| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for PowerPC, |
| // converting from a legalized dag to a PPC dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ppc-codegen" |
| #include "PPC.h" |
| #include "PPCTargetMachine.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| //===--------------------------------------------------------------------===// |
| /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
| /// instructions for SelectionDAG operations. |
| /// |
| class PPCDAGToDAGISel : public SelectionDAGISel { |
| const PPCTargetMachine &TM; |
| const PPCTargetLowering &PPCLowering; |
| const PPCSubtarget &PPCSubTarget; |
| unsigned GlobalBaseReg; |
| public: |
| explicit PPCDAGToDAGISel(PPCTargetMachine &tm) |
| : SelectionDAGISel(tm), TM(tm), |
| PPCLowering(*TM.getTargetLowering()), |
| PPCSubTarget(*TM.getSubtargetImpl()) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseReg = 0; |
| SelectionDAGISel::runOnMachineFunction(MF); |
| |
| InsertVRSaveCode(MF); |
| return true; |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDValue getI32Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| /// getI64Imm - Return a target constant with the specified value, of type |
| /// i64. |
| inline SDValue getI64Imm(uint64_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i64); |
| } |
| |
| /// getSmallIPtrImm - Return a target constant of pointer type. |
| inline SDValue getSmallIPtrImm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); |
| } |
| |
| /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s |
| /// with any number of 0s on either side. The 1s are allowed to wrap from |
| /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. |
| /// 0x0F0F0000 is not, since all 1s are not contiguous. |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); |
| |
| |
| /// isRotateAndMask - Returns true if Mask and Shift can be folded into a |
| /// rotate and mask opcode and mask operation. |
| static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, |
| unsigned &SH, unsigned &MB, unsigned &ME); |
| |
| /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
| /// base register. Return the virtual register that holds this value. |
| SDNode *getGlobalBaseReg(); |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| SDNode *Select(SDNode *N); |
| |
| SDNode *SelectBitfieldInsert(SDNode *N); |
| |
| /// SelectCC - Select a comparison of the specified values with the |
| /// specified condition code, returning the CR# of the expression. |
| SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); |
| |
| /// SelectAddrImm - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement [r+imm]. |
| bool SelectAddrImm(SDValue N, SDValue &Disp, |
| SDValue &Base) { |
| return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); |
| } |
| |
| /// SelectAddrImmOffs - Return true if the operand is valid for a preinc |
| /// immediate field. Because preinc imms have already been validated, just |
| /// accept it. |
| bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { |
| Out = N; |
| return true; |
| } |
| |
| /// SelectAddrIdx - Given the specified addressed, check to see if it can be |
| /// represented as an indexed [r+r] operation. Returns false if it can |
| /// be represented by [r+imm], which are preferred. |
| bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); |
| } |
| |
| /// SelectAddrIdxOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { |
| return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); |
| } |
| |
| /// SelectAddrImmShift - Returns true if the address N can be represented by |
| /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable |
| /// for use by STD and friends. |
| bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) { |
| return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); |
| } |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. It is always correct to compute the value into |
| /// a register. The case of adding a (possibly relocatable) constant to a |
| /// register can be improved, but it is wrong to substitute Reg+Reg for |
| /// Reg in an asm, because the load or store opcode would have to change. |
| virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| OutOps.push_back(Op); |
| return false; |
| } |
| |
| void InsertVRSaveCode(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "PowerPC DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "PPCGenDAGISel.inc" |
| |
| private: |
| SDNode *SelectSETCC(SDNode *N); |
| }; |
| } |
| |
| /// InsertVRSaveCode - Once the entire function has been instruction selected, |
| /// all virtual registers are created and all machine instructions are built, |
