: break; |
| case NodeType::I8: |
| MadeChange |= Child->updateNodeType(MVT::i1, TheRecord->getName()); |
| break; |
| case NodeType::Arg0: |
| MadeChange |= Child->updateNodeType(N->getChild(0)->getType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Arg1: |
| MadeChange |= Child->updateNodeType(N->getChild(1)->getType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Val: |
| if (Child->getType() == MVT::isVoid) |
| error("Inferred a void node in an illegal place!"); |
| break; |
| case NodeType::Ptr: |
| MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Void: |
| MadeChange |= Child->updateNodeType(MVT::isVoid, TheRecord->getName()); |
| break; |
| default: assert(0 && "Invalid argument ArgType!"); |
| } |
| } |
| |
| // See if we can infer anything about the return type now... |
| switch (NT.ResultType) { |
| case NodeType::Any: break; |
| case NodeType::Void: |
| MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName()); |
| break; |
| case NodeType::I8: |
| MadeChange |= N->updateNodeType(MVT::i1, TheRecord->getName()); |
| break; |
| case NodeType::Arg0: |
| MadeChange |= N->updateNodeType(N->getChild(0)->getType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Arg1: |
| MadeChange |= N->updateNodeType(N->getChild(1)->getType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Ptr: |
| MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(), |
| TheRecord->getName()); |
| break; |
| case NodeType::Val: |
| if (N->getType() == MVT::isVoid) |
| error("Inferred a void node in an illegal place!"); |
| break; |
| default: |
| assert(0 && "Unhandled type constraint!"); |
| break; |
| } |
| |
| return AnyUnset | N->getType() == MVT::Other; |
| } |
| |
| /// clone - This method is used to make an exact copy of the current pattern, |
| /// then change the "TheRecord" instance variable to the specified record. |
| /// |
| Pattern *Pattern::clone(Record *R) const { |
| assert(PTy == Nonterminal && "Can only clone nonterminals"); |
| return new Pattern(Tree->clone(), R, Resolved, ISE); |
| } |
| |
| |
| |
| std::ostream &operator<<(std::ostream &OS, const Pattern &P) { |
| switch (P.getPatternType()) { |
| case Pattern::Nonterminal: OS << "Nonterminal pattern "; break; |
| case Pattern::Instruction: OS << "Instruction pattern "; break; |
| case Pattern::Expander: OS << "Expander pattern "; break; |
| } |
| |
| OS << P.getRecord()->getName() << ":\t"; |
| |
| if (Record *Result = P.getResult()) |
| OS << Result->getName() << " = "; |
| OS << *P.getTree(); |
| |
| if (!P.isResolved()) |
| OS << " [not completely resolved]"; |
| return OS; |
| } |
| |
| void Pattern::dump() const { std::cerr << *this; } |
| |
| |
| |
| /// getSlotName - If this is a leaf node, return the slot name that the operand |
| /// will update. |
| std::string Pattern::getSlotName() const { |
| if (getPatternType() == Pattern::Nonterminal) { |
| // Just use the nonterminal name, which will already include the type if |
| // it has been cloned. |
| return getRecord()->getName(); |
| } else { |
| std::string SlotName; |
| if (getResult()) |
| SlotName = getResult()->getName()+"_"; |
| else |
| SlotName = "Void_"; |
| return SlotName + getName(getTree()->getType()); |
| } |
| } |
| |
| /// getSlotName - If this is a leaf node, return the slot name that the |
| /// operand will update. |
| std::string Pattern::getSlotName(Record *R) { |
| if (R->isSubClassOf("Nonterminal")) { |
| // Just use the nonterminal name, which will already include the type if |
| // it has been cloned. |
| return R->getName(); |
| } else if (R->isSubClassOf("RegisterClass")) { |
| MVT::ValueType Ty = getValueType(R->getValueAsDef("RegType")); |
| return R->getName() + "_" + getName(Ty); |
| } else { |
| assert(0 && "Don't know how to get a slot name for this!"); |
| } |
| return ""; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PatternOrganizer implementation |
| // |
| |
| /// addPattern - Add the specified pattern to the appropriate location in the |
| /// collection. |
| void PatternOrganizer::addPattern(Pattern *P) { |
| NodesForSlot &Nodes = AllPatterns[P->getSlotName()]; |
| if (!P->getTree()->isLeaf()) |
| Nodes[P->getTree()->getOperator()].push_back(P); |
| else { |
| // Right now we only support DefInit's with node types... |
| Nodes[P->getTree()->getValueRecord()].push_back(P); |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InstrSelectorEmitter implementation |
| // |
| |
| /// ReadNodeTypes - Read in all of the node types in the current RecordKeeper, |
| /// turning them into the more accessible NodeTypes data structure. |
| /// |
| void InstrSelectorEmitter::ReadNodeTypes() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode"); |
