| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by James M. Laskey and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a simple two pass scheduler. The first pass attempts to push |
| // backward any lengthy instructions and critical paths. The second pass packs |
| // instructions into semi-optimal time slots. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetInstrItineraries.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Constant.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| |
| /// CountResults - The results of target nodes have register or immediate |
| /// operands first, then an optional chain, and optional flag operands (which do |
| /// not go into the machine instrs.) |
| static unsigned CountResults(SDNode *Node) { |
| unsigned N = Node->getNumValues(); |
| while (N && Node->getValueType(N - 1) == MVT::Flag) |
| --N; |
| if (N && Node->getValueType(N - 1) == MVT::Other) |
| --N; // Skip over chain result. |
| return N; |
| } |
| |
| /// CountOperands The inputs to target nodes have any actual inputs first, |
| /// followed by an optional chain operand, then flag operands. Compute the |
| /// number of actual operands that will go into the machine instr. |
| static unsigned CountOperands(SDNode *Node) { |
| unsigned N = Node->getNumOperands(); |
| while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) |
| --N; |
| if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) |
| --N; // Ignore chain if it exists. |
| return N; |
| } |
| |
| /// PrepareNodeInfo - Set up the basic minimum node info for scheduling. |
| /// |
| void ScheduleDAG::PrepareNodeInfo() { |
| // Allocate node information |
| Info = new NodeInfo[NodeCount]; |
| |
| unsigned i = 0; |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = DAG.allnodes_end(); I != E; ++I, ++i) { |
| // Fast reference to node schedule info |
| NodeInfo* NI = &Info[i]; |
| // Set up map |
| Map[I] = NI; |
| // Set node |
| NI->Node = I; |
| // Set pending visit count |
| NI->setPending(I->use_size()); |
| } |
| } |
| |
| /// IdentifyGroups - Put flagged nodes into groups. |
| /// |
| void ScheduleDAG::IdentifyGroups() { |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| NodeInfo* NI = &Info[i]; |
| SDNode *Node = NI->Node; |
| |
| // For each operand (in reverse to only look at flags) |
| for (unsigned N = Node->getNumOperands(); 0 < N--;) { |
| // Get operand |
| SDOperand Op = Node->getOperand(N); |
| // No more flags to walk |
| if (Op.getValueType() != MVT::Flag) break; |
| // Add to node group |
| AddToGroup(getNI(Op.Val), NI); |
| // Let everyone else know |
| HasGroups = true; |
| } |
| } |
| } |
| |
| static unsigned CreateVirtualRegisters(MachineInstr *MI, |
| unsigned NumResults, |
| SSARegMap *RegMap, |
| const TargetInstrDescriptor &II) { |
| // Create the result registers for this node and add the result regs to |
| // the machine instruction. |
| const TargetOperandInfo *OpInfo = II.OpInfo; |
| unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); |
| MI->addRegOperand(ResultReg, MachineOperand::Def); |
| for (unsigned i = 1; i != NumResults; ++i) { |
| assert(OpInfo[i].RegClass && "Isn't a register operand!"); |
| MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass), |
| MachineOperand::Def); |
| } |
| return ResultReg; |
| } |
| |
| /// AddOperand - Add the specified operand to the specified machine instr. II |
| /// specifies the instruction information for the node, and IIOpNum is the |
| /// operand number (in the II) that we are adding. IIOpNum and II are used for |
| /// assertions only. |
| void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op, |
| unsigned IIOpNum, |
| const TargetInstrDescriptor *II) { |