| /// check to see if we need to save/restore VRSAVE. If so, do it. |
| void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { |
| // Check to see if this function uses vector registers, which means we have to |
| // save and restore the VRSAVE register and update it with the regs we use. |
| // |
| // In this case, there will be virtual registers of vector type created |
| // by the scheduler. Detect them now. |
| bool HasVectorVReg = false; |
| for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { |
| HasVectorVReg = true; |
| break; |
| } |
| } |
| if (!HasVectorVReg) return; // nothing to do. |
| |
| // If we have a vector register, we want to emit code into the entry and exit |
| // blocks to save and restore the VRSAVE register. We do this here (instead |
| // of marking all vector instructions as clobbering VRSAVE) for two reasons: |
| // |
| // 1. This (trivially) reduces the load on the register allocator, by not |
| // having to represent the live range of the VRSAVE register. |
| // 2. This (more significantly) allows us to create a temporary virtual |
| // register to hold the saved VRSAVE value, allowing this temporary to be |
| // register allocated, instead of forcing it to be spilled to the stack. |
| |
| // Create two vregs - one to hold the VRSAVE register that is live-in to the |
| // function and one for the value after having bits or'd into it. |
| unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| MachineBasicBlock &EntryBB = *Fn.begin(); |
| DebugLoc dl; |
| // Emit the following code into the entry block: |
| // InVRSAVE = MFVRSAVE |
| // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE |
| // MTVRSAVE UpdatedVRSAVE |
| MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), |
| UpdatedVRSAVE).addReg(InVRSAVE); |
| BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); |
| |
| // Find all return blocks, outputting a restore in each epilog. |
| for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { |
| if (!BB->empty() && BB->back().isReturn()) { |
| IP = BB->end(); --IP; |
| |
| // Skip over all terminator instructions, which are part of the return |
| // sequence. |
| MachineBasicBlock::iterator I2 = IP; |
| while (I2 != BB->begin() && (--I2)->isTerminator()) |
| IP = I2; |
| |
| // Emit: MTVRSAVE InVRSave |
| BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); |
| } |
| } |
| } |
| |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { |
| if (!GlobalBaseReg) { |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = MF->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| DebugLoc dl; |
| |
| if (PPCLowering.getPointerTy() == MVT::i32) { |
| GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); |
| } else { |
| GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); |
| BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); |
| } |
| } |
| return CurDAG->getRegister(GlobalBaseReg, |
| PPCLowering.getPointerTy()).getNode(); |
| } |
| |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// sign extension from a 16-bit value. If so, this returns true and the |
| /// immediate. |
| static bool isIntS16Immediate(SDNode *N, short &Imm) { |
| if (N->getOpcode() != ISD::Constant) |
| return false; |
| |
| Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) |
| return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| else |
| return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| } |
| |
| static bool isIntS16Immediate(SDValue Op, short &Imm) { |
| return isIntS16Immediate(Op.getNode(), Imm); |
| } |
| |
| |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| /// operand. If so Imm will receive the 32-bit value. |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// isInt64Immediate - This method tests to see if the node is a 64-bit constant |
| /// operand. If so Imm will receive the 64-bit value. |
| static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isInt32Immediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| return isInt32Immediate(N.getNode(), Imm); |
| } |
| |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc |
| && isInt32Immediate(N->getOperand(1).getNode(), Imm); |
| } |
| |
| bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { |
| if (isShiftedMask_32(Val)) { |
| // look for the first non-zero bit |
| MB = CountLeadingZeros_32(Val); |
| // look for the first zero bit after the run of ones |
| ME = CountLeadingZeros_32((Val - 1) ^ Val); |
| return true; |
| } else { |
| Val = ~Val; // invert mask |
| if (isShiftedMask_32(Val)) { |
| // effectively look for the first zero bit |
| ME = CountLeadingZeros_32(Val) - 1; |