| DEBUG(std::cerr << "Getting node types: "); |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| Record *Node = Nodes[i]; |
| |
| // Translate the return type... |
| NodeType::ArgResultTypes RetTy = |
| NodeType::Translate(Node->getValueAsDef("RetType")); |
| |
| // Translate the arguments... |
| ListInit *Args = Node->getValueAsListInit("ArgTypes"); |
| std::vector<NodeType::ArgResultTypes> ArgTypes; |
| |
| for (unsigned a = 0, e = Args->getSize(); a != e; ++a) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a))) |
| ArgTypes.push_back(NodeType::Translate(DI->getDef())); |
| else |
| throw "In node " + Node->getName() + ", argument is not a Def!"; |
| |
| if (a == 0 && ArgTypes.back() == NodeType::Arg0) |
| throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!"; |
| if (a == 1 && ArgTypes.back() == NodeType::Arg1) |
| throw "In node " + Node->getName() + ", arg 1 cannot have type 'arg1'!"; |
| } |
| if ((RetTy == NodeType::Arg0 && Args->getSize() == 0) || |
| (RetTy == NodeType::Arg1 && Args->getSize() < 2)) |
| throw "In node " + Node->getName() + |
| ", invalid return type for node with this many operands!"; |
| |
| // Add the node type mapping now... |
| NodeTypes[Node] = NodeType(RetTy, ArgTypes); |
| DEBUG(std::cerr << Node->getName() << ", "); |
| } |
| DEBUG(std::cerr << "DONE!\n"); |
| } |
| |
| Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) { |
| Pattern *&P = Patterns[R]; |
| if (P) return P; // Don't reread it! |
| |
| DagInit *DI = R->getValueAsDag("Pattern"); |
| P = new Pattern(Pattern::Nonterminal, DI, R, *this); |
| DEBUG(std::cerr << "Parsed " << *P << "\n"); |
| return P; |
| } |
| |
| |
| // ReadNonTerminals - Read in all nonterminals and incorporate them into our |
| // pattern database. |
| void InstrSelectorEmitter::ReadNonterminals() { |
| std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal"); |
| for (unsigned i = 0, e = NTs.size(); i != e; ++i) |
| ReadNonterminal(NTs[i]); |
| } |
| |
| |
| /// ReadInstructionPatterns - Read in all subclasses of Instruction, and process |
| /// those with a useful Pattern field. |
| /// |
| void InstrSelectorEmitter::ReadInstructionPatterns() { |
| std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) { |
| Record *Inst = Insts[i]; |
| if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) { |
| Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this); |
| DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n"); |
| } |
| } |
| } |
| |
| /// ReadExpanderPatterns - Read in all expander patterns... |
| /// |
| void InstrSelectorEmitter::ReadExpanderPatterns() { |
| std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander"); |
| for (unsigned i = 0, e = Expanders.size(); i != e; ++i) { |
| Record *Expander = Expanders[i]; |
| DagInit *DI = Expander->getValueAsDag("Pattern"); |
| Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this); |
| DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n"); |
| } |
| } |
| |
| |
| // InstantiateNonterminals - Instantiate any unresolved nonterminals with |
| // information from the context that they are used in. |
| // |
| void InstrSelectorEmitter::InstantiateNonterminals() { |
| DEBUG(std::cerr << "Instantiating nonterminals:\n"); |
| for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), |
| E = Patterns.end(); I != E; ++I) |
| if (I->second->isResolved()) |
| I->second->InstantiateNonterminals(); |
| } |
| |
| /// InstantiateNonterminal - This method takes the nonterminal specified by |
| /// NT, which should not be completely resolved, clones it, applies ResultTy |
| /// to its root, then runs the type inference stuff on it. This should |
| /// produce a newly resolved nonterminal, which we make a record for and |
| /// return. To be extra fancy and efficient, this only makes one clone for |
| /// each type it is instantiated with. |
| Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT, |
| MVT::ValueType ResultTy) { |
| assert(!NT->isResolved() && "Nonterminal is already resolved!"); |
| |
| // Check to see if we have already instantiated this pair... |
| Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)]; |
| if (Slot) return Slot; |
| |
| Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy)); |
| |
| // Copy over the superclasses... |
| const std::vector<Record*> &SCs = NT->getRecord()->getSuperClasses(); |
| for (unsigned i = 0, e = SCs.size(); i != e; ++i) |
| New->addSuperClass(SCs[i]); |
| |
| DEBUG(std::cerr << " Nonterminal '" << NT->getRecord()->getName() |
| << "' for type '" << getName(ResultTy) << "', producing '" |
| << New->getName() << "'\n"); |
| |
| // Copy the pattern... |
| Pattern *NewPat = NT->clone(New); |
| |
| // Apply the type to the root... |