| if (Op.isTargetOpcode()) { |
| // Note that this case is redundant with the final else block, but we |
| // include it because it is the most common and it makes the logic |
| // simpler here. |
| assert(Op.getValueType() != MVT::Other && |
| Op.getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| |
| // Get/emit the operand. |
| unsigned VReg = getVR(Op); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| if (II) { |
| assert(II->OpInfo[IIOpNum].RegClass && |
| "Don't have operand info for this instruction!"); |
| assert(RegMap->getRegClass(VReg) == II->OpInfo[IIOpNum].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } |
| } else if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Op)) { |
| MI->addZeroExtImm64Operand(C->getValue()); |
| } else if (RegisterSDNode*R = |
| dyn_cast<RegisterSDNode>(Op)) { |
| MI->addRegOperand(R->getReg(), MachineOperand::Use); |
| } else if (GlobalAddressSDNode *TGA = |
| dyn_cast<GlobalAddressSDNode>(Op)) { |
| MI->addGlobalAddressOperand(TGA->getGlobal(), false, TGA->getOffset()); |
| } else if (BasicBlockSDNode *BB = |
| dyn_cast<BasicBlockSDNode>(Op)) { |
| MI->addMachineBasicBlockOperand(BB->getBasicBlock()); |
| } else if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(Op)) { |
| MI->addFrameIndexOperand(FI->getIndex()); |
| } else if (ConstantPoolSDNode *CP = |
| dyn_cast<ConstantPoolSDNode>(Op)) { |
| int Offset = CP->getOffset(); |
| unsigned Align = CP->getAlignment(); |
| // MachineConstantPool wants an explicit alignment. |
| if (Align == 0) { |
| if (CP->get()->getType() == Type::DoubleTy) |
| Align = 3; // always 8-byte align doubles. |
| else |
| Align = TM.getTargetData() |
| .getTypeAlignmentShift(CP->get()->getType()); |
| } |
| |
| unsigned Idx = ConstPool->getConstantPoolIndex(CP->get(), Align); |
| MI->addConstantPoolIndexOperand(Idx, Offset); |
| } else if (ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Op)) { |
| MI->addExternalSymbolOperand(ES->getSymbol(), false); |
| } else { |
| assert(Op.getValueType() != MVT::Other && |
| Op.getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| unsigned VReg = getVR(Op); |
| MI->addRegOperand(VReg, MachineOperand::Use); |
| |
| // Verify that it is right. |
| assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| if (II) { |
| assert(II->OpInfo[IIOpNum].RegClass && |
| "Don't have operand info for this instruction!"); |
| assert(RegMap->getRegClass(VReg) == II->OpInfo[IIOpNum].RegClass && |
| "Register class of operand and regclass of use don't agree!"); |
| } |
| } |
| |
| } |
| |
| |
| /// EmitNode - Generate machine code for an node and needed dependencies. |
| /// |
| void ScheduleDAG::EmitNode(NodeInfo *NI) { |
| unsigned VRBase = 0; // First virtual register for node |
| SDNode *Node = NI->Node; |
| |
| // If machine instruction |
| if (Node->isTargetOpcode()) { |
| unsigned Opc = Node->getTargetOpcode(); |
| const TargetInstrDescriptor &II = TII->get(Opc); |
| |
| unsigned NumResults = CountResults(Node); |
| unsigned NodeOperands = CountOperands(Node); |
| unsigned NumMIOperands = NodeOperands + NumResults; |
| #ifndef NDEBUG |
| assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& |
| "#operands for dag node doesn't match .td file!"); |
| #endif |
| |
| // Create the new machine instruction. |
| MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); |
| |
| // Add result register values for things that are defined by this |
| // instruction. |
| |
| // If the node is only used by a CopyToReg and the dest reg is a vreg, use |
| // the CopyToReg'd destination register instead of creating a new vreg. |
| if (NumResults == 1) { |
| for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| UI != E; ++UI) { |