| // effectively look for the first one bit after the run of zeros |
| MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; |
| return true; |
| } |
| } |
| // no run present |
| return false; |
| } |
| |
| bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, |
| bool isShiftMask, unsigned &SH, |
| unsigned &MB, unsigned &ME) { |
| // Don't even go down this path for i64, since different logic will be |
| // necessary for rldicl/rldicr/rldimi. |
| if (N->getValueType(0) != MVT::i32) |
| return false; |
| |
| unsigned Shift = 32; |
| unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
| unsigned Opcode = N->getOpcode(); |
| if (N->getNumOperands() != 2 || |
| !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) |
| return false; |
| |
| if (Opcode == ISD::SHL) { |
| // apply shift left to mask if it comes first |
| if (isShiftMask) Mask = Mask << Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu << Shift); |
| } else if (Opcode == ISD::SRL) { |
| // apply shift right to mask if it comes first |
| if (isShiftMask) Mask = Mask >> Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu >> Shift); |
| // adjust for the left rotate |
| Shift = 32 - Shift; |
| } else if (Opcode == ISD::ROTL) { |
| Indeterminant = 0; |
| } else { |
| return false; |
| } |
| |
| // if the mask doesn't intersect any Indeterminant bits |
| if (Mask && !(Mask & Indeterminant)) { |
| SH = Shift & 31; |
| // make sure the mask is still a mask (wrap arounds may not be) |
| return isRunOfOnes(Mask, MB, ME); |
| } |
| return false; |
| } |
| |
| /// SelectBitfieldInsert - turn an or of two masked values into |
| /// the rotate left word immediate then mask insert (rlwimi) instruction. |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| APInt LKZ, LKO, RKZ, RKO; |
| CurDAG->ComputeMaskedBits(Op0, LKZ, LKO); |
| CurDAG->ComputeMaskedBits(Op1, RKZ, RKO); |
| |
| unsigned TargetMask = LKZ.getZExtValue(); |
| unsigned InsertMask = RKZ.getZExtValue(); |
| |
| if ((TargetMask | InsertMask) == 0xFFFFFFFF) { |
| unsigned Op0Opc = Op0.getOpcode(); |
| unsigned Op1Opc = Op1.getOpcode(); |
| unsigned Value, SH = 0; |
| TargetMask = ~TargetMask; |
| InsertMask = ~InsertMask; |
| |
| // If the LHS has a foldable shift and the RHS does not, then swap it to the |
| // RHS so that we can fold the shift into the insert. |
| if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
| if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
| Op0.getOperand(0).getOpcode() == ISD::SRL) { |
| if (Op1.getOperand(0).getOpcode() != ISD::SHL && |
| Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| std::swap(Op0, Op1); |
| std::swap(Op0Opc, Op1Opc); |
| std::swap(TargetMask, InsertMask); |
| } |
| } |
| } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { |
| if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && |
| Op1.getOperand(0).getOpcode() != ISD::SRL) { |
| std::swap(Op0, Op1); |
| std::swap(Op0Opc, Op1Opc); |
| std::swap(TargetMask, InsertMask); |
| } |
| } |
| |
| unsigned MB, ME; |
| if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { |
| SDValue Tmp1, Tmp2; |
| |
| if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && |
| isInt32Immediate(Op1.getOperand(1), Value)) { |
| Op1 = Op1.getOperand(0); |
| SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; |
| } |
| if (Op1Opc == ISD::AND) { |
| unsigned SHOpc = Op1.getOperand(0).getOpcode(); |
| if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && |
| isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { |
| Op1 = Op1.getOperand(0).getOperand(0); |
| SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; |
| } else { |
| Op1 = Op1.getOperand(0); |
| } |
| } |
| |
| SH &= 31; |
| SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), |
| getI32Imm(ME) }; |
| return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); |
| } |
| } |
| return 0; |
| } |
| |
| /// SelectCC - Select a comparison of the specified values with the specified |
| /// condition code, returning the CR# of the expression. |
| SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, DebugLoc dl) { |
| // Always select the LHS. |
| unsigned Opc; |
| |
| if (LHS.getValueType() == MVT::i32) { |
| unsigned Imm; |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| if (isInt32Immediate(RHS, Imm)) { |
| // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| if (isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| // If this is a 16-bit signed immediate, fold it. |
| if (isInt<16>((int)Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| |
| // For non-equality comparisons, the default code would materialize the |
| // constant, then compare against it, like this: |