| NewPat->getTree()->updateNodeType(ResultTy, New->getName()); |
| |
| // Infer types... |
| NewPat->InferAllTypes(); |
| |
| // Make sure everything is good to go now... |
| if (!NewPat->isResolved()) |
| NewPat->error("Instantiating nonterminal did not resolve all types!"); |
| |
| // Add the pattern to the patterns map, add the record to the RecordKeeper, |
| // return the new record. |
| Patterns[New] = NewPat; |
| Records.addDef(New); |
| return Slot = New; |
| } |
| |
| // CalculateComputableValues - Fill in the ComputableValues map through |
| // analysis of the patterns we are playing with. |
| void InstrSelectorEmitter::CalculateComputableValues() { |
| // Loop over all of the patterns, adding them to the ComputableValues map |
| for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), |
| E = Patterns.end(); I != E; ++I) |
| if (I->second->isResolved()) { |
| // We don't want to add patterns like R32 = R32. This is a hack working |
| // around a special case of a general problem, but for now we explicitly |
| // forbid these patterns. They can never match anyway. |
| Pattern *P = I->second; |
| if (!P->getResult() || !P->getTree()->isLeaf() || |
| P->getResult() != P->getTree()->getValueRecord()) |
| ComputableValues.addPattern(P); |
| } |
| } |
| |
| #if 0 |
| // MoveIdenticalPatterns - Given a tree pattern 'P', move all of the tree |
| // patterns which have the same top-level structure as P from the 'From' list to |
| // the 'To' list. |
| static void MoveIdenticalPatterns(TreePatternNode *P, |
| std::vector<std::pair<Pattern*, TreePatternNode*> > &From, |
| std::vector<std::pair<Pattern*, TreePatternNode*> > &To) { |
| assert(!P->isLeaf() && "All leaves are identical!"); |
| |
| const std::vector<TreePatternNode*> &PChildren = P->getChildren(); |
| for (unsigned i = 0; i != From.size(); ++i) { |
| TreePatternNode *N = From[i].second; |
| assert(P->getOperator() == N->getOperator() &&"Differing operators?"); |
| assert(PChildren.size() == N->getChildren().size() && |
| "Nodes with different arity??"); |
| bool isDifferent = false; |
| for (unsigned c = 0, e = PChildren.size(); c != e; ++c) { |
| TreePatternNode *PC = PChildren[c]; |
| TreePatternNode *NC = N->getChild(c); |
| if (PC->isLeaf() != NC->isLeaf()) { |
| isDifferent = true; |
| break; |
| } |
| |
| if (!PC->isLeaf()) { |
| if (PC->getOperator() != NC->getOperator()) { |
| isDifferent = true; |
| break; |
| } |
| } else { // It's a leaf! |
| if (PC->getValueRecord() != NC->getValueRecord()) { |
| isDifferent = true; |
| break; |
| } |
| } |
| } |
| // If it's the same as the reference one, move it over now... |
| if (!isDifferent) { |
| To.push_back(std::make_pair(From[i].first, N)); |
| From.erase(From.begin()+i); |
| --i; // Don't skip an entry... |
| } |
| } |
| } |
| #endif |
| |
| static std::string getNodeName(Record *R) { |
| RecordVal *RV = R->getValue("EnumName"); |
| if (RV) |
| if (Init *I = RV->getValue()) |
| if (StringInit *SI = dynamic_cast<StringInit*>(I)) |
| return SI->getValue(); |
| return R->getName(); |
| } |
| |
| |
| static void EmitPatternPredicates(TreePatternNode *Tree, |
| const std::string &VarName, std::ostream &OS){ |
| OS << " && " << VarName << "->getNodeType() == ISD::" |
| << getNodeName(Tree->getOperator()); |
| |
| for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) |
| if (!Tree->getChild(c)->isLeaf()) |
| EmitPatternPredicates(Tree->getChild(c), |
| VarName + "->getUse(" + utostr(c)+")", OS); |
| } |
| |
| static void EmitPatternCosts(TreePatternNode *Tree, const std::string &VarName, |
| std::ostream &OS) { |
| for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) |
| if (Tree->getChild(c)->isLeaf()) { |
| OS << " + Match_" |
| << Pattern::getSlotName(Tree->getChild(c)->getValueRecord()) << "(" |
| << VarName << "->getUse(" << c << "))"; |
| } else { |
| EmitPatternCosts(Tree->getChild(c), |
| VarName + "->getUse(" + utostr(c) + ")", OS); |
| } |
| } |
| |
| |
| // EmitMatchCosters - Given a list of patterns, which all have the same root |
| // pattern operator, emit an efficient decision tree to decide which one to |
| // pick. This is structured this way to avoid reevaluations of non-obvious |
| // subexpressions. |
| void InstrSelectorEmitter::EmitMatchCosters(std::ostream &OS, |
| const std::vector<std::pair<Pattern*, TreePatternNode*> > &Patterns, |
| const std::string &VarPrefix, |
| unsigned IndentAmt) { |
| assert(!Patterns.empty() && "No patterns to emit matchers for!"); |
| std::string Indent(IndentAmt, ' '); |
| |
| // Load all of the operands of the root node into scalars for fast access |
| const NodeType &ONT = getNodeType(Patterns[0].second->getOperator()); |