| SDNode *Use = *UI; |
| if (Use->getOpcode() == ISD::CopyToReg && |
| Use->getOperand(2).Val == Node) { |
| unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| if (MRegisterInfo::isVirtualRegister(Reg)) { |
| VRBase = Reg; |
| MI->addRegOperand(Reg, MachineOperand::Def); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Otherwise, create new virtual registers. |
| if (NumResults && VRBase == 0) |
| VRBase = CreateVirtualRegisters(MI, NumResults, RegMap, II); |
| |
| // Emit all of the actual operands of this instruction, adding them to the |
| // instruction as appropriate. |
| for (unsigned i = 0; i != NodeOperands; ++i) |
| AddOperand(MI, Node->getOperand(i), i+NumResults, &II); |
| |
| // Now that we have emitted all operands, emit this instruction itself. |
| if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { |
| BB->insert(BB->end(), MI); |
| } else { |
| // Insert this instruction into the end of the basic block, potentially |
| // taking some custom action. |
| BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); |
| } |
| } else { |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); |
| assert(0 && "This target-independent node should have been selected!"); |
| case ISD::EntryToken: // fall thru |
| case ISD::TokenFactor: |
| break; |
| case ISD::CopyToReg: { |
| unsigned InReg = getVR(Node->getOperand(2)); |
| unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); |
| if (InReg != DestReg) // Coallesced away the copy? |
| MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, |
| RegMap->getRegClass(InReg)); |
| break; |
| } |
| case ISD::CopyFromReg: { |
| unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); |
| if (MRegisterInfo::isVirtualRegister(SrcReg)) { |
| VRBase = SrcReg; // Just use the input register directly! |
| break; |
| } |
| |
| // If the node is only used by a CopyToReg and the dest reg is a vreg, use |
| // the CopyToReg'd destination register instead of creating a new vreg. |
| for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| UI != E; ++UI) { |
| SDNode *Use = *UI; |
| if (Use->getOpcode() == ISD::CopyToReg && |
| Use->getOperand(2).Val == Node) { |
| unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| if (MRegisterInfo::isVirtualRegister(DestReg)) { |
| VRBase = DestReg; |
| break; |
| } |
| } |
| } |
| |
| // Figure out the register class to create for the destreg. |
| const TargetRegisterClass *TRC = 0; |
| if (VRBase) { |
| TRC = RegMap->getRegClass(VRBase); |
| } else { |
| |
| // Pick the register class of the right type that contains this physreg. |
| for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), |
| E = MRI->regclass_end(); I != E; ++I) |
| if ((*I)->hasType(Node->getValueType(0)) && |
| (*I)->contains(SrcReg)) { |
| TRC = *I; |
| break; |
| } |
| assert(TRC && "Couldn't find register class for reg copy!"); |
| |
| // Create the reg, emit the copy. |
| VRBase = RegMap->createVirtualRegister(TRC); |
| } |
| MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); |
| break; |
| } |
| case ISD::INLINEASM: { |
| unsigned NumOps = Node->getNumOperands(); |
| if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) |
| --NumOps; // Ignore the flag operand. |
| |
| // Create the inline asm machine instruction. |
| MachineInstr *MI = |
| new MachineInstr(BB, TargetInstrInfo::INLINEASM, (NumOps-2)/2+1); |
| |
| // Add the asm string as an external symbol operand. |
| const char *AsmStr = |
| cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol(); |
| MI->addExternalSymbolOperand(AsmStr, false); |
| |
| // Add all of the operand registers to the instruction. |
| for (unsigned i = 2; i != NumOps;) { |
| unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue(); |
| unsigned NumVals = Flags >> 3; |
| |
| MI->addZeroExtImm64Operand(Flags); |
| ++i; // Skip the ID value. |
| |
| switch (Flags & 7) { |
| default: assert(0 && "Bad flags!"); |
| case 1: // Use of register. |
| for (; NumVals; --NumVals, ++i) { |
| unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| MI->addMachineRegOperand(Reg, MachineOperand::Use); |
| } |
| break; |
| case 2: // Def of register. |
| for (; NumVals; --NumVals, ++i) { |
| unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| MI->addMachineRegOperand(Reg, MachineOperand::Def); |
| } |
| break; |
| case 3: { // Immediate. |
| assert(NumVals == 1 && "Unknown immediate value!"); |
| uint64_t Val = cast<ConstantSDNode>(Node->getOperand(i))->getValue(); |
| MI->addZeroExtImm64Operand(Val); |
| ++i; |
| break; |
| } |
| case 4: // Addressing mode. |
| // The addressing mode has been selected, just add all of the |
| // operands to the machine instruction. |
| for (; NumVals; --NumVals, ++i) |
| AddOperand(MI, Node->getOperand(i), 0, 0); |
| break; |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| assert(NI->VRBase == 0 && "Node emitted out of order - early"); |
| NI->VRBase = VRBase; |
| } |
| |
| void ScheduleDAG::EmitNoop() { |
| TII->insertNoop(*BB, BB->end()); |
| } |
| |
| /// EmitAll - Emit all nodes in schedule sorted order. |
| /// |
| void ScheduleDAG::EmitAll() { |
| // For each node in the ordering |
| for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| // Get the scheduling info |
| NodeInfo *NI = Ordering[i]; |
| if (NI->isInGroup()) { |
| NodeGroupIterator NGI(Ordering[i]); |
| while (NodeInfo *NI = NGI.next()) EmitNode(NI); |
| } else { |
| EmitNode(NI); |
| } |
| } |
| } |
| |
| /// isFlagDefiner - Returns true if the node defines a flag result. |
| static bool isFlagDefiner(SDNode *A) { |
| unsigned N = A->getNumValues(); |
| return N && A->getValueType(N - 1) == MVT::Flag; |
| } |
| |
| /// isFlagUser - Returns true if the node uses a flag result. |
| /// |
| static bool isFlagUser(SDNode *A) { |
| unsigned N = A->getNumOperands(); |
| return N && A->getOperand(N - 1).getValueType() == MVT::Flag; |
| } |
| |
| /// printNI - Print node info. |
| /// |
| void ScheduleDAG::printNI(std::ostream &O, NodeInfo *NI) const { |
| #ifndef NDEBUG |
| SDNode *Node = NI->Node; |
| O << " " |
| << std::hex << Node << std::dec |
| << ", Lat=" << NI->Latency |
| << ", Slot=" << NI->Slot |
| << ", ARITY=(" << Node->getNumOperands() << "," |
| << Node->getNumValues() << ")" |
| << " " << Node->getOperationName(&DAG); |
| if (isFlagDefiner(Node)) O << "<#"; |
| if (isFlagUser(Node)) O << ">#"; |
| #endif |
| } |
| |
| /// printChanges - Hilight changes in order caused by scheduling. |
| /// |
| void ScheduleDAG::printChanges(unsigned Index) const { |
| #ifndef NDEBUG |
| // Get the ordered node count |
| unsigned N = Ordering.size(); |
| // Determine if any changes |
| unsigned i = 0; |
| for (; i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| if (NI->Preorder != i) break; |
| } |
| |
| if (i < N) { |
| std::cerr << Index << ". New Ordering\n"; |
| |
| for (i = 0; i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| std::cerr << " " << NI->Preorder << ". "; |
| printNI(std::cerr, NI); |
| std::cerr << "\n"; |
| if (NI->isGroupDominator()) { |
| NodeGroup *Group = NI->Group; |
| for (NIIterator NII = Group->group_begin(), E = Group->group_end(); |
| NII != E; NII++) { |
| std::cerr << " "; |
| printNI(std::cerr, *NII); |
| std::cerr << "\n"; |
| } |
| } |
| } |
| } else { |
| std::cerr << Index << ". No Changes\n"; |
| } |
| #endif |
| } |
| |
| /// print - Print ordering to specified output stream. |
| /// |