| // lis r2, 4660 |
| // ori r2, r2, 22136 |
| // cmpw cr0, r3, r2 |
| // Since we are just comparing for equality, we can emit this instead: |
| // xoris r0,r3,0x1234 |
| // cmplwi cr0,r0,0x5678 |
| // beq cr0,L6 |
| SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, |
| getI32Imm(Imm >> 16)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| } |
| Opc = PPC::CMPLW; |
| } else if (ISD::isUnsignedIntSetCC(CC)) { |
| if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| Opc = PPC::CMPLW; |
| } else { |
| short SImm; |
| if (isIntS16Immediate(RHS, SImm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, |
| getI32Imm((int)SImm & 0xFFFF)), |
| 0); |
| Opc = PPC::CMPW; |
| } |
| } else if (LHS.getValueType() == MVT::i64) { |
| uint64_t Imm; |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) { |
| if (isInt64Immediate(RHS.getNode(), Imm)) { |
| // SETEQ/SETNE comparison with 16-bit immediate, fold it. |
| if (isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| // If this is a 16-bit signed immediate, fold it. |
| if (isInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| getI32Imm(Imm & 0xFFFF)), 0); |
| |
| // For non-equality comparisons, the default code would materialize the |
| // constant, then compare against it, like this: |
| // lis r2, 4660 |
| // ori r2, r2, 22136 |
| // cmpd cr0, r3, r2 |
| // Since we are just comparing for equality, we can emit this instead: |
| // xoris r0,r3,0x1234 |
| // cmpldi cr0,r0,0x5678 |
| // beq cr0,L6 |
| if (isUInt<32>(Imm)) { |
| SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, |
| getI64Imm(Imm >> 16)), 0); |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, |
| getI64Imm(Imm & 0xFFFF)), 0); |
| } |
| } |
| Opc = PPC::CMPLD; |
| } else if (ISD::isUnsignedIntSetCC(CC)) { |
| if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, |
| getI64Imm(Imm & 0xFFFF)), 0); |
| Opc = PPC::CMPLD; |
| } else { |
| short SImm; |
| if (isIntS16Immediate(RHS, SImm)) |
| return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, |
| getI64Imm(SImm & 0xFFFF)), |
| 0); |
| Opc = PPC::CMPD; |
| } |
| } else if (LHS.getValueType() == MVT::f32) { |
| Opc = PPC::FCMPUS; |
| } else { |
| assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); |
| Opc = PPC::FCMPUD; |
| } |
| return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); |
| } |
| |
| static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { |
| switch (CC) { |
| case ISD::SETUEQ: |
| case ISD::SETONE: |
| case ISD::SETOLE: |
| case ISD::SETOGE: |
| llvm_unreachable("Should be lowered by legalize!"); |
| default: llvm_unreachable("Unknown condition!"); |
| case ISD::SETOEQ: |
| case ISD::SETEQ: return PPC::PRED_EQ; |
| case ISD::SETUNE: |
| case ISD::SETNE: return PPC::PRED_NE; |
| case ISD::SETOLT: |
| case ISD::SETLT: return PPC::PRED_LT; |
| case ISD::SETULE: |
| case ISD::SETLE: return PPC::PRED_LE; |
| case ISD::SETOGT: |
| case ISD::SETGT: return PPC::PRED_GT; |
| case ISD::SETUGE: |
| case ISD::SETGE: return PPC::PRED_GE; |
| case ISD::SETO: return PPC::PRED_NU; |
| case ISD::SETUO: return PPC::PRED_UN; |
| // These two are invalid for floating point. Assume we have int. |
| case ISD::SETULT: return PPC::PRED_LT; |
| case ISD::SETUGT: return PPC::PRED_GT; |
| } |
| } |
| |
| /// getCRIdxForSetCC - Return the index of the condition register field |
| /// associated with the SetCC condition, and whether or not the field is |
| /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| /// |
| /// If this returns with Other != -1, then the returned comparison is an or of |
| /// two simpler comparisons. In this case, Invert is guaranteed to be false. |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { |
| Invert = false; |
| Other = -1; |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition!"); |
| case ISD::SETOLT: |
| case ISD::SETLT: return 0; // Bit #0 = SETOLT |
| case ISD::SETOGT: |
| case ISD::SETGT: return 1; // Bit #1 = SETOGT |
| case ISD::SETOEQ: |
| case ISD::SETEQ: return 2; // Bit #2 = SETOEQ |
| case ISD::SETUO: return 3; // Bit #3 = SETUO |
| case ISD::SETUGE: |
| case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE |
| case ISD::SETULE: |
| case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE |
| case ISD::SETUNE: |
| case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE |
| case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO |
| case ISD::SETUEQ: |
| case ISD::SETOGE: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| llvm_unreachable("Invalid branch code: should be expanded by legalize"); |
| // These are invalid for floating point. Assume integer. |
| case ISD::SETULT: return 0; |