| for (unsigned i = 0, e = ONT.ArgTypes.size(); i != e; ++i) |
| OS << Indent << "SelectionDAGNode *" << VarPrefix << "_Op" << i |
| << " = N->getUse(" << i << ");\n"; |
| |
| // Compute the costs of computing the various nonterminals/registers, which |
| // are directly used at this level. |
| OS << "\n" << Indent << "// Operand matching costs...\n"; |
| std::set<std::string> ComputedValues; // Avoid duplicate computations... |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| TreePatternNode *NParent = Patterns[i].second; |
| for (unsigned c = 0, e = NParent->getNumChildren(); c != e; ++c) { |
| TreePatternNode *N = NParent->getChild(c); |
| if (N->isLeaf()) { |
| Record *VR = N->getValueRecord(); |
| const std::string &LeafName = VR->getName(); |
| std::string OpName = VarPrefix + "_Op" + utostr(c); |
| std::string ValName = OpName + "_" + LeafName + "_Cost"; |
| if (!ComputedValues.count(ValName)) { |
| OS << Indent << "unsigned " << ValName << " = Match_" |
| << Pattern::getSlotName(VR) << "(" << OpName << ");\n"; |
| ComputedValues.insert(ValName); |
| } |
| } |
| } |
| } |
| OS << "\n"; |
| |
| |
| std::string LocCostName = VarPrefix + "_Cost"; |
| OS << Indent << "unsigned " << LocCostName << "Min = ~0U >> 1;\n" |
| << Indent << "unsigned " << VarPrefix << "_PatternMin = NoMatchPattern;\n"; |
| |
| #if 0 |
| // Separate out all of the patterns into groups based on what their top-level |
| // signature looks like... |
| std::vector<std::pair<Pattern*, TreePatternNode*> > PatternsLeft(Patterns); |
| while (!PatternsLeft.empty()) { |
| // Process all of the patterns that have the same signature as the last |
| // element... |
| std::vector<std::pair<Pattern*, TreePatternNode*> > Group; |
| MoveIdenticalPatterns(PatternsLeft.back().second, PatternsLeft, Group); |
| assert(!Group.empty() && "Didn't at least pick the source pattern?"); |
| |
| #if 0 |
| OS << "PROCESSING GROUP:\n"; |
| for (unsigned i = 0, e = Group.size(); i != e; ++i) |
| OS << " " << *Group[i].first << "\n"; |
| OS << "\n\n"; |
| #endif |
| |
| OS << Indent << "{ // "; |
| |
| if (Group.size() != 1) { |
| OS << Group.size() << " size group...\n"; |
| OS << Indent << " unsigned " << VarPrefix << "_Pattern = NoMatch;\n"; |
| } else { |
| OS << *Group[0].first << "\n"; |
| OS << Indent << " unsigned " << VarPrefix << "_Pattern = " |
| << Group[0].first->getRecord()->getName() << "_Pattern;\n"; |
| } |
| |
| OS << Indent << " unsigned " << LocCostName << " = "; |
| if (Group.size() == 1) |
| OS << "1;\n"; // Add inst cost if at individual rec |
| else |
| OS << "0;\n"; |
| |
| // Loop over all of the operands, adding in their costs... |
| TreePatternNode *N = Group[0].second; |
| const std::vector<TreePatternNode*> &Children = N->getChildren(); |
| |
| // If necessary, emit conditionals to check for the appropriate tree |
| // structure here... |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) { |
| TreePatternNode *C = Children[i]; |
| if (C->isLeaf()) { |
| // We already calculated the cost for this leaf, add it in now... |
| OS << Indent << " " << LocCostName << " += " |
| << VarPrefix << "_Op" << utostr(i) << "_" |
| << C->getValueRecord()->getName() << "_Cost;\n"; |
| } else { |
| // If it's not a leaf, we have to check to make sure that the current |
| // node has the appropriate structure, then recurse into it... |
| OS << Indent << " if (" << VarPrefix << "_Op" << i |
| << "->getNodeType() == ISD::" << getNodeName(C->getOperator()) |
| << ") {\n"; |
| std::vector<std::pair<Pattern*, TreePatternNode*> > SubPatterns; |
| for (unsigned n = 0, e = Group.size(); n != e; ++n) |
| SubPatterns.push_back(std::make_pair(Group[n].first, |
| Group[n].second->getChild(i))); |
| EmitMatchCosters(OS, SubPatterns, VarPrefix+"_Op"+utostr(i), |
| IndentAmt + 4); |
| OS << Indent << " }\n"; |
| } |
| } |
| |
| // If the cost for this match is less than the minimum computed cost so far, |
| // update the minimum cost and selected pattern. |
| OS << Indent << " if (" << LocCostName << " < " << LocCostName << "Min) { " |
| << LocCostName << "Min = " << LocCostName << "; " << VarPrefix |
| << "_PatternMin = " << VarPrefix << "_Pattern; }\n"; |
| |
| OS << Indent << "}\n"; |
| } |
| #endif |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| Pattern *P = Patterns[i].first; |
| TreePatternNode *PTree = P->getTree(); |
| unsigned PatternCost = 1; |
| |
| // Check to see if there are any non-leaf elements in the pattern. If so, |
| // we need to emit a predicate for this match. |
| bool AnyNonLeaf = false; |
| for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) |
| if (!PTree->getChild(c)->isLeaf()) { |
| AnyNonLeaf = true; |
| break; |
| } |
| |