| void ScheduleDAG::print(std::ostream &O) const { |
| #ifndef NDEBUG |
| using namespace std; |
| O << "Ordering\n"; |
| for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| printNI(O, NI); |
| O << "\n"; |
| if (NI->isGroupDominator()) { |
| NodeGroup *Group = NI->Group; |
| for (NIIterator NII = Group->group_begin(), E = Group->group_end(); |
| NII != E; NII++) { |
| O << " "; |
| printNI(O, *NII); |
| O << "\n"; |
| } |
| } |
| } |
| #endif |
| } |
| |
| void ScheduleDAG::dump(const char *tag) const { |
| std::cerr << tag; dump(); |
| } |
| |
| void ScheduleDAG::dump() const { |
| print(std::cerr); |
| } |
| |
| /// Run - perform scheduling. |
| /// |
| MachineBasicBlock *ScheduleDAG::Run() { |
| TII = TM.getInstrInfo(); |
| MRI = TM.getRegisterInfo(); |
| RegMap = BB->getParent()->getSSARegMap(); |
| ConstPool = BB->getParent()->getConstantPool(); |
| |
| // Number the nodes |
| NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end()); |
| // Set up minimum info for scheduling |
| PrepareNodeInfo(); |
| // Construct node groups for flagged nodes |
| IdentifyGroups(); |
| |
| Schedule(); |
| return BB; |
| } |
| |
| |
| /// CountInternalUses - Returns the number of edges between the two nodes. |
| /// |
| static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) { |
| unsigned N = 0; |
| for (unsigned M = U->Node->getNumOperands(); 0 < M--;) { |
| SDOperand Op = U->Node->getOperand(M); |
| if (Op.Val == D->Node) N++; |
| } |
| |
| return N; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// Add - Adds a definer and user pair to a node group. |
| /// |
| void ScheduleDAG::AddToGroup(NodeInfo *D, NodeInfo *U) { |
| // Get current groups |
| NodeGroup *DGroup = D->Group; |
| NodeGroup *UGroup = U->Group; |
| // If both are members of groups |
| if (DGroup && UGroup) { |
| // There may have been another edge connecting |
| if (DGroup == UGroup) return; |
| // Add the pending users count |
| DGroup->addPending(UGroup->getPending()); |
| // For each member of the users group |
| NodeGroupIterator UNGI(U); |
| while (NodeInfo *UNI = UNGI.next() ) { |
| // Change the group |
| UNI->Group = DGroup; |
| // For each member of the definers group |
| NodeGroupIterator DNGI(D); |
| while (NodeInfo *DNI = DNGI.next() ) { |
| // Remove internal edges |
| DGroup->addPending(-CountInternalUses(DNI, UNI)); |
| } |
| } |
| // Merge the two lists |
| DGroup->group_insert(DGroup->group_end(), |
| UGroup->group_begin(), UGroup->group_end()); |
| } else if (DGroup) { |
| // Make user member of definers group |
| U->Group = DGroup; |
| // Add users uses to definers group pending |
| DGroup->addPending(U->Node->use_size()); |
| // For each member of the definers group |
| NodeGroupIterator DNGI(D); |
| while (NodeInfo *DNI = DNGI.next() ) { |
| // Remove internal edges |
| DGroup->addPending(-CountInternalUses(DNI, U)); |
| } |
| DGroup->group_push_back(U); |
| } else if (UGroup) { |
| // Make definer member of users group |
| D->Group = UGroup; |
| // Add definers uses to users group pending |
| UGroup->addPending(D->Node->use_size()); |
| // For each member of the users group |
| NodeGroupIterator UNGI(U); |
| while (NodeInfo *UNI = UNGI.next() ) { |
| // Remove internal edges |
| UGroup->addPending(-CountInternalUses(D, UNI)); |
| } |
| UGroup->group_insert(UGroup->group_begin(), D); |
| } else { |
| D->Group = U->Group = DGroup = new NodeGroup(); |
| DGroup->addPending(D->Node->use_size() + U->Node->use_size() - |
| CountInternalUses(D, U)); |
| DGroup->group_push_back(D); |
| DGroup->group_push_back(U); |
| |
| if (HeadNG == NULL) |
| HeadNG = DGroup; |
| if (TailNG != NULL) |
| TailNG->Next = DGroup; |
| TailNG = DGroup; |
| } |
| } |