| case ISD::SETUGT: return 1; |
| } |
| } |
| |
| SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| unsigned Imm; |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| |
| if (isInt32Immediate(N->getOperand(1), Imm)) { |
| // We can codegen setcc op, imm very efficiently compared to a brcond. |
| // Check for those cases here. |
| // setcc op, 0 |
| if (Imm == 0) { |
| SDValue Op = N->getOperand(0); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: { |
| Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); |
| SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| case ISD::SETNE: { |
| if (isPPC64) break; |
| SDValue AD = |
| SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(~0U)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, |
| AD.getValue(1)); |
| } |
| case ISD::SETLT: { |
| SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| case ISD::SETGT: { |
| SDValue T = |
| SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); |
| T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); |
| SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| } |
| } else if (Imm == ~0U) { // setcc op, -1 |
| SDValue Op = N->getOperand(0); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| if (isPPC64) break; |
| Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(1)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| SDValue(CurDAG->getMachineNode(PPC::LI, dl, |
| MVT::i32, |
| getI32Imm(0)), 0), |
| Op.getValue(1)); |
| case ISD::SETNE: { |
| if (isPPC64) break; |
| Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); |
| SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| Op, getI32Imm(~0U)); |
| return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), |
| Op, SDValue(AD, 1)); |
| } |
| case ISD::SETLT: { |
| SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, |
| getI32Imm(1)), 0); |
| SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, |
| Op), 0); |
| SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| case ISD::SETGT: { |
| SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; |
| Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), |
| 0); |
| return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, |
| getI32Imm(1)); |
| } |
| } |
| } |
| } |
| |
| bool Inv; |
| int OtherCondIdx; |
| unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); |
| SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); |
| SDValue IntCR; |
| |
| // Force the ccreg into CR7. |
| SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
| |
| SDValue InFlag(0, 0); // Null incoming flag value. |
| CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, |
| InFlag).getValue(1); |
| |
| if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1) |
| IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, |
| CCReg), 0); |
| else |
| IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, |
| CR7Reg, CCReg), 0); |
| |
| SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), |
| getI32Imm(31), getI32Imm(31) }; |
| if (OtherCondIdx == -1 && !Inv) |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| |
| // Get the specified bit. |
| SDValue Tmp = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); |
| if (Inv) { |
| assert(OtherCondIdx == -1 && "Can't have split plus negation"); |
| return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); |
| } |
| |
| // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. |
| // We already got the bit for the first part of the comparison (e.g. SETULE). |
| |
| // Get the other bit of the comparison. |
| Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); |
| SDValue OtherCond = |
| SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); |
| |
| return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); |
| } |
| |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| SDNode *PPCDAGToDAGISel::Select(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| if (N->isMachineOpcode()) |
| return NULL; // Already selected. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| |
| case ISD::Constant: { |
| if (N->getValueType(0) == MVT::i64) { |
| // Get 64 bit value. |
| int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| // Assume no remaining bits. |
| unsigned Remainder = 0; |
| // Assume no shift required. |
| unsigned Shift = 0; |
| |
| // If it can't be represented as a 32 bit value. |
| if (!isInt<32>(Imm)) { |
| Shift = CountTrailingZeros_64(Imm); |
| int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; |
| |
| // If the shifted value fits 32 bits. |
| if (isInt<32>(ImmSh)) { |
| // Go with the shifted value. |
| Imm = ImmSh; |
| } else { |
| // Still stuck with a 64 bit value. |