| if (!AnyNonLeaf) { // No predicate necessary, just output a scope... |
| OS << " {// " << *P << "\n"; |
| } else { |
| // We need to emit a predicate to make sure the tree pattern matches, do |
| // so now... |
| OS << " if (1"; |
| for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) |
| if (!PTree->getChild(c)->isLeaf()) |
| EmitPatternPredicates(PTree->getChild(c), |
| VarPrefix + "_Op" + utostr(c), OS); |
| |
| OS << ") {\n // " << *P << "\n"; |
| } |
| |
| OS << " unsigned PatCost = " << PatternCost; |
| |
| for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) |
| if (PTree->getChild(c)->isLeaf()) { |
| OS << " + " << VarPrefix << "_Op" << c << "_" |
| << PTree->getChild(c)->getValueRecord()->getName() << "_Cost"; |
| } else { |
| EmitPatternCosts(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS); |
| } |
| OS << ";\n"; |
| OS << " if (PatCost < MinCost) { MinCost = PatCost; Pattern = " |
| << P->getRecord()->getName() << "_Pattern; }\n" |
| << " }\n"; |
| } |
| } |
| |
| static void ReduceAllOperands(TreePatternNode *N, const std::string &Name, |
| std::vector<std::pair<TreePatternNode*, std::string> > &Operands, |
| std::ostream &OS) { |
| if (N->isLeaf()) { |
| // If this is a leaf, register or nonterminal reference... |
| std::string SlotName = Pattern::getSlotName(N->getValueRecord()); |
| OS << " ReducedValue_" << SlotName << " *" << Name << "Val = Reduce_" |
| << SlotName << "(" << Name << ", MBB);\n"; |
| Operands.push_back(std::make_pair(N, Name+"Val")); |
| } else if (N->getNumChildren() == 0) { |
| // This is a reference to a leaf tree node, like an immediate or frame |
| // index. |
| if (N->getType() != MVT::isVoid) { |
| std::string SlotName = |
| getNodeName(N->getOperator()) + "_" + getName(N->getType()); |
| OS << " ReducedValue_" << SlotName << " *" << Name << "Val = " |
| << Name << "->getValue<ReducedValue_" << SlotName << ">(ISD::" |
| << SlotName << "_Slot);\n"; |
| Operands.push_back(std::make_pair(N, Name+"Val")); |
| } |
| } else { |
| // Otherwise this is an interior node... |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| std::string ChildName = Name + "_Op" + utostr(i); |
| OS << " SelectionDAGNode *" << ChildName << " = " << Name |
| << "->getUse(" << i << ");\n"; |
| ReduceAllOperands(N->getChild(i), ChildName, Operands, OS); |
| } |
| } |
| } |
| |
| /// PrintExpanderOperand - Print out Arg as part of the instruction emission |
| /// process for the expander pattern P. This argument may be referencing some |
| /// values defined in P, or may just be physical register references or |
| /// something like that. If PrintArg is true, we are printing out arguments to |
| /// the BuildMI call. If it is false, we are printing the result register |
| /// name. |
| void InstrSelectorEmitter::PrintExpanderOperand(Init *Arg, |
| const std::string &NameVar, |
| TreePatternNode *ArgDeclNode, |
| Pattern *P, bool PrintArg, |
| std::ostream &OS) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| Record *Arg = DI->getDef(); |
| if (!ArgDeclNode->isLeaf() && ArgDeclNode->getNumChildren() != 0) |
| P->error("Expected leaf node as argument!"); |
| Record *ArgDecl = ArgDeclNode->isLeaf() ? ArgDeclNode->getValueRecord() : |
| ArgDeclNode->getOperator(); |
| if (Arg->isSubClassOf("Register")) { |
| // This is a physical register reference... make sure that the instruction |
| // requested a register! |
| if (!ArgDecl->isSubClassOf("RegisterClass")) |
| P->error("Argument mismatch for instruction pattern!"); |
| |
| // FIXME: This should check to see if the register is in the specified |
| // register class! |
| if (PrintArg) OS << ".addReg("; |
| OS << getQualifiedName(Arg); |
| if (PrintArg) OS << ")"; |
| return; |
| } else if (Arg->isSubClassOf("RegisterClass")) { |
| // If this is a symbolic register class reference, we must be using a |
| // named value. |
| if (NameVar.empty()) P->error("Did not specify WHICH register to pass!"); |
| if (Arg != ArgDecl) P->error("Instruction pattern mismatch!"); |
| |
| if (PrintArg) OS << ".addReg("; |
| OS << NameVar; |
| if (PrintArg) OS << ")"; |
| return; |
| } else if (Arg->getName() == "frameidx") { |
| if (!PrintArg) P->error("Cannot define a new frameidx value!"); |
| OS << ".addFrameIndex(" << NameVar << ")"; |
| return; |
| } else if (Arg->getName() == "basicblock") { |
| if (!PrintArg) P->error("Cannot define a new basicblock value!"); |
| OS << ".addMBB(" << NameVar << ")"; |
| return; |
| } |
| P->error("Unknown operand type '" + Arg->getName() + "' to expander!"); |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| if (!NameVar.empty()) |
| P->error("Illegal to specify a name for a constant initializer arg!"); |
| |