| Remainder = Imm; |
| Shift = 32; |
| Imm >>= 32; |
| } |
| } |
| |
| // Intermediate operand. |
| SDNode *Result; |
| |
| // Handle first 32 bits. |
| unsigned Lo = Imm & 0xFFFF; |
| unsigned Hi = (Imm >> 16) & 0xFFFF; |
| |
| // Simple value. |
| if (isInt<16>(Imm)) { |
| // Just the Lo bits. |
| Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); |
| } else if (Lo) { |
| // Handle the Hi bits. |
| unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; |
| Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); |
| // And Lo bits. |
| Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Lo)); |
| } else { |
| // Just the Hi bits. |
| Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); |
| } |
| |
| // If no shift, we're done. |
| if (!Shift) return Result; |
| |
| // Shift for next step if the upper 32-bits were not zero. |
| if (Imm) { |
| Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, |
| SDValue(Result, 0), |
| getI32Imm(Shift), |
| getI32Imm(63 - Shift)); |
| } |
| |
| // Add in the last bits as required. |
| if ((Hi = (Remainder >> 16) & 0xFFFF)) { |
| Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Hi)); |
| } |
| if ((Lo = Remainder & 0xFFFF)) { |
| Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, |
| SDValue(Result, 0), getI32Imm(Lo)); |
| } |
| |
| return Result; |
| } |
| break; |
| } |
| |
| case ISD::SETCC: |
| return SelectSETCC(N); |
| case PPCISD::GlobalBaseReg: |
| return getGlobalBaseReg(); |
| |
| case ISD::FrameIndex: { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); |
| unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; |
| if (N->hasOneUse()) |
| return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, |
| getSmallIPtrImm(0)); |
| return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, |
| getSmallIPtrImm(0)); |
| } |
| |
| case PPCISD::MFCR: { |
| SDValue InFlag = N->getOperand(1); |
| // Use MFOCRF if supported. |
| if (PPCSubTarget.isGigaProcessor()) |
| return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, |
| N->getOperand(0), InFlag); |
| else |
| return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, |
| N->getOperand(0), InFlag); |
| } |
| |
| case ISD::SDIV: { |
| // FIXME: since this depends on the setting of the carry flag from the srawi |
| // we should really be making notes about that for the scheduler. |
| // FIXME: It sure would be nice if we could cheaply recognize the |
| // srl/add/sra pattern the dag combiner will generate for this as |
| // sra/addze rather than having to handle sdiv ourselves. oh well. |
| unsigned Imm; |
| if (isInt32Immediate(N->getOperand(1), Imm)) { |
| SDValue N0 = N->getOperand(0); |
| if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { |
| SDNode *Op = |
| CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, |
| N0, getI32Imm(Log2_32(Imm))); |
| return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| SDValue(Op, 0), SDValue(Op, 1)); |
| } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { |
| SDNode *Op = |
| CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, |
| N0, getI32Imm(Log2_32(-Imm))); |
| SDValue PT = |
| SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, |
| SDValue(Op, 0), SDValue(Op, 1)), |
| 0); |
| return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| |
| case ISD::LOAD: { |
| // Handle preincrement loads. |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT LoadedVT = LD->getMemoryVT(); |
| |
| // Normal loads are handled by code generated from the .td file. |
| if (LD->getAddressingMode() != ISD::PRE_INC) |
| break; |
| |
| SDValue Offset = LD->getOffset(); |
| if (isa<ConstantSDNode>(Offset) || |
| Offset.getOpcode() == ISD::TargetGlobalAddress) { |
| |
| unsigned Opcode; |
| bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; |
| if (LD->getValueType(0) != MVT::i64) { |
| // Handle PPC32 integer and normal FP loads. |
| assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::f64: Opcode = PPC::LFDU; break; |
| case MVT::f32: Opcode = PPC::LFSU; break; |
| case MVT::i32: Opcode = PPC::LWZU; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZU; break; |
| } |
| } else { |
| assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); |
| assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid PPC load type!"); |
| case MVT::i64: Opcode = PPC::LDU; break; |
| case MVT::i32: Opcode = PPC::LWZU8; break; |
| case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; |
| case MVT::i1: |
| case MVT::i8: Opcode = PPC::LBZU8; break; |
| } |
| } |
| |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[] = { Offset, Base, Chain }; |
| // FIXME: PPC64 |
| return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), |