| // Hack this check to allow R32 values with 0 as the initializer for memory |
| // references... FIXME! |
| if (ArgDeclNode->isLeaf() && II->getValue() == 0 && |
| ArgDeclNode->getValueRecord()->getName() == "R32") { |
| OS << ".addReg(0)"; |
| } else { |
| if (ArgDeclNode->isLeaf() || ArgDeclNode->getOperator()->getName()!="imm") |
| P->error("Illegal immediate int value '" + itostr(II->getValue()) + |
| "' operand!"); |
| OS << ".addZImm(" << II->getValue() << ")"; |
| } |
| return; |
| } |
| P->error("Unknown operand type to expander!"); |
| } |
| |
| static std::string getArgName(Pattern *P, const std::string &ArgName, |
| const std::vector<std::pair<TreePatternNode*, std::string> > &Operands) { |
| assert(P->getNumArgs() == Operands.size() &&"Argument computation mismatch!"); |
| if (ArgName.empty()) return ""; |
| |
| for (unsigned i = 0, e = P->getNumArgs(); i != e; ++i) |
| if (P->getArgName(i) == ArgName) |
| return Operands[i].second + "->Val"; |
| |
| if (ArgName == P->getResultName()) |
| return "NewReg"; |
| P->error("Pattern does not define a value named $" + ArgName + "!"); |
| return ""; |
| } |
| |
| |
| void InstrSelectorEmitter::run(std::ostream &OS) { |
| // Type-check all of the node types to ensure we "understand" them. |
| ReadNodeTypes(); |
| |
| // Read in all of the nonterminals, instructions, and expanders... |
| ReadNonterminals(); |
| ReadInstructionPatterns(); |
| ReadExpanderPatterns(); |
| |
| // Instantiate any unresolved nonterminals with information from the context |
| // that they are used in. |
| InstantiateNonterminals(); |
| |
| // Clear InstantiatedNTs, we don't need it anymore... |
| InstantiatedNTs.clear(); |
| |
| DEBUG(std::cerr << "Patterns acquired:\n"); |
| for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), |
| E = Patterns.end(); I != E; ++I) |
| if (I->second->isResolved()) |
| DEBUG(std::cerr << " " << *I->second << "\n"); |
| |
| CalculateComputableValues(); |
| |
| EmitSourceFileHeader("Instruction Selector for the " + Target.getName() + |
| " target", OS); |
| OS << "#include \"llvm/CodeGen/MachineInstrBuilder.h\"\n"; |
| |
| // Output the slot number enums... |
| OS << "\nenum { // Slot numbers...\n" |
| << " LastBuiltinSlot = ISD::NumBuiltinSlots-1, // Start numbering here\n"; |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) |
| OS << " " << I->first << "_Slot,\n"; |
| OS << " NumSlots\n};\n\n// Reduction value typedefs...\n"; |
| |
| // Output the reduction value typedefs... |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) { |
| |
| OS << "typedef ReducedValue<unsigned, " << I->first |
| << "_Slot> ReducedValue_" << I->first << ";\n"; |
| } |
| |
| // Output the pattern enums... |
| OS << "\n\n" |
| << "enum { // Patterns...\n" |
| << " NotComputed = 0,\n" |
| << " NoMatchPattern, \n"; |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) { |
| OS << " // " << I->first << " patterns...\n"; |
| for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), |
| E = I->second.end(); J != E; ++J) |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| OS << " " << J->second[i]->getRecord()->getName() << "_Pattern,\n"; |
| } |
| OS << "};\n\n"; |
| |
| //===--------------------------------------------------------------------===// |
| // Emit the class definition... |
| // |
| OS << "namespace {\n" |
| << " class " << Target.getName() << "ISel {\n" |
| << " SelectionDAG &DAG;\n" |
| << " public:\n" |
| << " X86ISel(SelectionDAG &D) : DAG(D) {}\n" |
| << " void generateCode();\n" |
| << " private:\n" |
| << " unsigned makeAnotherReg(const TargetRegisterClass *RC) {\n" |
| << " return DAG.getMachineFunction().getSSARegMap()->createVirt" |
| "ualRegister(RC);\n" |
| << " }\n\n" |
| << " // DAG matching methods for classes... all of these methods" |
| " return the cost\n" |
| << " // of producing a value of the specified class and type, which" |
| " also gets\n" |
| << " // added to the DAG node.\n"; |
| |
| // Output all of the matching prototypes for slots... |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) |
| OS << " unsigned Match_" << I->first << "(SelectionDAGNode *N);\n"; |
| OS << "\n // DAG matching methods for DAG nodes...\n"; |
| |
| // Output all of the matching prototypes for slot/node pairs |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) |
| for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), |
| E = I->second.end(); J != E; ++J) |
| OS << " unsigned Match_" << I->first << "_" << getNodeName(J->first) |
| << "(SelectionDAGNode *N);\n"; |
| |
| // Output all of the dag reduction methods prototypes... |
| OS << "\n // DAG reduction methods...\n"; |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) |
| OS << " ReducedValue_" << I->first << " *Reduce_" << I->first |
| << "(SelectionDAGNode *N,\n" << std::string(27+2*I->first.size(), ' ') |
| << "MachineBasicBlock *MBB);\n"; |
| OS << " };\n}\n\n"; |
| |
| // Emit the generateCode entry-point... |
| OS << "void X86ISel::generateCode() {\n" |
| << " SelectionDAGNode *Root = DAG.getRoot();\n" |
| << " assert(Root->getValueType() == MVT::isVoid && " |
| "\"Root of DAG produces value??\");\n\n" |
| << " std::cerr << \"\\n\";\n" |
| << " unsigned Cost = Match_Void_void(Root);\n" |
| << " if (Cost >= ~0U >> 1) {\n" |
| << " std::cerr << \"Match failed!\\n\";\n" |
| << " Root->dump();\n" |
| << " abort();\n" |
| << " }\n\n" |
| << " std::cerr << \"Total DAG Cost: \" << Cost << \"\\n\\n\";\n\n" |
| << " Reduce_Void_void(Root, 0);\n" |
| << "}\n\n" |
| << "//===" << std::string(70, '-') << "===//\n" |
| << "// Matching methods...\n" |
| << "//\n\n"; |
| |
| //===--------------------------------------------------------------------===// |
| // Emit all of the matcher methods... |
| // |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) { |
| const std::string &SlotName = I->first; |
| OS << "unsigned " << Target.getName() << "ISel::Match_" << SlotName |
| << "(SelectionDAGNode *N) {\n" |
| << " assert(N->getValueType() == MVT::" |
| << getEnumName((*I->second.begin()).second[0]->getTree()->getType()) |
| << ");\n" << " // If we already have a cost available for " << SlotName |
| << " use it!\n" |
| << " if (N->getPatternFor(" << SlotName << "_Slot))\n" |
| << " return N->getCostFor(" << SlotName << "_Slot);\n\n" |
| << " unsigned Cost;\n" |
| << " switch (N->getNodeType()) {\n" |
| << " default: Cost = ~0U >> 1; // Match failed\n" |
| << " N->setPatternCostFor(" << SlotName << "_Slot, NoMatchPattern, Cost, NumSlots);\n" |
| << " break;\n"; |
| |
| for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), |
| E = I->second.end(); J != E; ++J) |
| if (!J->first->isSubClassOf("Nonterminal")) |
| OS << " case ISD::" << getNodeName(J->first) << ":\tCost = Match_" |
| << SlotName << "_" << getNodeName(J->first) << "(N); break;\n"; |
| OS << " }\n"; // End of the switch statement |
| |
| // Emit any patterns which have a nonterminal leaf as the RHS. These may |
| // match multiple root nodes, so they cannot be handled with the switch... |
| for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), |
| E = I->second.end(); J != E; ++J) |
| if (J->first->isSubClassOf("Nonterminal")) { |
| OS << " unsigned " << J->first->getName() << "_Cost = Match_" |
| << getNodeName(J->first) << "(N);\n" |
| << " if (" << getNodeName(J->first) << "_Cost < Cost) Cost = " |
| << getNodeName(J->first) << "_Cost;\n"; |
| } |
| |
| OS << " return Cost;\n}\n\n"; |
| |
| for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), |
| E = I->second.end(); J != E; ++J) { |
| Record *Operator = J->first; |
| bool isNonterm = Operator->isSubClassOf("Nonterminal"); |
| if (!isNonterm) { |
| OS << "unsigned " << Target.getName() << "ISel::Match_"; |
| if (!isNonterm) OS << SlotName << "_"; |
| OS << getNodeName(Operator) << "(SelectionDAGNode *N) {\n" |
| << " unsigned Pattern = NoMatchPattern;\n" |
| << " unsigned MinCost = ~0U >> 1;\n"; |
| |
| std::vector<std::pair<Pattern*, TreePatternNode*> > Patterns; |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| Patterns.push_back(std::make_pair(J->second[i], |
| J->second[i]->getTree())); |
| EmitMatchCosters(OS, Patterns, "N", 2); |
| |
| OS << "\n N->setPatternCostFor(" << SlotName |
| << "_Slot, Pattern, MinCost, NumSlots);\n" |
| << " return MinCost;\n" |
| << "}\n"; |
| } |
| } |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emit all of the reducer methods... |
| // |
| OS << "\n\n//===" << std::string(70, '-') << "===//\n" |
| << "// Reducer methods...\n" |
| << "//\n"; |
| |
| for (PatternOrganizer::iterator I = ComputableValues.begin(), |
| E = ComputableValues.end(); I != E; ++I) { |
| const std::string &SlotName = I->first; |
| OS << "ReducedValue_" << SlotName << " *" << Target.getName() |
| << "ISel::Reduce_" << SlotName |
| << "(SelectionDAGNode *N, MachineBasicBlock *MBB) {\n" |
| << " ReducedValue_" << SlotName << " *Val = N->hasValue<ReducedValue_" |
| << SlotName << ">(" << SlotName << "_Slot);\n" |
| << " if (Val) return Val;\n" |
| << " if (N->getBB()) MBB = N->getBB();\n\n" |
| << " switch (N->getPatternFor(" << SlotName << "_Slot)) {\n"; |
| |
| // Loop over all of the patterns that can produce a value for this slot... |
| PatternOrganizer::NodesForSlot &NodesForSlot = I->second; |
| for (PatternOrganizer::NodesForSlot::iterator J = NodesForSlot.begin(), |
| E = NodesForSlot.end(); J != E; ++J) |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) { |