| PPCLowering.getPointerTy(), |
| MVT::Other, Ops, 3); |
| } else { |
| llvm_unreachable("R+R preindex loads not supported yet!"); |
| } |
| } |
| |
| case ISD::AND: { |
| unsigned Imm, Imm2, SH, MB, ME; |
| |
| // If this is an and of a value rotated between 0 and 31 bits and then and'd |
| // with a mask, emit rlwinm |
| if (isInt32Immediate(N->getOperand(1), Imm) && |
| isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { |
| SDValue Val = N->getOperand(0).getOperand(0); |
| SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| // If this is just a masked value where the input is not handled above, and |
| // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm |
| if (isInt32Immediate(N->getOperand(1), Imm) && |
| isRunOfOnes(Imm, MB, ME) && |
| N->getOperand(0).getOpcode() != ISD::ROTL) { |
| SDValue Val = N->getOperand(0); |
| SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| // AND X, 0 -> 0, not "rlwinm 32". |
| if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { |
| ReplaceUses(SDValue(N, 0), N->getOperand(1)); |
| return NULL; |
| } |
| // ISD::OR doesn't get all the bitfield insertion fun. |
| // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert |
| if (isInt32Immediate(N->getOperand(1), Imm) && |
| N->getOperand(0).getOpcode() == ISD::OR && |
| isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { |
| unsigned MB, ME; |
| Imm = ~(Imm^Imm2); |
| if (isRunOfOnes(Imm, MB, ME)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| N->getOperand(0).getOperand(1), |
| getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; |
| return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::OR: |
| if (N->getValueType(0) == MVT::i32) |
| if (SDNode *I = SelectBitfieldInsert(N)) |
| return I; |
| |
| // Other cases are autogenerated. |
| break; |
| case ISD::SHL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SRL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SELECT_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| |
| // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc |
| if (!isPPC64) |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| if (N1C->isNullValue() && N3C->isNullValue() && |
| N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && |
| // FIXME: Implement this optzn for PPC64. |
| N->getValueType(0) == MVT::i32) { |
| SDNode *Tmp = |
| CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, |
| N->getOperand(0), getI32Imm(~0U)); |
| return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, |
| SDValue(Tmp, 0), N->getOperand(0), |
| SDValue(Tmp, 1)); |
| } |
| |
| SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); |
| unsigned BROpc = getPredicateForSetCC(CC); |
| |
| unsigned SelectCCOp; |
| if (N->getValueType(0) == MVT::i32) |
| SelectCCOp = PPC::SELECT_CC_I4; |
| else if (N->getValueType(0) == MVT::i64) |
| SelectCCOp = PPC::SELECT_CC_I8; |
| else if (N->getValueType(0) == MVT::f32) |
| SelectCCOp = PPC::SELECT_CC_F4; |
| else if (N->getValueType(0) == MVT::f64) |
| SelectCCOp = PPC::SELECT_CC_F8; |
| else |
| SelectCCOp = PPC::SELECT_CC_VRRC; |
| |
| SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), |
| getI32Imm(BROpc) }; |
| return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); |
| } |
| case PPCISD::COND_BRANCH: { |
| // Op #0 is the Chain. |
| // Op #1 is the PPC::PRED_* number. |
| // Op #2 is the CR# |
| // Op #3 is the Dest MBB |
| // Op #4 is the Flag. |
| // Prevent PPC::PRED_* from being selected into LI. |
| SDValue Pred = |
| getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); |
| SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), |
| N->getOperand(0), N->getOperand(4) }; |
| return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); |
| } |
| case ISD::BR_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); |
| SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, |
| N->getOperand(4), N->getOperand(0) }; |
| return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); |
| } |
| case ISD::BRIND: { |
| // FIXME: Should custom lower this. |
| SDValue Chain = N->getOperand(0); |
| SDValue Target = N->getOperand(1); |
| unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; |
| unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; |
| Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, |
| Chain), 0); |
| return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); |
| } |
| } |
| |
| return SelectCode(N); |
| } |
| |
| |
| |
| /// createPPCISelDag - This pass converts a legalized DAG into a |
| /// PowerPC-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { |
| return new PPCDAGToDAGISel(TM); |
| } |
| |