| Pattern *P = J->second[i]; |
| OS << " case " << P->getRecord()->getName() << "_Pattern: {\n" |
| << " // " << *P << "\n"; |
| // Loop over the operands, reducing them... |
| std::vector<std::pair<TreePatternNode*, std::string> > Operands; |
| ReduceAllOperands(P->getTree(), "N", Operands, OS); |
| |
| // Now that we have reduced all of our operands, and have the values |
| // that reduction produces, perform the reduction action for this |
| // pattern. |
| std::string Result; |
| |
| // If the pattern produces a register result, generate a new register |
| // now. |
| if (Record *R = P->getResult()) { |
| assert(R->isSubClassOf("RegisterClass") && |
| "Only handle register class results so far!"); |
| OS << " unsigned NewReg = makeAnotherReg(" << Target.getName() |
| << "::" << R->getName() << "RegisterClass);\n"; |
| Result = "NewReg"; |
| DEBUG(OS << " std::cerr << \"%reg\" << NewReg << \" =\t\";\n"); |
| } else { |
| DEBUG(OS << " std::cerr << \"\t\t\";\n"); |
| Result = "0"; |
| } |
| |
| // Print out the pattern that matched... |
| DEBUG(OS << " std::cerr << \" " << P->getRecord()->getName() <<'"'); |
| DEBUG(for (unsigned i = 0, e = Operands.size(); i != e; ++i) |
| if (Operands[i].first->isLeaf()) { |
| Record *RV = Operands[i].first->getValueRecord(); |
| assert(RV->isSubClassOf("RegisterClass") && |
| "Only handles registers here so far!"); |
| OS << " << \" %reg\" << " << Operands[i].second |
| << "->Val"; |
| } else { |
| OS << " << ' ' << " << Operands[i].second |
| << "->Val"; |
| }); |
| DEBUG(OS << " << \"\\n\";\n"); |
| |
| // Generate the reduction code appropriate to the particular type of |
| // pattern that this is... |
| switch (P->getPatternType()) { |
| case Pattern::Instruction: |
| // Instruction patterns just emit a single MachineInstr, using BuildMI |
| OS << " BuildMI(MBB, " << Target.getName() << "::" |
| << P->getRecord()->getName() << ", " << Operands.size(); |
| if (P->getResult()) OS << ", NewReg"; |
| OS << ")"; |
| |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| TreePatternNode *Op = Operands[i].first; |
| if (Op->isLeaf()) { |
| Record *RV = Op->getValueRecord(); |
| assert(RV->isSubClassOf("RegisterClass") && |
| "Only handles registers here so far!"); |
| OS << ".addReg(" << Operands[i].second << "->Val)"; |
| } else if (Op->getOperator()->getName() == "imm") { |
| OS << ".addZImm(" << Operands[i].second << "->Val)"; |
| } else if (Op->getOperator()->getName() == "basicblock") { |
| OS << ".addMBB(" << Operands[i].second << "->Val)"; |
| } else { |
| assert(0 && "Unknown value type!"); |
| } |
| } |
| OS << ";\n"; |
| break; |
| case Pattern::Expander: { |
| // Expander patterns emit one machine instr for each instruction in |
| // the list of instructions expanded to. |
| ListInit *Insts = P->getRecord()->getValueAsListInit("Result"); |
| for (unsigned IN = 0, e = Insts->getSize(); IN != e; ++IN) { |
| DagInit *DIInst = dynamic_cast<DagInit*>(Insts->getElement(IN)); |
| if (!DIInst) P->error("Result list must contain instructions!"); |
| Record *InstRec = DIInst->getNodeType(); |
| Pattern *InstPat = getPattern(InstRec); |
| if (!InstPat || InstPat->getPatternType() != Pattern::Instruction) |
| P->error("Instruction list must contain Instruction patterns!"); |
| |
| bool hasResult = InstPat->getResult() != 0; |
| if (InstPat->getNumArgs() != DIInst->getNumArgs()-hasResult) { |
| P->error("Incorrect number of arguments specified for inst '" + |
| InstPat->getRecord()->getName() + "' in result list!"); |
| } |
| |
| // Start emission of the instruction... |
| OS << " BuildMI(MBB, " << Target.getName() << "::" |
| << InstRec->getName() << ", " |
| << DIInst->getNumArgs()-hasResult; |
| // Emit register result if necessary.. |
| if (hasResult) { |
| std::string ArgNameVal = |
| getArgName(P, DIInst->getArgName(0), Operands); |
| PrintExpanderOperand(DIInst->getArg(0), ArgNameVal, |
| InstPat->getResultNode(), P, false, |
| OS << ", "); |
| } |
| OS << ")"; |
| |
| for (unsigned i = hasResult, e = DIInst->getNumArgs(); i != e; ++i){ |
| std::string ArgNameVal = |
| getArgName(P, DIInst->getArgName(i), Operands); |
| |
| PrintExpanderOperand(DIInst->getArg(i), ArgNameVal, |
| InstPat->getArg(i-hasResult), P, true, OS); |
| } |
| |
| OS << ";\n"; |
| } |
| break; |
| } |
| default: |
| assert(0 && "Reduction of this type of pattern not implemented!"); |
| } |
| |
| OS << " Val = new ReducedValue_" << SlotName << "(" << Result<<");\n" |
| << " break;\n" |
| << " }\n"; |
| } |
| |
| |
| OS << " default: assert(0 && \"Unknown " << SlotName << " pattern!\");\n" |
| << " }\n\n N->addValue(Val); // Do not ever recalculate this\n" |
| << " return Val;\n}\n\n"; |
| } |
| } |
| |